Merge branch 'dev' into feature/torch

# Conflicts:
#	.github/workflows/build.yml
#	kmath-core/src/commonMain/kotlin/space/kscience/kmath/nd/StructureND.kt
#	kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/internal/TensorLinearStructure.kt
This commit is contained in:
Iaroslav Postovalov 2021-07-13 00:53:37 +07:00
commit 3d8390a130
443 changed files with 23848 additions and 9524 deletions

View File

@ -1,110 +1,42 @@
name: Gradle build name: Gradle build
on: [ push ] on:
push:
pull_request:
types: [opened, edited]
jobs: jobs:
build-ubuntu: build:
runs-on: ubuntu-20.04 strategy:
matrix:
os: [ macOS-latest, windows-latest ]
runs-on: ${{matrix.os}}
timeout-minutes: 30
steps: steps:
- uses: actions/checkout@v2 - name: Checkout the repo
uses: actions/checkout@v2
- name: Set up JDK 11 - name: Set up JDK 11
uses: actions/setup-java@v1 uses: DeLaGuardo/setup-graalvm@4.0
with: with:
java-version: 11 graalvm: 21.1.0
- name: Install build-essential java: java11
run: | arch: amd64
sudo apt install -y build-essential
- name: Grant execute permission for gradlew
run: chmod +x gradlew
- name: Install Chrome
run: |
sudo apt install -y libappindicator1 fonts-liberation
wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb
sudo dpkg -i google-chrome*.deb
- name: Cache gradle
uses: actions/cache@v2
with:
path: |
.gradle
build
~/.gradle
key: gradle
restore-keys: gradle
- name: Cache konan
uses: actions/cache@v2
with:
path: |
~/.konan/dependencies
~/.konan/kotlin-native-prebuilt-linux-*
key: ${{ runner.os }}-konan
restore-keys: ${{ runner.os }}-konan
- name: Build with Gradle
run: ./gradlew -Dorg.gradle.daemon=false --build-cache build
build-osx:
runs-on: macos-latest
steps:
- uses: actions/checkout@v2
- name: Set up JDK 11
uses: actions/setup-java@v1
with:
java-version: 11
- name: Grant execute permission for gradlew
run: chmod +x gradlew
- name: Cache gradle
uses: actions/cache@v2
with:
path: |
.gradle
build
~/.gradle
key: gradle
restore-keys: gradle
- name: Cache konan
uses: actions/cache@v2
with:
path: |
~/.konan/dependencies
~/.konan/kotlin-native-prebuilt-macos-*
key: ${{ runner.os }}-konan
restore-keys: ${{ runner.os }}-konan
- name: Build with Gradle
run: sudo ./gradlew -Dorg.gradle.daemon=false --build-cache build
build-windows:
runs-on: windows-latest
steps:
- uses: actions/checkout@v2
- name: Set up JDK 11
uses: actions/setup-java@v1
with:
java-version: 11
- name: Grant execute permission for gradlew
run: chmod +x gradlew
- name: Add msys to path - name: Add msys to path
if: matrix.os == 'windows-latest'
run: SETX PATH "%PATH%;C:\msys64\mingw64\bin" run: SETX PATH "%PATH%;C:\msys64\mingw64\bin"
- name: Cache gradle - name: Cache gradle
uses: actions/cache@v2 uses: actions/cache@v2
with: with:
path: | path: ~/.gradle/caches
.gradle key: ${{ runner.os }}-gradle-${{ hashFiles('*.gradle.kts') }}
build restore-keys: |
~/.gradle ${{ runner.os }}-gradle-
key: ${{ runner.os }}-gradle
restore-keys: ${{ runner.os }}-gradle
- name: Cache konan - name: Cache konan
uses: actions/cache@v2 uses: actions/cache@v2
with: with:
path: | path: ~/.konan
~/.konan/dependencies key: ${{ runner.os }}-gradle-${{ hashFiles('*.gradle.kts') }}
~/.konan/kotlin-native-prebuilt-mingw-* restore-keys: |
key: ${{ runner.os }}-konan ${{ runner.os }}-gradle-
restore-keys: ${{ runner.os }}-konan - name: Build
- name: Build with Gradle run: ./gradlew build --no-daemon --stacktrace
run: ./gradlew --build-cache build

24
.github/workflows/pages.yml vendored Normal file
View File

@ -0,0 +1,24 @@
name: Dokka publication
on:
push:
branches:
- master
jobs:
build:
runs-on: ubuntu-20.04
steps:
- name: Checkout the repo
uses: actions/checkout@v2
- name: Set up JDK 11
uses: actions/setup-java@v1
with:
java-version: 11
- name: Build
run: ./gradlew dokkaHtmlMultiModule --no-daemon --no-parallel --stacktrace
- name: Deploy to GitHub Pages
uses: JamesIves/github-pages-deploy-action@4.1.0
with:
branch: gh-pages
folder: build/dokka/htmlMultiModule

61
.github/workflows/publish.yml vendored Normal file
View File

@ -0,0 +1,61 @@
name: Gradle publish
on:
workflow_dispatch:
release:
types:
- created
jobs:
publish:
environment:
name: publish
strategy:
matrix:
os: [ macOS-latest, windows-latest ]
runs-on: ${{matrix.os}}
steps:
- name: Checkout the repo
uses: actions/checkout@v2
- name: Set up JDK 11
uses: DeLaGuardo/setup-graalvm@4.0
with:
graalvm: 21.1.0
java: java11
arch: amd64
- name: Add msys to path
if: matrix.os == 'windows-latest'
run: SETX PATH "%PATH%;C:\msys64\mingw64\bin"
- name: Cache gradle
uses: actions/cache@v2
with:
path: ~/.gradle/caches
key: ${{ runner.os }}-gradle-${{ hashFiles('*.gradle.kts') }}
restore-keys: |
${{ runner.os }}-gradle-
- name: Cache konan
uses: actions/cache@v2
with:
path: ~/.konan
key: ${{ runner.os }}-gradle-${{ hashFiles('*.gradle.kts') }}
restore-keys: |
${{ runner.os }}-gradle-
- name: Publish Windows Artifacts
if: matrix.os == 'windows-latest'
run: >
./gradlew release --no-daemon
-Ppublishing.enabled=true
-Ppublishing.github.user=${{ secrets.PUBLISHING_GITHUB_USER }}
-Ppublishing.github.token=${{ secrets.PUBLISHING_GITHUB_TOKEN }}
-Ppublishing.space.user=${{ secrets.PUBLISHING_SPACE_USER }}
-Ppublishing.space.token=${{ secrets.PUBLISHING_SPACE_TOKEN }}
- name: Publish Mac Artifacts
if: matrix.os == 'macOS-latest'
run: >
./gradlew release --no-daemon
-Ppublishing.enabled=true
-Ppublishing.platform=macosX64
-Ppublishing.github.user=${{ secrets.PUBLISHING_GITHUB_USER }}
-Ppublishing.github.token=${{ secrets.PUBLISHING_GITHUB_TOKEN }}
-Ppublishing.space.user=${{ secrets.PUBLISHING_SPACE_USER }}
-Ppublishing.space.token=${{ secrets.PUBLISHING_SPACE_TOKEN }}

View File

@ -1,117 +0,0 @@
name: Gradle release
on:
release:
types:
- created
jobs:
build-ubuntu:
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v2
- name: Set up JDK 11
uses: actions/setup-java@v1
with:
java-version: 11
- name: Grant execute permission for gradlew
run: chmod +x gradlew
- name: Install Chrome
run: |
sudo apt install -y libappindicator1 fonts-liberation
wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb
sudo dpkg -i google-chrome*.deb
- name: Cache gradle
uses: actions/cache@v2
with:
path: |
.gradle
build
~/.gradle
key: gradle
restore-keys: gradle
- name: Cache konan
uses: actions/cache@v2
with:
path: |
~/.konan/dependencies
~/.konan/kotlin-native-prebuilt-linux-*
key: ${{ runner.os }}-konan
restore-keys: ${{ runner.os }}-konan
- name: Build with Gradle
run: ./gradlew -Dorg.gradle.daemon=false --build-cache build
- name: Run release task
run: ./gradlew release -PbintrayUser=${{ secrets.BINTRAY_USER }} -PbintrayApiKey=${{ secrets.BINTRAY_KEY }}
build-osx:
runs-on: macos-latest
steps:
- uses: actions/checkout@v2
- name: Set up JDK 11
uses: actions/setup-java@v1
with:
java-version: 11
- name: Grant execute permission for gradlew
run: chmod +x gradlew
- name: Cache gradle
uses: actions/cache@v2
with:
path: |
.gradle
build
~/.gradle
key: gradle
restore-keys: gradle
- name: Cache konan
uses: actions/cache@v2
with:
path: |
~/.konan/dependencies
~/.konan/kotlin-native-prebuilt-macos-*
key: ${{ runner.os }}-konan
restore-keys: ${{ runner.os }}-konan
- name: Build with Gradle
run: sudo ./gradlew -Dorg.gradle.daemon=false --build-cache build
- name: Run release task
run: ./gradlew release -PbintrayUser=${{ secrets.BINTRAY_USER }} -PbintrayApiKey=${{ secrets.BINTRAY_KEY }}
build-windows:
runs-on: windows-latest
steps:
- uses: actions/checkout@v2
- name: Set up JDK 11
uses: actions/setup-java@v1
with:
java-version: 11
- name: Grant execute permission for gradlew
run: chmod +x gradlew
- name: Add msys to path
run: SETX PATH "%PATH%;C:\msys64\mingw64\bin"
- name: Cache gradle
uses: actions/cache@v2
with:
path: |
.gradle
build
~/.gradle
key: ${{ runner.os }}-gradle
restore-keys: ${{ runner.os }}-gradle
- name: Cache konan
uses: actions/cache@v2
with:
path: |
~/.konan/dependencies
~/.konan/kotlin-native-prebuilt-mingw-*
key: ${{ runner.os }}-konan
restore-keys: ${{ runner.os }}-konan
- name: Build with Gradle
run: ./gradlew --build-cache build
- name: Run release task
run: ./gradlew release -PbintrayUser=${{ secrets.BINTRAY_USER }} -PbintrayApiKey=${{ secrets.BINTRAY_KEY }}

5
.gitignore vendored
View File

@ -1,7 +1,12 @@
.gradle .gradle
build/ build/
out/ out/
.idea/ .idea/
!.idea/copyright/
!.idea/scopes/
.vscode/ .vscode/
# Avoid ignoring Gradle wrapper jar file (.jar files are usually ignored) # Avoid ignoring Gradle wrapper jar file (.jar files are usually ignored)

View File

@ -0,0 +1,6 @@
<component name="CopyrightManager">
<copyright>
<option name="notice" value="Copyright 2018-2021 KMath contributors.&#10;Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file." />
<option name="myName" value="kmath" />
</copyright>
</component>

View File

@ -0,0 +1,21 @@
<component name="CopyrightManager">
<settings default="kmath">
<module2copyright>
<element module="Apply copyright" copyright="kmath" />
</module2copyright>
<LanguageOptions name="Groovy">
<option name="fileTypeOverride" value="1" />
</LanguageOptions>
<LanguageOptions name="HTML">
<option name="fileTypeOverride" value="1" />
<option name="prefixLines" value="false" />
</LanguageOptions>
<LanguageOptions name="Properties">
<option name="fileTypeOverride" value="1" />
</LanguageOptions>
<LanguageOptions name="XML">
<option name="fileTypeOverride" value="1" />
<option name="prefixLines" value="false" />
</LanguageOptions>
</settings>
</component>

View File

@ -0,0 +1,4 @@
<component name="DependencyValidationManager">
<scope name="Apply copyright"
pattern="!file[*]:*//testData//*&amp;&amp;!file[*]:testData//*&amp;&amp;!file[*]:*.gradle.kts&amp;&amp;!file[*]:*.gradle&amp;&amp;!file[group:kotlin-ultimate]:*/&amp;&amp;!file[kotlin.libraries]:stdlib/api//*"/>
</component>

View File

@ -2,14 +2,55 @@
## [Unreleased] ## [Unreleased]
### Added ### Added
- `ScaleOperations` interface
- `Field` extends `ScaleOperations`
- Basic integration API
- Basic MPP distributions and samplers
- `bindSymbolOrNull`
- Blocking chains and Statistics
- Multiplatform integration
- Integration for any Field element
- Extended operations for ND4J fields
- Jupyter Notebook integration module (kmath-jupyter)
- `@PerformancePitfall` annotation to mark possibly slow API
- `BigInt` operation performance improvement and fixes by @zhelenskiy (#328)
- Integration between `MST` and Symja `IExpr`
### Changed ### Changed
- Exponential operations merged with hyperbolic functions
- Space is replaced by Group. Space is reserved for vector spaces.
- VectorSpace is now a vector space
- Buffer factories for primitives moved to MutableBuffer.Companion
- Rename `NDStructure` and `NDAlgebra` to `StructureND` and `AlgebraND` respectively
- `Real` -> `Double`
- DataSets are moved from functions to core
- Redesign advanced Chain API
- Redesign `MST`. Remove `MstExpression`.
- Move `MST` to core
- Separated benchmarks and examples
- Rewrite `kmath-ejml` without `ejml-simple` artifact, support sparse matrices
- Promote stability of kmath-ast and kmath-kotlingrad to EXPERIMENTAL.
- ColumnarData returns nullable column
- `MST` is made sealed interface
- Replace `MST.Symbolic` by `Symbol`, `Symbol` now implements MST
- Remove Any restriction on polynomials
- Add `out` variance to type parameters of `StructureND` and its implementations where possible
- Rename `DifferentiableMstExpression` to `KotlingradExpression`
### Deprecated ### Deprecated
### Removed ### Removed
- Nearest in Domain. To be implemented in geometry package.
- Number multiplication and division in main Algebra chain
- `contentEquals` from Buffer. It moved to the companion.
- MSTExpression
- Expression algebra builders
- Complex and Quaternion no longer are elements.
- Second generic from DifferentiableExpression
### Fixed ### Fixed
- Ring inherits RingOperations, not GroupOperations
- Univariate histogram filling
### Security ### Security
@ -65,6 +106,7 @@
- `toGrid` method. - `toGrid` method.
- Public visibility of `BufferAccessor2D` - Public visibility of `BufferAccessor2D`
- `Real` class - `Real` class
- StructureND identity and equals
### Fixed ### Fixed
- `symbol` method in `MstExtendedField` (https://github.com/mipt-npm/kmath/pull/140) - `symbol` method in `MstExtendedField` (https://github.com/mipt-npm/kmath/pull/140)

201
LICENSE
View File

@ -1,201 +0,0 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

131
README.md
View File

@ -1,11 +1,8 @@
[![JetBrains Research](https://jb.gg/badges/research.svg)](https://confluence.jetbrains.com/display/ALL/JetBrains+on+GitHub) [![JetBrains Research](https://jb.gg/badges/research.svg)](https://confluence.jetbrains.com/display/ALL/JetBrains+on+GitHub)
[![DOI](https://zenodo.org/badge/129486382.svg)](https://zenodo.org/badge/latestdoi/129486382) [![DOI](https://zenodo.org/badge/129486382.svg)](https://zenodo.org/badge/latestdoi/129486382)
![Gradle build](https://github.com/mipt-npm/kmath/workflows/Gradle%20build/badge.svg) ![Gradle build](https://github.com/mipt-npm/kmath/workflows/Gradle%20build/badge.svg)
[![Maven Central](https://img.shields.io/maven-central/v/space.kscience/kmath-core.svg?label=Maven%20Central)](https://search.maven.org/search?q=g:%22space.kscience%22)
Bintray: [ ![Download](https://api.bintray.com/packages/mipt-npm/kscience/kmath-core/images/download.svg) ](https://bintray.com/mipt-npm/kscience/kmath-core/_latestVersion) [![Space](https://img.shields.io/badge/dynamic/xml?color=orange&label=Space&query=//metadata/versioning/latest&url=https%3A%2F%2Fmaven.pkg.jetbrains.space%2Fmipt-npm%2Fp%2Fsci%2Fmaven%2Fspace%2Fkscience%2Fkmath-core%2Fmaven-metadata.xml)](https://maven.pkg.jetbrains.space/mipt-npm/p/sci/maven/space/kscience/)
Bintray-dev: [ ![Download](https://api.bintray.com/packages/mipt-npm/dev/kmath-core/images/download.svg) ](https://bintray.com/mipt-npm/dev/kmath-core/_latestVersion)
# KMath # KMath
@ -14,6 +11,8 @@ Python's NumPy library. Later we found that kotlin is much more flexible languag
designs. In contrast to `numpy` and `scipy` it is modular and has a lightweight core. The `numpy`-like experience could designs. In contrast to `numpy` and `scipy` it is modular and has a lightweight core. The `numpy`-like experience could
be achieved with [kmath-for-real](/kmath-for-real) extension module. be achieved with [kmath-for-real](/kmath-for-real) extension module.
[Documentation site (**WIP**)](https://mipt-npm.github.io/kmath/)
## Publications and talks ## Publications and talks
* [A conceptual article about context-oriented design](https://proandroiddev.com/an-introduction-context-oriented-programming-in-kotlin-2e79d316b0a2) * [A conceptual article about context-oriented design](https://proandroiddev.com/an-introduction-context-oriented-programming-in-kotlin-2e79d316b0a2)
@ -41,7 +40,7 @@ KMath is a modular library. Different modules provide different features with di
* **PROTOTYPE**. On this level there are no compatibility guarantees. All methods and classes form those modules could break any moment. You can still use it, but be sure to fix the specific version. * **PROTOTYPE**. On this level there are no compatibility guarantees. All methods and classes form those modules could break any moment. You can still use it, but be sure to fix the specific version.
* **EXPERIMENTAL**. The general API is decided, but some changes could be made. Volatile API is marked with `@UnstableKmathAPI` or other stability warning annotations. * **EXPERIMENTAL**. The general API is decided, but some changes could be made. Volatile API is marked with `@UnstableKmathAPI` or other stability warning annotations.
* **DEVELOPMENT**. API breaking genrally follows semantic versioning ideology. There could be changes in minor versions, but not in patch versions. API is protected with [binary-compatibility-validator](https://github.com/Kotlin/binary-compatibility-validator) tool. * **DEVELOPMENT**. API breaking generally follows semantic versioning ideology. There could be changes in minor versions, but not in patch versions. API is protected with [binary-compatibility-validator](https://github.com/Kotlin/binary-compatibility-validator) tool.
* **STABLE**. The API stabilized. Breaking changes are allowed only in major releases. * **STABLE**. The API stabilized. Breaking changes are allowed only in major releases.
<!--Current feature list is [here](/docs/features.md)--> <!--Current feature list is [here](/docs/features.md)-->
@ -77,6 +76,12 @@ KMath is a modular library. Different modules provide different features with di
<hr/> <hr/>
* ### [benchmarks](benchmarks)
>
>
> **Maturity**: EXPERIMENTAL
<hr/>
* ### [examples](examples) * ### [examples](examples)
> >
> >
@ -86,15 +91,13 @@ KMath is a modular library. Different modules provide different features with di
* ### [kmath-ast](kmath-ast) * ### [kmath-ast](kmath-ast)
> >
> >
> **Maturity**: PROTOTYPE > **Maturity**: EXPERIMENTAL
> >
> **Features:** > **Features:**
> - [expression-language](kmath-ast/src/jvmMain/kotlin/kscience/kmath/ast/parser.kt) : Expression language and its parser > - [expression-language](kmath-ast/src/commonMain/kotlin/space/kscience/kmath/ast/parser.kt) : Expression language and its parser
> - [mst](kmath-ast/src/commonMain/kotlin/kscience/kmath/ast/MST.kt) : MST (Mathematical Syntax Tree) as expression language's syntax intermediate representation > - [mst-jvm-codegen](kmath-ast/src/jvmMain/kotlin/space/kscience/kmath/asm/asm.kt) : Dynamic MST to JVM bytecode compiler
> - [mst-building](kmath-ast/src/commonMain/kotlin/kscience/kmath/ast/MstAlgebra.kt) : MST building algebraic structure > - [mst-js-codegen](kmath-ast/src/jsMain/kotlin/space/kscience/kmath/estree/estree.kt) : Dynamic MST to JS compiler
> - [mst-interpreter](kmath-ast/src/commonMain/kotlin/kscience/kmath/ast/MST.kt) : MST interpreter > - [rendering](kmath-ast/src/commonMain/kotlin/space/kscience/kmath/ast/rendering/MathRenderer.kt) : Extendable MST rendering
> - [mst-jvm-codegen](kmath-ast/src/jvmMain/kotlin/kscience/kmath/asm/asm.kt) : Dynamic MST to JVM bytecode compiler
> - [mst-js-codegen](kmath-ast/src/jsMain/kotlin/kscience/kmath/estree/estree.kt) : Dynamic MST to JS compiler
<hr/> <hr/>
@ -110,8 +113,8 @@ KMath is a modular library. Different modules provide different features with di
> **Maturity**: PROTOTYPE > **Maturity**: PROTOTYPE
> >
> **Features:** > **Features:**
> - [complex](kmath-complex/src/commonMain/kotlin/kscience/kmath/complex/Complex.kt) : Complex Numbers > - [complex](kmath-complex/src/commonMain/kotlin/space/kscience/kmath/complex/Complex.kt) : Complex Numbers
> - [quaternion](kmath-complex/src/commonMain/kotlin/kscience/kmath/complex/Quaternion.kt) : Quaternions > - [quaternion](kmath-complex/src/commonMain/kotlin/space/kscience/kmath/complex/Quaternion.kt) : Quaternions
<hr/> <hr/>
@ -121,15 +124,15 @@ KMath is a modular library. Different modules provide different features with di
> **Maturity**: DEVELOPMENT > **Maturity**: DEVELOPMENT
> >
> **Features:** > **Features:**
> - [algebras](kmath-core/src/commonMain/kotlin/kscience/kmath/operations/Algebra.kt) : Algebraic structures like rings, spaces and fields. > - [algebras](kmath-core/src/commonMain/kotlin/space/kscience/kmath/operations/Algebra.kt) : Algebraic structures like rings, spaces and fields.
> - [nd](kmath-core/src/commonMain/kotlin/kscience/kmath/structures/NDStructure.kt) : Many-dimensional structures and operations on them. > - [nd](kmath-core/src/commonMain/kotlin/space/kscience/kmath/structures/StructureND.kt) : Many-dimensional structures and operations on them.
> - [linear](kmath-core/src/commonMain/kotlin/kscience/kmath/operations/Algebra.kt) : Basic linear algebra operations (sums, products, etc.), backed by the `Space` API. Advanced linear algebra operations like matrix inversion and LU decomposition. > - [linear](kmath-core/src/commonMain/kotlin/space/kscience/kmath/operations/Algebra.kt) : Basic linear algebra operations (sums, products, etc.), backed by the `Space` API. Advanced linear algebra operations like matrix inversion and LU decomposition.
> - [buffers](kmath-core/src/commonMain/kotlin/kscience/kmath/structures/Buffers.kt) : One-dimensional structure > - [buffers](kmath-core/src/commonMain/kotlin/space/kscience/kmath/structures/Buffers.kt) : One-dimensional structure
> - [expressions](kmath-core/src/commonMain/kotlin/kscience/kmath/expressions) : By writing a single mathematical expression once, users will be able to apply different types of > - [expressions](kmath-core/src/commonMain/kotlin/space/kscience/kmath/expressions) : By writing a single mathematical expression once, users will be able to apply different types of
objects to the expression by providing a context. Expressions can be used for a wide variety of purposes from high objects to the expression by providing a context. Expressions can be used for a wide variety of purposes from high
performance calculations to code generation. performance calculations to code generation.
> - [domains](kmath-core/src/commonMain/kotlin/kscience/kmath/domains) : Domains > - [domains](kmath-core/src/commonMain/kotlin/space/kscience/kmath/domains) : Domains
> - [autodif](kmath-core/src/commonMain/kotlin/kscience/kmath/expressions/SimpleAutoDiff.kt) : Automatic differentiation > - [autodif](kmath-core/src/commonMain/kotlin/space/kscience/kmath/expressions/SimpleAutoDiff.kt) : Automatic differentiation
<hr/> <hr/>
@ -149,6 +152,12 @@ performance calculations to code generation.
> >
> >
> **Maturity**: PROTOTYPE > **Maturity**: PROTOTYPE
>
> **Features:**
> - [ejml-vector](kmath-ejml/src/main/kotlin/space/kscience/kmath/ejml/EjmlVector.kt) : Point implementations.
> - [ejml-matrix](kmath-ejml/src/main/kotlin/space/kscience/kmath/ejml/EjmlMatrix.kt) : Matrix implementation.
> - [ejml-linear-space](kmath-ejml/src/main/kotlin/space/kscience/kmath/ejml/EjmlLinearSpace.kt) : LinearSpace implementations.
<hr/> <hr/>
* ### [kmath-for-real](kmath-for-real) * ### [kmath-for-real](kmath-for-real)
@ -159,22 +168,23 @@ One can still use generic algebras though.
> **Maturity**: EXPERIMENTAL > **Maturity**: EXPERIMENTAL
> >
> **Features:** > **Features:**
> - [RealVector](kmath-for-real/src/commonMain/kotlin/kscience/kmath/real/RealVector.kt) : Numpy-like operations for Buffers/Points > - [DoubleVector](kmath-for-real/src/commonMain/kotlin/space/kscience/kmath/real/DoubleVector.kt) : Numpy-like operations for Buffers/Points
> - [RealMatrix](kmath-for-real/src/commonMain/kotlin/kscience/kmath/real/RealMatrix.kt) : Numpy-like operations for 2d real structures > - [DoubleMatrix](kmath-for-real/src/commonMain/kotlin/space/kscience/kmath/real/DoubleMatrix.kt) : Numpy-like operations for 2d real structures
> - [grids](kmath-for-real/src/commonMain/kotlin/kscience/kmath/structures/grids.kt) : Uniform grid generators > - [grids](kmath-for-real/src/commonMain/kotlin/space/kscience/kmath/structures/grids.kt) : Uniform grid generators
<hr/> <hr/>
* ### [kmath-functions](kmath-functions) * ### [kmath-functions](kmath-functions)
> Functions and interpolation
> >
> **Maturity**: PROTOTYPE >
> **Maturity**: EXPERIMENTAL
> >
> **Features:** > **Features:**
> - [piecewise](kmath-functions/Piecewise functions.) : src/commonMain/kotlin/kscience/kmath/functions/Piecewise.kt > - [piecewise](kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/Piecewise.kt) : Piecewise functions.
> - [polynomials](kmath-functions/Polynomial functions.) : src/commonMain/kotlin/kscience/kmath/functions/Polynomial.kt > - [polynomials](kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/Polynomial.kt) : Polynomial functions.
> - [linear interpolation](kmath-functions/Linear XY interpolator.) : src/commonMain/kotlin/kscience/kmath/interpolation/LinearInterpolator.kt > - [linear interpolation](kmath-functions/src/commonMain/kotlin/space/kscience/kmath/interpolation/LinearInterpolator.kt) : Linear XY interpolator.
> - [spline interpolation](kmath-functions/Cubic spline XY interpolator.) : src/commonMain/kotlin/kscience/kmath/interpolation/SplineInterpolator.kt > - [spline interpolation](kmath-functions/src/commonMain/kotlin/space/kscience/kmath/interpolation/SplineInterpolator.kt) : Cubic spline XY interpolator.
> - [integration](kmath-functions/#) : Univariate and multivariate quadratures
<hr/> <hr/>
@ -190,27 +200,48 @@ One can still use generic algebras though.
> **Maturity**: PROTOTYPE > **Maturity**: PROTOTYPE
<hr/> <hr/>
* ### [kmath-kotlingrad](kmath-kotlingrad) * ### [kmath-jafama](kmath-jafama)
>
>
> **Maturity**: PROTOTYPE
>
> **Features:**
> - [jafama-double](kmath-jafama/src/main/kotlin/space/kscience/kmath/jafama/) : Double ExtendedField implementations based on Jafama
<hr/>
* ### [kmath-jupyter](kmath-jupyter)
> >
> >
> **Maturity**: PROTOTYPE > **Maturity**: PROTOTYPE
<hr/> <hr/>
* ### [kmath-kotlingrad](kmath-kotlingrad)
>
>
> **Maturity**: EXPERIMENTAL
>
> **Features:**
> - [differentiable-mst-expression](kmath-kotlingrad/src/main/kotlin/space/kscience/kmath/kotlingrad/DifferentiableMstExpression.kt) : MST based DifferentiableExpression.
> - [differentiable-mst-expression](kmath-kotlingrad/src/main/kotlin/space/kscience/kmath/kotlingrad/DifferentiableMstExpression.kt) : Conversions between Kotlin∇'s SFun and MST
<hr/>
* ### [kmath-memory](kmath-memory) * ### [kmath-memory](kmath-memory)
> An API and basic implementation for arranging objects in a continous memory block. > An API and basic implementation for arranging objects in a continuous memory block.
> >
> **Maturity**: DEVELOPMENT > **Maturity**: DEVELOPMENT
<hr/> <hr/>
* ### [kmath-nd4j](kmath-nd4j) * ### [kmath-nd4j](kmath-nd4j)
> ND4J NDStructure implementation and according NDAlgebra classes >
> >
> **Maturity**: EXPERIMENTAL > **Maturity**: EXPERIMENTAL
> >
> **Features:** > **Features:**
> - [nd4jarraystructure](kmath-nd4j/src/commonMain/kotlin/kscience/kmath/operations/Algebra.kt) : NDStructure wrapper for INDArray > - [nd4jarraystructure](kmath-nd4j/#) : NDStructure wrapper for INDArray
> - [nd4jarrayrings](kmath-nd4j/src/commonMain/kotlin/kscience/kmath/structures/NDStructure.kt) : Rings over Nd4jArrayStructure of Int and Long > - [nd4jarrayrings](kmath-nd4j/#) : Rings over Nd4jArrayStructure of Int and Long
> - [nd4jarrayfields](kmath-nd4j/src/commonMain/kotlin/kscience/kmath/structures/Buffers.kt) : Fields over Nd4jArrayStructure of Float and Double > - [nd4jarrayfields](kmath-nd4j/#) : Fields over Nd4jArrayStructure of Float and Double
<hr/> <hr/>
@ -220,6 +251,24 @@ One can still use generic algebras though.
> **Maturity**: EXPERIMENTAL > **Maturity**: EXPERIMENTAL
<hr/> <hr/>
* ### [kmath-symja](kmath-symja)
>
>
> **Maturity**: PROTOTYPE
<hr/>
* ### [kmath-tensors](kmath-tensors)
>
>
> **Maturity**: PROTOTYPE
>
> **Features:**
> - [tensor algebra](kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/api/TensorAlgebra.kt) : Basic linear algebra operations on tensors (plus, dot, etc.)
> - [tensor algebra with broadcasting](kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/algebras/BroadcastDoubleTensorAlgebra.kt) : Basic linear algebra operations implemented with broadcasting.
> - [linear algebra operations](kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/api/LinearOpsTensorAlgebra.kt) : Advanced linear algebra operations like LU decomposition, SVD, etc.
<hr/>
* ### [kmath-viktor](kmath-viktor) * ### [kmath-viktor](kmath-viktor)
> >
> >
@ -245,6 +294,10 @@ cases. We expect the worst KMath benchmarks will perform better than native Pyth
native/SciPy (mostly due to boxing operations on primitive numbers). The best performance of optimized parts could be native/SciPy (mostly due to boxing operations on primitive numbers). The best performance of optimized parts could be
better than SciPy. better than SciPy.
## Requirements
KMath currently relies on JDK 11 for compilation and execution of Kotlin-JVM part. We recommend to use GraalVM-CE 11 for execution in order to get better performance.
### Repositories ### Repositories
Release and development artifacts are accessible from mipt-npm [Space](https://www.jetbrains.com/space/) repository `https://maven.pkg.jetbrains.space/mipt-npm/p/sci/maven` (see documentation of Release and development artifacts are accessible from mipt-npm [Space](https://www.jetbrains.com/space/) repository `https://maven.pkg.jetbrains.space/mipt-npm/p/sci/maven` (see documentation of
@ -256,8 +309,8 @@ repositories {
} }
dependencies { dependencies {
api("kscience.kmath:kmath-core:() -> kotlin.Any") api("space.kscience:kmath-core:0.3.0-dev-14")
// api("kscience.kmath:kmath-core-jvm:() -> kotlin.Any") for jvm-specific version // api("space.kscience:kmath-core-jvm:0.3.0-dev-14") for jvm-specific version
} }
``` ```

138
benchmarks/build.gradle.kts Normal file
View File

@ -0,0 +1,138 @@
@file:Suppress("UNUSED_VARIABLE")
import space.kscience.kmath.benchmarks.addBenchmarkProperties
plugins {
kotlin("multiplatform")
kotlin("plugin.allopen")
id("org.jetbrains.kotlinx.benchmark")
}
allOpen.annotation("org.openjdk.jmh.annotations.State")
sourceSets.register("benchmarks")
repositories {
mavenCentral()
maven("https://repo.kotlin.link")
maven("https://clojars.org/repo")
maven("https://jitpack.io")
maven("http://logicrunch.research.it.uu.se/maven") {
isAllowInsecureProtocol = true
}
}
kotlin {
jvm()
sourceSets {
val commonMain by getting {
dependencies {
implementation(project(":kmath-ast"))
implementation(project(":kmath-core"))
implementation(project(":kmath-coroutines"))
implementation(project(":kmath-complex"))
implementation(project(":kmath-stat"))
implementation(project(":kmath-dimensions"))
implementation(project(":kmath-for-real"))
implementation(project(":kmath-jafama"))
implementation("org.jetbrains.kotlinx:kotlinx-benchmark-runtime:0.3.1")
}
}
val jvmMain by getting {
dependencies {
implementation(project(":kmath-commons"))
implementation(project(":kmath-ejml"))
implementation(project(":kmath-nd4j"))
implementation(project(":kmath-kotlingrad"))
implementation(project(":kmath-viktor"))
implementation("org.nd4j:nd4j-native:1.0.0-M1")
// uncomment if your system supports AVX2
// val os = System.getProperty("os.name")
//
// if (System.getProperty("os.arch") in arrayOf("x86_64", "amd64")) when {
// os.startsWith("Windows") -> implementation("org.nd4j:nd4j-native:1.0.0-beta7:windows-x86_64-avx2")
// os == "Linux" -> implementation("org.nd4j:nd4j-native:1.0.0-beta7:linux-x86_64-avx2")
// os == "Mac OS X" -> implementation("org.nd4j:nd4j-native:1.0.0-beta7:macosx-x86_64-avx2")
// } else
// implementation("org.nd4j:nd4j-native-platform:1.0.0-beta7")
}
}
}
}
// Configure benchmark
benchmark {
// Setup configurations
targets {
register("jvm")
}
fun kotlinx.benchmark.gradle.BenchmarkConfiguration.commonConfiguration() {
warmups = 1
iterations = 5
iterationTime = 1000
iterationTimeUnit = "ms"
}
configurations.register("buffer") {
commonConfiguration()
include("BufferBenchmark")
}
configurations.register("dot") {
commonConfiguration()
include("DotBenchmark")
}
configurations.register("expressions") {
commonConfiguration()
include("ExpressionsInterpretersBenchmark")
}
configurations.register("matrixInverse") {
commonConfiguration()
include("MatrixInverseBenchmark")
}
configurations.register("bigInt") {
commonConfiguration()
include("BigIntBenchmark")
}
configurations.register("jafamaDouble") {
commonConfiguration()
include("JafamaBenchmark")
}
}
// Fix kotlinx-benchmarks bug
afterEvaluate {
val jvmBenchmarkJar by tasks.getting(org.gradle.jvm.tasks.Jar::class) {
duplicatesStrategy = DuplicatesStrategy.EXCLUDE
}
}
kotlin.sourceSets.all {
with(languageSettings) {
useExperimentalAnnotation("kotlin.contracts.ExperimentalContracts")
useExperimentalAnnotation("kotlin.ExperimentalUnsignedTypes")
useExperimentalAnnotation("space.kscience.kmath.misc.UnstableKMathAPI")
}
}
tasks.withType<org.jetbrains.kotlin.gradle.tasks.KotlinCompile> {
kotlinOptions {
jvmTarget = "11"
freeCompilerArgs = freeCompilerArgs + "-Xjvm-default=all"
}
}
readme {
maturity = ru.mipt.npm.gradle.Maturity.EXPERIMENTAL
}
addBenchmarkProperties()

View File

@ -0,0 +1,43 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Benchmark
import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import java.nio.IntBuffer
@State(Scope.Benchmark)
internal class ArrayBenchmark {
@Benchmark
fun benchmarkArrayRead(blackhole: Blackhole) {
var res = 0
for (i in 1..size) res += array[size - i]
blackhole.consume(res)
}
@Benchmark
fun benchmarkBufferRead(blackhole: Blackhole) {
var res = 0
for (i in 1..size) res += arrayBuffer[size - i]
blackhole.consume(res)
}
@Benchmark
fun nativeBufferRead(blackhole: Blackhole) {
var res = 0
for (i in 1..size) res += nativeBuffer[size - i]
blackhole.consume(res)
}
private companion object {
private const val size = 1000
private val array = IntArray(size) { it }
private val arrayBuffer = IntBuffer.wrap(array)
private val nativeBuffer = IntBuffer.allocate(size).also { for (i in 0 until size) it.put(i, i) }
}
}

View File

@ -0,0 +1,97 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Blackhole
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.*
import java.math.BigInteger
@UnstableKMathAPI
@State(Scope.Benchmark)
internal class BigIntBenchmark {
val kmNumber = BigIntField.number(Int.MAX_VALUE)
val jvmNumber = JBigIntegerField.number(Int.MAX_VALUE)
val largeKmNumber = BigIntField { number(11).pow(100_000U) }
val largeJvmNumber: BigInteger = JBigIntegerField { number(11).pow(100_000) }
val bigExponent = 50_000
@Benchmark
fun kmAdd(blackhole: Blackhole) = BigIntField {
blackhole.consume(kmNumber + kmNumber + kmNumber)
}
@Benchmark
fun jvmAdd(blackhole: Blackhole) = JBigIntegerField {
blackhole.consume(jvmNumber + jvmNumber + jvmNumber)
}
@Benchmark
fun kmAddLarge(blackhole: Blackhole) = BigIntField {
blackhole.consume(largeKmNumber + largeKmNumber + largeKmNumber)
}
@Benchmark
fun jvmAddLarge(blackhole: Blackhole) = JBigIntegerField {
blackhole.consume(largeJvmNumber + largeJvmNumber + largeJvmNumber)
}
@Benchmark
fun kmMultiply(blackhole: Blackhole) = BigIntField {
blackhole.consume(kmNumber * kmNumber * kmNumber)
}
@Benchmark
fun kmMultiplyLarge(blackhole: Blackhole) = BigIntField {
blackhole.consume(largeKmNumber*largeKmNumber)
}
@Benchmark
fun jvmMultiply(blackhole: Blackhole) = JBigIntegerField {
blackhole.consume(jvmNumber * jvmNumber * jvmNumber)
}
@Benchmark
fun jvmMultiplyLarge(blackhole: Blackhole) = JBigIntegerField {
blackhole.consume(largeJvmNumber*largeJvmNumber)
}
@Benchmark
fun kmPower(blackhole: Blackhole) = BigIntField {
blackhole.consume(kmNumber.pow(bigExponent.toUInt()))
}
@Benchmark
fun jvmPower(blackhole: Blackhole) = JBigIntegerField {
blackhole.consume(jvmNumber.pow(bigExponent))
}
@Benchmark
fun kmParsing16(blackhole: Blackhole) = JBigIntegerField {
blackhole.consume("0x7f57ed8b89c29a3b9a85c7a5b84ca3929c7b7488593".parseBigInteger())
}
@Benchmark
fun kmParsing10(blackhole: Blackhole) = JBigIntegerField {
blackhole.consume("236656783929183747565738292847574838922010".parseBigInteger())
}
@Benchmark
fun jvmParsing10(blackhole: Blackhole) = JBigIntegerField {
blackhole.consume("236656783929183747565738292847574838922010".toBigInteger(10))
}
@Benchmark
fun jvmParsing16(blackhole: Blackhole) = JBigIntegerField {
blackhole.consume("7f57ed8b89c29a3b9a85c7a5b84ca3929c7b7488593".toBigInteger(16))
}
}

View File

@ -1,18 +1,23 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks package space.kscience.kmath.benchmarks
import org.openjdk.jmh.annotations.Benchmark import kotlinx.benchmark.Benchmark
import org.openjdk.jmh.annotations.Scope import kotlinx.benchmark.Scope
import org.openjdk.jmh.annotations.State import kotlinx.benchmark.State
import space.kscience.kmath.complex.Complex import space.kscience.kmath.complex.Complex
import space.kscience.kmath.complex.complex import space.kscience.kmath.complex.complex
import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.structures.MutableBuffer import space.kscience.kmath.structures.MutableBuffer
import space.kscience.kmath.structures.RealBuffer
@State(Scope.Benchmark) @State(Scope.Benchmark)
internal class BufferBenchmark { internal class BufferBenchmark {
@Benchmark @Benchmark
fun genericRealBufferReadWrite() { fun genericDoubleBufferReadWrite() {
val buffer = RealBuffer(size) { it.toDouble() } val buffer = DoubleBuffer(size) { it.toDouble() }
(0 until size).forEach { (0 until size).forEach {
buffer[it] buffer[it]
@ -28,7 +33,7 @@ internal class BufferBenchmark {
} }
} }
companion object { private companion object {
const val size: Int = 100 private const val size = 100
} }
} }

View File

@ -0,0 +1,70 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Benchmark
import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import space.kscience.kmath.commons.linear.CMLinearSpace
import space.kscience.kmath.ejml.EjmlLinearSpaceDDRM
import space.kscience.kmath.linear.LinearSpace
import space.kscience.kmath.linear.invoke
import space.kscience.kmath.operations.DoubleField
import kotlin.random.Random
@State(Scope.Benchmark)
internal class DotBenchmark {
companion object {
val random = Random(12224)
const val dim = 1000
//creating invertible matrix
val matrix1 = LinearSpace.real.buildMatrix(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
val matrix2 = LinearSpace.real.buildMatrix(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
val cmMatrix1 = CMLinearSpace { matrix1.toCM() }
val cmMatrix2 = CMLinearSpace { matrix2.toCM() }
val ejmlMatrix1 = EjmlLinearSpaceDDRM { matrix1.toEjml() }
val ejmlMatrix2 = EjmlLinearSpaceDDRM { matrix2.toEjml() }
}
@Benchmark
fun cmDot(blackhole: Blackhole) {
CMLinearSpace.run {
blackhole.consume(cmMatrix1 dot cmMatrix2)
}
}
@Benchmark
fun ejmlDot(blackhole: Blackhole) {
EjmlLinearSpaceDDRM {
blackhole.consume(ejmlMatrix1 dot ejmlMatrix2)
}
}
@Benchmark
fun ejmlDotWithConversion(blackhole: Blackhole) {
EjmlLinearSpaceDDRM {
blackhole.consume(matrix1 dot matrix2)
}
}
@Benchmark
fun bufferedDot(blackhole: Blackhole) {
LinearSpace.auto(DoubleField).invoke {
blackhole.consume(matrix1 dot matrix2)
}
}
@Benchmark
fun realDot(blackhole: Blackhole) {
LinearSpace.real {
blackhole.consume(matrix1 dot matrix2)
}
}
}

View File

@ -0,0 +1,94 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Benchmark
import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import space.kscience.kmath.asm.compileToExpression
import space.kscience.kmath.expressions.*
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.bindSymbol
import space.kscience.kmath.operations.invoke
import kotlin.math.sin
import kotlin.random.Random
@State(Scope.Benchmark)
internal class ExpressionsInterpretersBenchmark {
/**
* Benchmark case for [Expression] created with [expressionInExtendedField].
*/
@Benchmark
fun functionalExpression(blackhole: Blackhole) = invokeAndSum(functional, blackhole)
/**
* Benchmark case for [Expression] created with [toExpression].
*/
@Benchmark
fun mstExpression(blackhole: Blackhole) = invokeAndSum(mst, blackhole)
/**
* Benchmark case for [Expression] created with [compileToExpression].
*/
@Benchmark
fun asmExpression(blackhole: Blackhole) = invokeAndSum(asm, blackhole)
/**
* Benchmark case for [Expression] implemented manually with `kotlin.math` functions.
*/
@Benchmark
fun rawExpression(blackhole: Blackhole) = invokeAndSum(raw, blackhole)
/**
* Benchmark case for direct computation w/o [Expression].
*/
@Benchmark
fun justCalculate(blackhole: Blackhole) {
val random = Random(0)
var sum = 0.0
repeat(times) {
val x = random.nextDouble()
sum += x * 2.0 + 2.0 / x - 16.0 / sin(x)
}
blackhole.consume(sum)
}
private fun invokeAndSum(expr: Expression<Double>, blackhole: Blackhole) {
val random = Random(0)
var sum = 0.0
repeat(times) {
sum += expr(x to random.nextDouble())
}
blackhole.consume(sum)
}
private companion object {
private val x by symbol
private val algebra = DoubleField
private const val times = 1_000_000
private val functional = DoubleField.expressionInExtendedField {
bindSymbol(x) * number(2.0) + number(2.0) / bindSymbol(x) - number(16.0) / sin(bindSymbol(x))
}
private val node = MstExtendedField {
x * 2.0 + number(2.0) / x - number(16.0) / sin(x)
}
private val mst = node.toExpression(DoubleField)
private val asm = node.compileToExpression(DoubleField)
private val raw = Expression<Double> { args ->
val x = args[x]!!
x * 2.0 + 2.0 / x - 16.0 / sin(x)
}
}
}

View File

@ -0,0 +1,39 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Blackhole
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import space.kscience.kmath.jafama.JafamaDoubleField
import space.kscience.kmath.jafama.StrictJafamaDoubleField
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.invoke
import kotlin.random.Random
@State(Scope.Benchmark)
internal class JafamaBenchmark {
@Benchmark
fun jafama(blackhole: Blackhole) = invokeBenchmarks(blackhole) { x ->
JafamaDoubleField { x * power(x, 4) * exp(x) / cos(x) + sin(x) }
}
@Benchmark
fun core(blackhole: Blackhole) = invokeBenchmarks(blackhole) { x ->
DoubleField { x * power(x, 4) * exp(x) / cos(x) + sin(x) }
}
@Benchmark
fun strictJafama(blackhole: Blackhole) = invokeBenchmarks(blackhole) { x ->
StrictJafamaDoubleField { x * power(x, 4) * exp(x) / cos(x) + sin(x) }
}
private inline fun invokeBenchmarks(blackhole: Blackhole, expr: (Double) -> Double) {
val rng = Random(0)
repeat(1000000) { blackhole.consume(expr(rng.nextDouble())) }
}
}

View File

@ -0,0 +1,54 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Benchmark
import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import space.kscience.kmath.commons.linear.CMLinearSpace
import space.kscience.kmath.commons.linear.inverse
import space.kscience.kmath.ejml.EjmlLinearSpaceDDRM
import space.kscience.kmath.linear.InverseMatrixFeature
import space.kscience.kmath.linear.LinearSpace
import space.kscience.kmath.linear.inverseWithLup
import space.kscience.kmath.linear.invoke
import space.kscience.kmath.nd.getFeature
import kotlin.random.Random
@State(Scope.Benchmark)
internal class MatrixInverseBenchmark {
private companion object {
private val random = Random(1224)
private const val dim = 100
private val space = LinearSpace.real
//creating invertible matrix
private val u = space.buildMatrix(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
private val l = space.buildMatrix(dim, dim) { i, j -> if (i >= j) random.nextDouble() else 0.0 }
private val matrix = space { l dot u }
}
@Benchmark
fun kmathLupInversion(blackhole: Blackhole) {
blackhole.consume(LinearSpace.real.inverseWithLup(matrix))
}
@Benchmark
fun cmLUPInversion(blackhole: Blackhole) {
with(CMLinearSpace) {
blackhole.consume(inverse(matrix))
}
}
@Benchmark
fun ejmlInverse(blackhole: Blackhole) {
with(EjmlLinearSpaceDDRM) {
blackhole.consume(matrix.getFeature<InverseMatrixFeature<Double>>()?.inverse)
}
}
}

View File

@ -0,0 +1,53 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Benchmark
import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.structures.Buffer
@State(Scope.Benchmark)
internal class NDFieldBenchmark {
@Benchmark
fun autoFieldAdd(blackhole: Blackhole) {
with(autoField) {
var res: StructureND<Double> = one
repeat(n) { res += one }
blackhole.consume(res)
}
}
@Benchmark
fun specializedFieldAdd(blackhole: Blackhole) {
with(specializedField) {
var res: StructureND<Double> = one
repeat(n) { res += 1.0 }
blackhole.consume(res)
}
}
@Benchmark
fun boxingFieldAdd(blackhole: Blackhole) {
with(genericField) {
var res: StructureND<Double> = one
repeat(n) { res += 1.0 }
blackhole.consume(res)
}
}
private companion object {
private const val dim = 1000
private const val n = 100
private val autoField = AlgebraND.auto(DoubleField, dim, dim)
private val specializedField = AlgebraND.real(dim, dim)
private val genericField = AlgebraND.field(DoubleField, Buffer.Companion::boxing, dim, dim)
}
}

View File

@ -0,0 +1,66 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Benchmark
import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import org.jetbrains.bio.viktor.F64Array
import space.kscience.kmath.nd.AlgebraND
import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.auto
import space.kscience.kmath.nd.real
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.viktor.ViktorNDField
@State(Scope.Benchmark)
internal class ViktorBenchmark {
@Benchmark
fun automaticFieldAddition(blackhole: Blackhole) {
with(autoField) {
var res: StructureND<Double> = one
repeat(n) { res += 1.0 }
blackhole.consume(res)
}
}
@Benchmark
fun realFieldAddition(blackhole: Blackhole) {
with(realField) {
var res: StructureND<Double> = one
repeat(n) { res += 1.0 }
blackhole.consume(res)
}
}
@Benchmark
fun viktorFieldAddition(blackhole: Blackhole) {
with(viktorField) {
var res = one
repeat(n) { res += 1.0 }
blackhole.consume(res)
}
}
@Benchmark
fun rawViktor(blackhole: Blackhole) {
val one = F64Array.full(init = 1.0, shape = intArrayOf(dim, dim))
var res = one
repeat(n) { res = res + one }
blackhole.consume(res)
}
private companion object {
private const val dim = 1000
private const val n = 100
// automatically build context most suited for given type.
private val autoField = AlgebraND.auto(DoubleField, dim, dim)
private val realField = AlgebraND.real(dim, dim)
private val viktorField = ViktorNDField(dim, dim)
}
}

View File

@ -0,0 +1,58 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Benchmark
import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import org.jetbrains.bio.viktor.F64Array
import space.kscience.kmath.nd.AlgebraND
import space.kscience.kmath.nd.auto
import space.kscience.kmath.nd.real
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.viktor.ViktorFieldND
@State(Scope.Benchmark)
internal class ViktorLogBenchmark {
@Benchmark
fun realFieldLog(blackhole: Blackhole) {
with(realNdField) {
val fortyTwo = produce { 42.0 }
var res = one
repeat(n) { res = ln(fortyTwo) }
blackhole.consume(res)
}
}
@Benchmark
fun viktorFieldLog(blackhole: Blackhole) {
with(viktorField) {
val fortyTwo = produce { 42.0 }
var res = one
repeat(n) { res = ln(fortyTwo) }
blackhole.consume(res)
}
}
@Benchmark
fun rawViktorLog(blackhole: Blackhole) {
val fortyTwo = F64Array.full(dim, dim, init = 42.0)
lateinit var res: F64Array
repeat(n) { res = fortyTwo.log() }
blackhole.consume(res)
}
private companion object {
private const val dim = 1000
private const val n = 100
// automatically build context most suited for given type.
private val autoField = AlgebraND.auto(DoubleField, dim, dim)
private val realNdField = AlgebraND.real(dim, dim)
private val viktorField = ViktorFieldND(intArrayOf(dim, dim))
}
}

View File

@ -1,28 +1,46 @@
plugins { plugins {
id("ru.mipt.npm.gradle.project") id("ru.mipt.npm.gradle.project")
kotlin("jupyter.api") apply false
} }
allprojects { allprojects {
repositories { repositories {
jcenter()
maven("https://clojars.org/repo") maven("https://clojars.org/repo")
maven("https://dl.bintray.com/egor-bogomolov/astminer/")
maven("https://dl.bintray.com/hotkeytlt/maven")
maven("https://dl.bintray.com/kotlin/kotlin-eap")
maven("https://dl.bintray.com/kotlin/kotlinx")
maven("https://dl.bintray.com/mipt-npm/dev")
maven("https://dl.bintray.com/mipt-npm/kscience")
maven("https://jitpack.io") maven("https://jitpack.io")
maven("http://logicrunch.research.it.uu.se/maven/") maven("http://logicrunch.research.it.uu.se/maven") {
isAllowInsecureProtocol = true
}
maven("https://oss.sonatype.org/content/repositories/snapshots")
mavenCentral() mavenCentral()
} }
group = "space.kscience" group = "space.kscience"
version = "0.2.0" version = "0.3.0-dev-14"
} }
subprojects { subprojects {
if (name.startsWith("kmath")) apply<ru.mipt.npm.gradle.KSciencePublishingPlugin>() if (name.startsWith("kmath")) apply<MavenPublishPlugin>()
afterEvaluate {
tasks.withType<org.jetbrains.dokka.gradle.DokkaTaskPartial> {
dependsOn(tasks.getByName("assemble"))
dokkaSourceSets.all {
val readmeFile = File(this@subprojects.projectDir, "README.md")
if (readmeFile.exists()) includes.from(readmeFile.absolutePath)
externalDocumentationLink("https://ejml.org/javadoc/")
externalDocumentationLink("https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/")
externalDocumentationLink("https://deeplearning4j.org/api/latest/")
externalDocumentationLink("https://axelclk.bitbucket.io/symja/javadoc/")
externalDocumentationLink("https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/")
externalDocumentationLink(
"https://breandan.net/kotlingrad/kotlingrad/",
"https://breandan.net/kotlingrad/kotlingrad/kotlingrad/package-list",
)
}
}
}
} }
readme { readme {
@ -30,9 +48,9 @@ readme {
} }
ksciencePublish { ksciencePublish {
spaceRepo = "https://maven.pkg.jetbrains.space/mipt-npm/p/sci/maven" github("kmath")
bintrayRepo = "kscience" space()
githubProject = "kmath" sonatype()
} }
apiValidation { apiValidation {

20
buildSrc/build.gradle.kts Normal file
View File

@ -0,0 +1,20 @@
plugins {
`kotlin-dsl`
kotlin("plugin.serialization") version "1.4.31"
}
repositories {
maven("https://repo.kotlin.link")
mavenCentral()
gradlePluginPortal()
}
dependencies {
api("org.jetbrains.kotlinx:kotlinx-serialization-json:1.1.0")
api("ru.mipt.npm:gradle-tools:0.10.0")
api("org.jetbrains.kotlinx:kotlinx-benchmark-plugin:0.3.1")
}
kotlin.sourceSets.all {
languageSettings.useExperimentalAnnotation("kotlin.ExperimentalStdlibApi")
}

View File

@ -0,0 +1,60 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks
import kotlinx.serialization.Serializable
@Serializable
data class JmhReport(
val jmhVersion: String,
val benchmark: String,
val mode: String,
val threads: Int,
val forks: Int,
val jvm: String,
val jvmArgs: List<String>,
val jdkVersion: String,
val vmName: String,
val vmVersion: String,
val warmupIterations: Int,
val warmupTime: String,
val warmupBatchSize: Int,
val measurementIterations: Int,
val measurementTime: String,
val measurementBatchSize: Int,
val params: Map<String, String> = emptyMap(),
val primaryMetric: PrimaryMetric,
val secondaryMetrics: Map<String, SecondaryMetric>,
) {
interface Metric {
val score: Double
val scoreError: Double
val scoreConfidence: List<Double>
val scorePercentiles: Map<Double, Double>
val scoreUnit: String
}
@Serializable
data class PrimaryMetric(
override val score: Double,
override val scoreError: Double,
override val scoreConfidence: List<Double>,
override val scorePercentiles: Map<Double, Double>,
override val scoreUnit: String,
val rawDataHistogram: List<List<List<List<Double>>>>? = null,
val rawData: List<List<Double>>? = null,
) : Metric
@Serializable
data class SecondaryMetric(
override val score: Double,
override val scoreError: Double,
override val scoreConfidence: List<Double>,
override val scorePercentiles: Map<Double, Double>,
override val scoreUnit: String,
val rawData: List<List<Double>>,
) : Metric
}

View File

@ -0,0 +1,100 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.gradle.BenchmarksExtension
import kotlinx.serialization.*
import kotlinx.serialization.json.*
import org.gradle.api.Project
import ru.mipt.npm.gradle.KScienceReadmeExtension
import java.time.*
import java.time.format.*
import java.time.temporal.ChronoField.*
private val ISO_DATE_TIME: DateTimeFormatter = DateTimeFormatterBuilder().run {
parseCaseInsensitive()
appendValue(YEAR, 4, 10, SignStyle.EXCEEDS_PAD)
appendLiteral('-')
appendValue(MONTH_OF_YEAR, 2)
appendLiteral('-')
appendValue(DAY_OF_MONTH, 2)
appendLiteral('T')
appendValue(HOUR_OF_DAY, 2)
appendLiteral('.')
appendValue(MINUTE_OF_HOUR, 2)
optionalStart()
appendLiteral('.')
appendValue(SECOND_OF_MINUTE, 2)
optionalStart()
appendFraction(NANO_OF_SECOND, 0, 9, true)
optionalStart()
appendOffsetId()
optionalStart()
appendLiteral('[')
parseCaseSensitive()
appendZoneRegionId()
appendLiteral(']')
toFormatter()
}
private fun noun(number: Number, singular: String, plural: String) = if (number.toLong() == 1L) singular else plural
fun Project.addBenchmarkProperties() {
val benchmarksProject = this
rootProject.subprojects.forEach { p ->
p.extensions.findByType(KScienceReadmeExtension::class.java)?.run {
benchmarksProject.extensions.findByType(BenchmarksExtension::class.java)?.configurations?.forEach { cfg ->
property("benchmark${cfg.name.replaceFirstChar(Char::uppercase)}") {
val launches = benchmarksProject.buildDir.resolve("reports/benchmarks/${cfg.name}")
val resDirectory = launches.listFiles()?.maxByOrNull {
LocalDateTime.parse(it.name, ISO_DATE_TIME).atZone(ZoneId.systemDefault()).toInstant()
}
if (resDirectory == null) {
"> **Can't find appropriate benchmark data. Try generating readme files after running benchmarks**."
} else {
val reports =
Json.decodeFromString<List<JmhReport>>(resDirectory.resolve("jvm.json").readText())
buildString {
appendLine("<details>")
appendLine("<summary>")
appendLine("Report for benchmark configuration <code>${cfg.name}</code>")
appendLine("</summary>")
appendLine()
val first = reports.first()
appendLine("* Run on ${first.vmName} (build ${first.vmVersion}) with Java process:")
appendLine()
appendLine("```")
appendLine("${first.jvm} ${
first.jvmArgs.joinToString(" ")
}")
appendLine("```")
appendLine("* JMH ${first.jmhVersion} was used in `${first.mode}` mode with ${first.warmupIterations} warmup ${
noun(first.warmupIterations, "iteration", "iterations")
} by ${first.warmupTime} and ${first.measurementIterations} measurement ${
noun(first.measurementIterations, "iteration", "iterations")
} by ${first.measurementTime}.")
appendLine()
appendLine("| Benchmark | Score |")
appendLine("|:---------:|:-----:|")
reports.forEach { report ->
appendLine("|`${report.benchmark}`|${report.primaryMetric.score} &plusmn; ${report.primaryMetric.scoreError} ${report.primaryMetric.scoreUnit}|")
}
appendLine("</details>")
}
}
}
}
}
}
}

View File

@ -0,0 +1,425 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@file:Suppress("KDocUnresolvedReference")
package space.kscience.kmath.ejml.codegen
import org.intellij.lang.annotations.Language
import java.io.File
private fun Appendable.appendEjmlVector(type: String, ejmlMatrixType: String) {
@Language("kotlin") val text = """/**
* [EjmlVector] specialization for [$type].
*/
public class Ejml${type}Vector<out M : $ejmlMatrixType>(public override val origin: M) : EjmlVector<$type, M>(origin) {
init {
require(origin.numRows == 1) { "The origin matrix must have only one row to form a vector" }
}
public override operator fun get(index: Int): $type = origin[0, index]
}"""
appendLine(text)
appendLine()
}
private fun Appendable.appendEjmlMatrix(type: String, ejmlMatrixType: String) {
val text = """/**
* [EjmlMatrix] specialization for [$type].
*/
public class Ejml${type}Matrix<out M : $ejmlMatrixType>(public override val origin: M) : EjmlMatrix<$type, M>(origin) {
public override operator fun get(i: Int, j: Int): $type = origin[i, j]
}"""
appendLine(text)
appendLine()
}
private fun Appendable.appendEjmlLinearSpace(
type: String,
kmathAlgebra: String,
ejmlMatrixParentTypeMatrix: String,
ejmlMatrixType: String,
ejmlMatrixDenseType: String,
ops: String,
denseOps: String,
isDense: Boolean,
) {
@Language("kotlin") val text = """/**
* [EjmlLinearSpace] implementation based on [CommonOps_$ops], [DecompositionFactory_${ops}] operations and
* [${ejmlMatrixType}] matrices.
*/
public object EjmlLinearSpace${ops} : EjmlLinearSpace<${type}, ${kmathAlgebra}, $ejmlMatrixType>() {
/**
* The [${kmathAlgebra}] reference.
*/
public override val elementAlgebra: $kmathAlgebra get() = $kmathAlgebra
@Suppress("UNCHECKED_CAST")
public override fun Matrix<${type}>.toEjml(): Ejml${type}Matrix<${ejmlMatrixType}> = when {
this is Ejml${type}Matrix<*> && origin is $ejmlMatrixType -> this as Ejml${type}Matrix<${ejmlMatrixType}>
else -> buildMatrix(rowNum, colNum) { i, j -> get(i, j) }
}
@Suppress("UNCHECKED_CAST")
public override fun Point<${type}>.toEjml(): Ejml${type}Vector<${ejmlMatrixType}> = when {
this is Ejml${type}Vector<*> && origin is $ejmlMatrixType -> this as Ejml${type}Vector<${ejmlMatrixType}>
else -> Ejml${type}Vector(${ejmlMatrixType}(size, 1).also {
(0 until it.numRows).forEach { row -> it[row, 0] = get(row) }
})
}
public override fun buildMatrix(
rows: Int,
columns: Int,
initializer: ${kmathAlgebra}.(i: Int, j: Int) -> ${type},
): Ejml${type}Matrix<${ejmlMatrixType}> = ${ejmlMatrixType}(rows, columns).also {
(0 until rows).forEach { row ->
(0 until columns).forEach { col -> it[row, col] = elementAlgebra.initializer(row, col) }
}
}.wrapMatrix()
public override fun buildVector(
size: Int,
initializer: ${kmathAlgebra}.(Int) -> ${type},
): Ejml${type}Vector<${ejmlMatrixType}> = Ejml${type}Vector(${ejmlMatrixType}(size, 1).also {
(0 until it.numRows).forEach { row -> it[row, 0] = elementAlgebra.initializer(row) }
})
private fun <T : ${ejmlMatrixParentTypeMatrix}> T.wrapMatrix() = Ejml${type}Matrix(this)
private fun <T : ${ejmlMatrixParentTypeMatrix}> T.wrapVector() = Ejml${type}Vector(this)
public override fun Matrix<${type}>.unaryMinus(): Matrix<${type}> = this * elementAlgebra { -one }
public override fun Matrix<${type}>.dot(other: Matrix<${type}>): Ejml${type}Matrix<${ejmlMatrixType}> {
val out = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.mult(toEjml().origin, other.toEjml().origin, out)
return out.wrapMatrix()
}
public override fun Matrix<${type}>.dot(vector: Point<${type}>): Ejml${type}Vector<${ejmlMatrixType}> {
val out = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.mult(toEjml().origin, vector.toEjml().origin, out)
return out.wrapVector()
}
public override operator fun Matrix<${type}>.minus(other: Matrix<${type}>): Ejml${type}Matrix<${ejmlMatrixType}> {
val out = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.add(
elementAlgebra.one,
toEjml().origin,
elementAlgebra { -one },
other.toEjml().origin,
out,${
if (isDense) "" else
"""
null,
null,"""
}
)
return out.wrapMatrix()
}
public override operator fun Matrix<${type}>.times(value: ${type}): Ejml${type}Matrix<${ejmlMatrixType}> {
val res = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.scale(value, toEjml().origin, res)
return res.wrapMatrix()
}
public override fun Point<${type}>.unaryMinus(): Ejml${type}Vector<${ejmlMatrixType}> {
val res = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.changeSign(toEjml().origin, res)
return res.wrapVector()
}
public override fun Matrix<${type}>.plus(other: Matrix<${type}>): Ejml${type}Matrix<${ejmlMatrixType}> {
val out = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.add(
elementAlgebra.one,
toEjml().origin,
elementAlgebra.one,
other.toEjml().origin,
out,${
if (isDense) "" else
"""
null,
null,"""
}
)
return out.wrapMatrix()
}
public override fun Point<${type}>.plus(other: Point<${type}>): Ejml${type}Vector<${ejmlMatrixType}> {
val out = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.add(
elementAlgebra.one,
toEjml().origin,
elementAlgebra.one,
other.toEjml().origin,
out,${
if (isDense) "" else
"""
null,
null,"""
}
)
return out.wrapVector()
}
public override fun Point<${type}>.minus(other: Point<${type}>): Ejml${type}Vector<${ejmlMatrixType}> {
val out = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.add(
elementAlgebra.one,
toEjml().origin,
elementAlgebra { -one },
other.toEjml().origin,
out,${
if (isDense) "" else
"""
null,
null,"""
}
)
return out.wrapVector()
}
public override fun ${type}.times(m: Matrix<${type}>): Ejml${type}Matrix<${ejmlMatrixType}> = m * this
public override fun Point<${type}>.times(value: ${type}): Ejml${type}Vector<${ejmlMatrixType}> {
val res = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.scale(value, toEjml().origin, res)
return res.wrapVector()
}
public override fun ${type}.times(v: Point<${type}>): Ejml${type}Vector<${ejmlMatrixType}> = v * this
@UnstableKMathAPI
public override fun <F : StructureFeature> getFeature(structure: Matrix<${type}>, type: KClass<out F>): F? {
structure.getFeature(type)?.let { return it }
val origin = structure.toEjml().origin
return when (type) {
${
if (isDense)
""" InverseMatrixFeature::class -> object : InverseMatrixFeature<${type}> {
override val inverse: Matrix<${type}> by lazy {
val res = origin.copy()
CommonOps_${ops}.invert(res)
res.wrapMatrix()
}
}
DeterminantFeature::class -> object : DeterminantFeature<${type}> {
override val determinant: $type by lazy { CommonOps_${ops}.det(origin) }
}
SingularValueDecompositionFeature::class -> object : SingularValueDecompositionFeature<${type}> {
private val svd by lazy {
DecompositionFactory_${ops}.svd(origin.numRows, origin.numCols, true, true, false)
.apply { decompose(origin.copy()) }
}
override val u: Matrix<${type}> by lazy { svd.getU(null, false).wrapMatrix() }
override val s: Matrix<${type}> by lazy { svd.getW(null).wrapMatrix() }
override val v: Matrix<${type}> by lazy { svd.getV(null, false).wrapMatrix() }
override val singularValues: Point<${type}> by lazy { ${type}Buffer(svd.singularValues) }
}
QRDecompositionFeature::class -> object : QRDecompositionFeature<${type}> {
private val qr by lazy {
DecompositionFactory_${ops}.qr().apply { decompose(origin.copy()) }
}
override val q: Matrix<${type}> by lazy {
qr.getQ(null, false).wrapMatrix() + OrthogonalFeature
}
override val r: Matrix<${type}> by lazy { qr.getR(null, false).wrapMatrix() + UFeature }
}
CholeskyDecompositionFeature::class -> object : CholeskyDecompositionFeature<${type}> {
override val l: Matrix<${type}> by lazy {
val cholesky =
DecompositionFactory_${ops}.chol(structure.rowNum, true).apply { decompose(origin.copy()) }
cholesky.getT(null).wrapMatrix() + LFeature
}
}
LupDecompositionFeature::class -> object : LupDecompositionFeature<${type}> {
private val lup by lazy {
DecompositionFactory_${ops}.lu(origin.numRows, origin.numCols).apply { decompose(origin.copy()) }
}
override val l: Matrix<${type}> by lazy {
lup.getLower(null).wrapMatrix() + LFeature
}
override val u: Matrix<${type}> by lazy {
lup.getUpper(null).wrapMatrix() + UFeature
}
override val p: Matrix<${type}> by lazy { lup.getRowPivot(null).wrapMatrix() }
}""" else """ QRDecompositionFeature::class -> object : QRDecompositionFeature<$type> {
private val qr by lazy {
DecompositionFactory_${ops}.qr(FillReducing.NONE).apply { decompose(origin.copy()) }
}
override val q: Matrix<${type}> by lazy {
qr.getQ(null, false).wrapMatrix() + OrthogonalFeature
}
override val r: Matrix<${type}> by lazy { qr.getR(null, false).wrapMatrix() + UFeature }
}
CholeskyDecompositionFeature::class -> object : CholeskyDecompositionFeature<${type}> {
override val l: Matrix<${type}> by lazy {
val cholesky =
DecompositionFactory_${ops}.cholesky().apply { decompose(origin.copy()) }
(cholesky.getT(null) as ${ejmlMatrixParentTypeMatrix}).wrapMatrix() + LFeature
}
}
LUDecompositionFeature::class, DeterminantFeature::class, InverseMatrixFeature::class -> object :
LUDecompositionFeature<${type}>, DeterminantFeature<${type}>, InverseMatrixFeature<${type}> {
private val lu by lazy {
DecompositionFactory_${ops}.lu(FillReducing.NONE).apply { decompose(origin.copy()) }
}
override val l: Matrix<${type}> by lazy {
lu.getLower(null).wrapMatrix() + LFeature
}
override val u: Matrix<${type}> by lazy {
lu.getUpper(null).wrapMatrix() + UFeature
}
override val inverse: Matrix<${type}> by lazy {
var a = origin
val inverse = ${ejmlMatrixDenseType}(1, 1)
val solver = LinearSolverFactory_${ops}.lu(FillReducing.NONE)
if (solver.modifiesA()) a = a.copy()
val i = CommonOps_${denseOps}.identity(a.numRows)
solver.solve(i, inverse)
inverse.wrapMatrix()
}
override val determinant: $type by lazy { elementAlgebra.number(lu.computeDeterminant().real) }
}"""
}
else -> null
}?.let(type::cast)
}
/**
* Solves for *x* in the following equation: *x = [a] <sup>-1</sup> &middot; [b]*.
*
* @param a the base matrix.
* @param b n by p matrix.
* @return the solution for *x* that is n by p.
*/
public fun solve(a: Matrix<${type}>, b: Matrix<${type}>): Ejml${type}Matrix<${ejmlMatrixType}> {
val res = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.solve(${ejmlMatrixType}(a.toEjml().origin), ${ejmlMatrixType}(b.toEjml().origin), res)
return res.wrapMatrix()
}
/**
* Solves for *x* in the following equation: *x = [a] <sup>-1</sup> &middot; [b]*.
*
* @param a the base matrix.
* @param b n by p vector.
* @return the solution for *x* that is n by p.
*/
public fun solve(a: Matrix<${type}>, b: Point<${type}>): Ejml${type}Vector<${ejmlMatrixType}> {
val res = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.solve(${ejmlMatrixType}(a.toEjml().origin), ${ejmlMatrixType}(b.toEjml().origin), res)
return Ejml${type}Vector(res)
}
}"""
appendLine(text)
appendLine()
}
/**
* Generates routine EJML classes.
*/
fun ejmlCodegen(outputFile: String): Unit = File(outputFile).run {
parentFile.mkdirs()
writer().use {
it.appendLine("/*")
it.appendLine(" * Copyright 2018-2021 KMath contributors.")
it.appendLine(" * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.")
it.appendLine(" */")
it.appendLine()
it.appendLine("/* This file is generated with buildSrc/src/main/kotlin/space/kscience/kmath/ejml/codegen/ejmlCodegen.kt */")
it.appendLine()
it.appendLine("package space.kscience.kmath.ejml")
it.appendLine()
it.appendLine("""import org.ejml.data.*
import org.ejml.dense.row.CommonOps_DDRM
import org.ejml.dense.row.CommonOps_FDRM
import org.ejml.dense.row.factory.DecompositionFactory_DDRM
import org.ejml.dense.row.factory.DecompositionFactory_FDRM
import org.ejml.sparse.FillReducing
import org.ejml.sparse.csc.CommonOps_DSCC
import org.ejml.sparse.csc.CommonOps_FSCC
import org.ejml.sparse.csc.factory.DecompositionFactory_DSCC
import org.ejml.sparse.csc.factory.DecompositionFactory_FSCC
import org.ejml.sparse.csc.factory.LinearSolverFactory_DSCC
import org.ejml.sparse.csc.factory.LinearSolverFactory_FSCC
import space.kscience.kmath.linear.*
import space.kscience.kmath.linear.Matrix
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.StructureFeature
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.FloatField
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.structures.FloatBuffer
import kotlin.reflect.KClass
import kotlin.reflect.cast""")
it.appendLine()
it.appendEjmlVector("Double", "DMatrix")
it.appendEjmlVector("Float", "FMatrix")
it.appendEjmlMatrix("Double", "DMatrix")
it.appendEjmlMatrix("Float", "FMatrix")
it.appendEjmlLinearSpace("Double", "DoubleField", "DMatrix", "DMatrixRMaj", "DMatrixRMaj", "DDRM", "DDRM", true)
it.appendEjmlLinearSpace("Float", "FloatField", "FMatrix", "FMatrixRMaj", "FMatrixRMaj", "FDRM", "FDRM", true)
it.appendEjmlLinearSpace(
type = "Double",
kmathAlgebra = "DoubleField",
ejmlMatrixParentTypeMatrix = "DMatrix",
ejmlMatrixType = "DMatrixSparseCSC",
ejmlMatrixDenseType = "DMatrixRMaj",
ops = "DSCC",
denseOps = "DDRM",
isDense = false,
)
it.appendEjmlLinearSpace(
type = "Float",
kmathAlgebra = "FloatField",
ejmlMatrixParentTypeMatrix = "FMatrix",
ejmlMatrixType = "FMatrixSparseCSC",
ejmlMatrixDenseType = "FMatrixRMaj",
ops = "FSCC",
denseOps = "FDRM",
isDense = false,
)
}
}

View File

@ -31,7 +31,7 @@ multiplication;
- [Ring](http://mathworld.wolfram.com/Ring.html) adds multiplication and its neutral element (i.e. 1); - [Ring](http://mathworld.wolfram.com/Ring.html) adds multiplication and its neutral element (i.e. 1);
- [Field](http://mathworld.wolfram.com/Field.html) adds division operation. - [Field](http://mathworld.wolfram.com/Field.html) adds division operation.
A typical implementation of `Field<T>` is the `RealField` which works on doubles, and `VectorSpace` for `Space<T>`. A typical implementation of `Field<T>` is the `DoubleField` which works on doubles, and `VectorSpace` for `Space<T>`.
In some cases algebra context can hold additional operations like `exp` or `sin`, and then it inherits appropriate In some cases algebra context can hold additional operations like `exp` or `sin`, and then it inherits appropriate
interface. Also, contexts may have operations, which produce elements outside of the context. For example, `Matrix.dot` interface. Also, contexts may have operations, which produce elements outside of the context. For example, `Matrix.dot`

View File

@ -13,16 +13,19 @@
version="1.1"><metadata version="1.1"><metadata
id="metadata8"><rdf:RDF><cc:Work id="metadata8"><rdf:RDF><cc:Work
rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" /></cc:Work></rdf:RDF></metadata><defs rdf:resource="http://purl.org/dc/dcmitype/StillImage"/></cc:Work></rdf:RDF></metadata>
<defs
id="defs6"><clipPath id="defs6"><clipPath
id="clipPath24" id="clipPath24"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path22" id="path22"
d="M 0,1590 H 6720 V 4400 H 0 Z" /></clipPath><clipPath d="M 0,1590 H 6720 V 4400 H 0 Z" /></clipPath>
<clipPath
id="clipPath36" id="clipPath36"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path34" id="path34"
d="M 3410,0 H 6720 V 1590 H 3410 Z" /></clipPath></defs><g d="M 3410,0 H 6720 V 1590 H 3410 Z" /></clipPath></defs>
<g
transform="matrix(1.3333333,0,0,-1.3333333,0,586.66667)" transform="matrix(1.3333333,0,0,-1.3333333,0,586.66667)"
id="g10"><g id="g10"><g
transform="scale(0.1)" transform="scale(0.1)"

Before

Width:  |  Height:  |  Size: 248 KiB

After

Width:  |  Height:  |  Size: 248 KiB

View File

@ -13,12 +13,14 @@
version="1.1"><metadata version="1.1"><metadata
id="metadata8"><rdf:RDF><cc:Work id="metadata8"><rdf:RDF><cc:Work
rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" /></cc:Work></rdf:RDF></metadata><defs rdf:resource="http://purl.org/dc/dcmitype/StillImage"/></cc:Work></rdf:RDF></metadata>
<defs
id="defs6"><clipPath id="defs6"><clipPath
id="clipPath32" id="clipPath32"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path30" id="path30"
d="M 1780,1750 H 3830 V 3800 H 1780 Z" /></clipPath></defs><g d="M 1780,1750 H 3830 V 3800 H 1780 Z" /></clipPath></defs>
<g
transform="matrix(1.3333333,0,0,-1.3333333,0,633.33333)" transform="matrix(1.3333333,0,0,-1.3333333,0,633.33333)"
id="g10"><g id="g10"><g
transform="scale(0.1)" transform="scale(0.1)"

Before

Width:  |  Height:  |  Size: 18 KiB

After

Width:  |  Height:  |  Size: 18 KiB

View File

@ -13,24 +13,29 @@
version="1.1"><metadata version="1.1"><metadata
id="metadata8"><rdf:RDF><cc:Work id="metadata8"><rdf:RDF><cc:Work
rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" /></cc:Work></rdf:RDF></metadata><defs rdf:resource="http://purl.org/dc/dcmitype/StillImage"/></cc:Work></rdf:RDF></metadata>
<defs
id="defs6"><clipPath id="defs6"><clipPath
id="clipPath24" id="clipPath24"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path22" id="path22"
d="M 0,3010 H 6470 V 4280 H 0 Z" /></clipPath><clipPath d="M 0,3010 H 6470 V 4280 H 0 Z" /></clipPath>
<clipPath
id="clipPath36" id="clipPath36"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path34" id="path34"
d="M 0,1590 H 7000 V 3010 H 0 Z" /></clipPath><clipPath d="M 0,1590 H 7000 V 3010 H 0 Z" /></clipPath>
<clipPath
id="clipPath48" id="clipPath48"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path46" id="path46"
d="m 0,1580 h 6470 v 10 H 0 Z" /></clipPath><clipPath d="m 0,1580 h 6470 v 10 H 0 Z" /></clipPath>
<clipPath
id="clipPath60" id="clipPath60"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path58" id="path58"
d="M 3280,0 H 6460 V 1580 H 3280 Z" /></clipPath></defs><g d="M 3280,0 H 6460 V 1580 H 3280 Z" /></clipPath></defs>
<g
transform="matrix(1.3333333,0,0,-1.3333333,0,570.66667)" transform="matrix(1.3333333,0,0,-1.3333333,0,570.66667)"
id="g10"><g id="g10"><g
transform="scale(0.1)" transform="scale(0.1)"

Before

Width:  |  Height:  |  Size: 278 KiB

After

Width:  |  Height:  |  Size: 278 KiB

View File

@ -13,88 +13,109 @@
version="1.1"><metadata version="1.1"><metadata
id="metadata8"><rdf:RDF><cc:Work id="metadata8"><rdf:RDF><cc:Work
rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" /></cc:Work></rdf:RDF></metadata><defs rdf:resource="http://purl.org/dc/dcmitype/StillImage"/></cc:Work></rdf:RDF></metadata>
<defs
id="defs6"><clipPath id="defs6"><clipPath
id="clipPath40" id="clipPath40"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path38" id="path38"
d="m 2370,2780 h 1370 v 10 H 2370 Z" /></clipPath><clipPath d="m 2370,2780 h 1370 v 10 H 2370 Z" /></clipPath>
<clipPath
id="clipPath52" id="clipPath52"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path50" id="path50"
d="m 5630,2780 h 860 v 10 h -860 z" /></clipPath><clipPath d="m 5630,2780 h 860 v 10 h -860 z" /></clipPath>
<clipPath
id="clipPath64" id="clipPath64"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path62" id="path62"
d="m 970,2690 h 1300 v 90 H 970 Z" /></clipPath><clipPath d="m 970,2690 h 1300 v 90 H 970 Z" /></clipPath>
<clipPath
id="clipPath76" id="clipPath76"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path74" id="path74"
d="m 2370,2690 h 1370 v 90 H 2370 Z" /></clipPath><clipPath d="m 2370,2690 h 1370 v 90 H 2370 Z" /></clipPath>
<clipPath
id="clipPath88" id="clipPath88"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path86" id="path86"
d="m 5630,2690 h 860 v 90 h -860 z" /></clipPath><clipPath d="m 5630,2690 h 860 v 90 h -860 z" /></clipPath>
<clipPath
id="clipPath100" id="clipPath100"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path98" id="path98"
d="m 970,2460 h 1300 v 230 H 970 Z" /></clipPath><clipPath d="m 970,2460 h 1300 v 230 H 970 Z" /></clipPath>
<clipPath
id="clipPath112" id="clipPath112"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path110" id="path110"
d="m 2370,2460 h 1370 v 230 H 2370 Z" /></clipPath><clipPath d="m 2370,2460 h 1370 v 230 H 2370 Z" /></clipPath>
<clipPath
id="clipPath124" id="clipPath124"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path122" id="path122"
d="m 4900,2460 h 620 v 230 h -620 z" /></clipPath><clipPath d="m 4900,2460 h 620 v 230 h -620 z" /></clipPath>
<clipPath
id="clipPath136" id="clipPath136"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path134" id="path134"
d="m 5630,2460 h 860 v 230 h -860 z" /></clipPath><clipPath d="m 5630,2460 h 860 v 230 h -860 z" /></clipPath>
<clipPath
id="clipPath148" id="clipPath148"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path146" id="path146"
d="m 970,1480 h 1300 v 980 H 970 Z" /></clipPath><clipPath d="m 970,1480 h 1300 v 980 H 970 Z" /></clipPath>
<clipPath
id="clipPath160" id="clipPath160"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path158" id="path158"
d="m 2370,1480 h 1370 v 980 H 2370 Z" /></clipPath><clipPath d="m 2370,1480 h 1370 v 980 H 2370 Z" /></clipPath>
<clipPath
id="clipPath172" id="clipPath172"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path170" id="path170"
d="m 3920,1480 h 860 v 980 h -860 z" /></clipPath><clipPath d="m 3920,1480 h 860 v 980 h -860 z" /></clipPath>
<clipPath
id="clipPath184" id="clipPath184"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path182" id="path182"
d="m 4900,1480 h 620 v 980 h -620 z" /></clipPath><clipPath d="m 4900,1480 h 620 v 980 h -620 z" /></clipPath>
<clipPath
id="clipPath196" id="clipPath196"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path194" id="path194"
d="m 5630,1480 h 860 v 980 h -860 z" /></clipPath><clipPath d="m 5630,1480 h 860 v 980 h -860 z" /></clipPath>
<clipPath
id="clipPath208" id="clipPath208"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path206" id="path206"
d="m 2370,1470 h 1370 v 10 H 2370 Z" /></clipPath><clipPath d="m 2370,1470 h 1370 v 10 H 2370 Z" /></clipPath>
<clipPath
id="clipPath220" id="clipPath220"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path218" id="path218"
d="m 3920,1470 h 860 v 10 h -860 z" /></clipPath><clipPath d="m 3920,1470 h 860 v 10 h -860 z" /></clipPath>
<clipPath
id="clipPath232" id="clipPath232"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path230" id="path230"
d="m 4900,1470 h 620 v 10 h -620 z" /></clipPath><clipPath d="m 4900,1470 h 620 v 10 h -620 z" /></clipPath>
<clipPath
id="clipPath244" id="clipPath244"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path242" id="path242"
d="m 5630,1470 h 860 v 10 h -860 z" /></clipPath><clipPath d="m 5630,1470 h 860 v 10 h -860 z" /></clipPath>
<clipPath
id="clipPath256" id="clipPath256"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path254" id="path254"
d="m 3920,1450 h 860 v 20 h -860 z" /></clipPath><clipPath d="m 3920,1450 h 860 v 20 h -860 z" /></clipPath>
<clipPath
id="clipPath268" id="clipPath268"
clipPathUnits="userSpaceOnUse"><path clipPathUnits="userSpaceOnUse"><path
id="path266" id="path266"
d="m 4900,1450 h 620 v 20 h -620 z" /></clipPath></defs><g d="m 4900,1450 h 620 v 20 h -620 z" /></clipPath></defs>
<g
transform="matrix(1.3333333,0,0,-1.3333333,0,529.33333)" transform="matrix(1.3333333,0,0,-1.3333333,0,529.33333)"
id="g10"><g id="g10"><g
transform="scale(0.1)" transform="scale(0.1)"

Before

Width:  |  Height:  |  Size: 117 KiB

After

Width:  |  Height:  |  Size: 117 KiB

View File

@ -10,11 +10,11 @@ structures. In `kmath` performance depends on which particular context was used
Let us consider following contexts: Let us consider following contexts:
```kotlin ```kotlin
// automatically build context most suited for given type. // automatically build context most suited for given type.
val autoField = NDField.auto(RealField, dim, dim) val autoField = NDField.auto(DoubleField, dim, dim)
// specialized nd-field for Double. It works as generic Double field as well // specialized nd-field for Double. It works as generic Double field as well
val specializedField = NDField.real(dim, dim) val specializedField = NDField.real(dim, dim)
//A generic boxing field. It should be used for objects, not primitives. //A generic boxing field. It should be used for objects, not primitives.
val genericField = NDField.buffered(RealField, dim, dim) val genericField = NDField.buffered(DoubleField, dim, dim)
``` ```
Now let us perform several tests and see which implementation is best suited for each case: Now let us perform several tests and see which implementation is best suited for each case:

View File

@ -1,40 +1,26 @@
> #### Artifact: ## Artifact:
>
> This module artifact: `${group}:${name}:${version}`. The Maven coordinates of this project are `${group}:${name}:${version}`.
>
> Bintray release version: [ ![Download](https://api.bintray.com/packages/mipt-npm/kscience/${name}/images/download.svg) ](https://bintray.com/mipt-npm/kscience/${name}/_latestVersion) **Gradle:**
> ```gradle
> Bintray development version: [ ![Download](https://api.bintray.com/packages/mipt-npm/dev/${name}/images/download.svg) ](https://bintray.com/mipt-npm/dev/${name}/_latestVersion) repositories {
> maven { url 'https://repo.kotlin.link' }
> **Gradle:** mavenCentral()
> }
> ```gradle
> repositories { dependencies {
> maven { url 'https://repo.kotlin.link' } implementation '${group}:${name}:${version}'
> maven { url 'https://dl.bintray.com/hotkeytlt/maven' } }
> maven { url "https://dl.bintray.com/kotlin/kotlin-eap" } // include for builds based on kotlin-eap ```
>// Uncomment if repo.kotlin.link is unavailable **Gradle Kotlin DSL:**
>// maven { url 'https://dl.bintray.com/mipt-npm/kscience' } ```kotlin
>// maven { url 'https://dl.bintray.com/mipt-npm/dev' } repositories {
> } maven("https://repo.kotlin.link")
> mavenCentral()
> dependencies { }
> implementation '${group}:${name}:${version}'
> } dependencies {
> ``` implementation("${group}:${name}:${version}")
> **Gradle Kotlin DSL:** }
> ```
> ```kotlin
> repositories {
> maven("https://repo.kotlin.link")
> maven("https://dl.bintray.com/kotlin/kotlin-eap") // include for builds based on kotlin-eap
> maven("https://dl.bintray.com/hotkeytlt/maven") // required for a
>// Uncomment if repo.kotlin.link is unavailable
>// maven("https://dl.bintray.com/mipt-npm/kscience")
>// maven("https://dl.bintray.com/mipt-npm/dev")
> }
>
> dependencies {
> implementation("${group}:${name}:${version}")
> }
> ```

View File

@ -1,11 +1,8 @@
[![JetBrains Research](https://jb.gg/badges/research.svg)](https://confluence.jetbrains.com/display/ALL/JetBrains+on+GitHub) [![JetBrains Research](https://jb.gg/badges/research.svg)](https://confluence.jetbrains.com/display/ALL/JetBrains+on+GitHub)
[![DOI](https://zenodo.org/badge/129486382.svg)](https://zenodo.org/badge/latestdoi/129486382) [![DOI](https://zenodo.org/badge/129486382.svg)](https://zenodo.org/badge/latestdoi/129486382)
![Gradle build](https://github.com/mipt-npm/kmath/workflows/Gradle%20build/badge.svg) ![Gradle build](https://github.com/mipt-npm/kmath/workflows/Gradle%20build/badge.svg)
[![Maven Central](https://img.shields.io/maven-central/v/space.kscience/kmath-core.svg?label=Maven%20Central)](https://search.maven.org/search?q=g:%22space.kscience%22)
Bintray: [ ![Download](https://api.bintray.com/packages/mipt-npm/kscience/kmath-core/images/download.svg) ](https://bintray.com/mipt-npm/kscience/kmath-core/_latestVersion) [![Space](https://img.shields.io/badge/dynamic/xml?color=orange&label=Space&query=//metadata/versioning/latest&url=https%3A%2F%2Fmaven.pkg.jetbrains.space%2Fmipt-npm%2Fp%2Fsci%2Fmaven%2Fspace%2Fkscience%2Fkmath-core%2Fmaven-metadata.xml)](https://maven.pkg.jetbrains.space/mipt-npm/p/sci/maven/space/kscience/)
Bintray-dev: [ ![Download](https://api.bintray.com/packages/mipt-npm/dev/kmath-core/images/download.svg) ](https://bintray.com/mipt-npm/dev/kmath-core/_latestVersion)
# KMath # KMath
@ -14,6 +11,8 @@ Python's NumPy library. Later we found that kotlin is much more flexible languag
designs. In contrast to `numpy` and `scipy` it is modular and has a lightweight core. The `numpy`-like experience could designs. In contrast to `numpy` and `scipy` it is modular and has a lightweight core. The `numpy`-like experience could
be achieved with [kmath-for-real](/kmath-for-real) extension module. be achieved with [kmath-for-real](/kmath-for-real) extension module.
[Documentation site (**WIP**)](https://mipt-npm.github.io/kmath/)
## Publications and talks ## Publications and talks
* [A conceptual article about context-oriented design](https://proandroiddev.com/an-introduction-context-oriented-programming-in-kotlin-2e79d316b0a2) * [A conceptual article about context-oriented design](https://proandroiddev.com/an-introduction-context-oriented-programming-in-kotlin-2e79d316b0a2)
@ -41,7 +40,7 @@ KMath is a modular library. Different modules provide different features with di
* **PROTOTYPE**. On this level there are no compatibility guarantees. All methods and classes form those modules could break any moment. You can still use it, but be sure to fix the specific version. * **PROTOTYPE**. On this level there are no compatibility guarantees. All methods and classes form those modules could break any moment. You can still use it, but be sure to fix the specific version.
* **EXPERIMENTAL**. The general API is decided, but some changes could be made. Volatile API is marked with `@UnstableKmathAPI` or other stability warning annotations. * **EXPERIMENTAL**. The general API is decided, but some changes could be made. Volatile API is marked with `@UnstableKmathAPI` or other stability warning annotations.
* **DEVELOPMENT**. API breaking genrally follows semantic versioning ideology. There could be changes in minor versions, but not in patch versions. API is protected with [binary-compatibility-validator](https://github.com/Kotlin/binary-compatibility-validator) tool. * **DEVELOPMENT**. API breaking generally follows semantic versioning ideology. There could be changes in minor versions, but not in patch versions. API is protected with [binary-compatibility-validator](https://github.com/Kotlin/binary-compatibility-validator) tool.
* **STABLE**. The API stabilized. Breaking changes are allowed only in major releases. * **STABLE**. The API stabilized. Breaking changes are allowed only in major releases.
<!--Current feature list is [here](/docs/features.md)--> <!--Current feature list is [here](/docs/features.md)-->
@ -95,6 +94,10 @@ cases. We expect the worst KMath benchmarks will perform better than native Pyth
native/SciPy (mostly due to boxing operations on primitive numbers). The best performance of optimized parts could be native/SciPy (mostly due to boxing operations on primitive numbers). The best performance of optimized parts could be
better than SciPy. better than SciPy.
## Requirements
KMath currently relies on JDK 11 for compilation and execution of Kotlin-JVM part. We recommend to use GraalVM-CE 11 for execution in order to get better performance.
### Repositories ### Repositories
Release and development artifacts are accessible from mipt-npm [Space](https://www.jetbrains.com/space/) repository `https://maven.pkg.jetbrains.space/mipt-npm/p/sci/maven` (see documentation of Release and development artifacts are accessible from mipt-npm [Space](https://www.jetbrains.com/space/) repository `https://maven.pkg.jetbrains.space/mipt-npm/p/sci/maven` (see documentation of
@ -106,8 +109,8 @@ repositories {
} }
dependencies { dependencies {
api("kscience.kmath:kmath-core:$version") api("${group}:kmath-core:$version")
// api("kscience.kmath:kmath-core-jvm:$version") for jvm-specific version // api("${group}:kmath-core-jvm:$version") for jvm-specific version
} }
``` ```

View File

@ -1,27 +1,16 @@
import org.jetbrains.kotlin.gradle.tasks.KotlinCompile
plugins { plugins {
kotlin("jvm") kotlin("jvm")
kotlin("plugin.allopen")
id("kotlinx.benchmark")
} }
allOpen.annotation("org.openjdk.jmh.annotations.State")
sourceSets.register("benchmarks")
repositories { repositories {
jcenter() mavenCentral()
maven("https://repo.kotlin.link") maven("https://repo.kotlin.link")
maven("https://clojars.org/repo") maven("https://clojars.org/repo")
maven("https://dl.bintray.com/egor-bogomolov/astminer/")
maven("https://dl.bintray.com/hotkeytlt/maven")
maven("https://dl.bintray.com/kotlin/kotlin-eap")
maven("https://dl.bintray.com/kotlin/kotlinx")
maven("https://dl.bintray.com/mipt-npm/dev")
maven("https://dl.bintray.com/mipt-npm/kscience")
maven("https://jitpack.io") maven("https://jitpack.io")
maven("http://logicrunch.research.it.uu.se/maven/") maven("https://maven.pkg.jetbrains.space/kotlin/p/kotlin/kotlin-js-wrappers")
mavenCentral() maven("http://logicrunch.research.it.uu.se/maven") {
isAllowInsecureProtocol = true
}
} }
dependencies { dependencies {
@ -36,10 +25,10 @@ dependencies {
implementation(project(":kmath-dimensions")) implementation(project(":kmath-dimensions"))
implementation(project(":kmath-ejml")) implementation(project(":kmath-ejml"))
implementation(project(":kmath-nd4j")) implementation(project(":kmath-nd4j"))
implementation(project(":kmath-tensors"))
implementation(project(":kmath-symja"))
implementation(project(":kmath-for-real")) implementation(project(":kmath-for-real"))
implementation("org.deeplearning4j:deeplearning4j-core:1.0.0-beta7")
implementation("org.nd4j:nd4j-native:1.0.0-beta7") implementation("org.nd4j:nd4j-native:1.0.0-beta7")
// uncomment if your system supports AVX2 // uncomment if your system supports AVX2
@ -52,57 +41,26 @@ dependencies {
// } else // } else
implementation("org.nd4j:nd4j-native-platform:1.0.0-beta7") implementation("org.nd4j:nd4j-native-platform:1.0.0-beta7")
implementation("org.jetbrains.kotlinx:kotlinx-io:0.2.0-npm-dev-11")
implementation("org.jetbrains.kotlinx:kotlinx.benchmark.runtime:0.2.0-dev-20")
implementation("org.slf4j:slf4j-simple:1.7.30") implementation("org.slf4j:slf4j-simple:1.7.30")
// plotting // plotting
implementation("kscience.plotlykt:plotlykt-server:0.3.1-dev") implementation("space.kscience:plotlykt-server:0.4.0")
//jafama
"benchmarksImplementation"("org.jetbrains.kotlinx:kotlinx.benchmark.runtime-jvm:0.2.0-dev-20") implementation(project(":kmath-jafama"))
"benchmarksImplementation"(sourceSets.main.get().output + sourceSets.main.get().runtimeClasspath)
}
// Configure benchmark
benchmark {
// Setup configurations
targets.register("benchmarks")
// This one matches sourceSet name above
configurations.register("buffer") {
warmups = 1 // number of warmup iterations
iterations = 3 // number of iterations
iterationTime = 500 // time in seconds per iteration
iterationTimeUnit = "ms" // time unity for iterationTime, default is seconds
include("BufferBenchmark")
}
configurations.register("dot") {
warmups = 1 // number of warmup iterations
iterations = 3 // number of iterations
iterationTime = 500 // time in seconds per iteration
iterationTimeUnit = "ms" // time unity for iterationTime, default is seconds
include("DotBenchmark")
}
configurations.register("expressions") {
warmups = 1 // number of warmup iterations
iterations = 3 // number of iterations
iterationTime = 500 // time in seconds per iteration
iterationTimeUnit = "ms" // time unity for iterationTime, default is seconds
include("ExpressionsInterpretersBenchmark")
}
} }
kotlin.sourceSets.all { kotlin.sourceSets.all {
with(languageSettings) { with(languageSettings) {
useExperimentalAnnotation("kotlin.contracts.ExperimentalContracts") useExperimentalAnnotation("kotlin.contracts.ExperimentalContracts")
useExperimentalAnnotation("kotlin.ExperimentalUnsignedTypes") useExperimentalAnnotation("kotlin.ExperimentalUnsignedTypes")
useExperimentalAnnotation("space.kscience.kmath.misc.UnstableKMathAPI")
} }
} }
tasks.withType<KotlinCompile> { tasks.withType<org.jetbrains.kotlin.gradle.tasks.KotlinCompile> {
kotlinOptions.jvmTarget = "11" kotlinOptions{
jvmTarget = "11"
freeCompilerArgs = freeCompilerArgs + "-Xjvm-default=all" + "-Xopt-in=kotlin.RequiresOptIn"
}
} }
readme { readme {

View File

@ -1,34 +0,0 @@
package space.kscience.kmath.benchmarks
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import java.nio.IntBuffer
@State(Scope.Benchmark)
internal class ArrayBenchmark {
@Benchmark
fun benchmarkArrayRead() {
var res = 0
for (i in 1..space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size) res += space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.array[space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size - i]
}
@Benchmark
fun benchmarkBufferRead() {
var res = 0
for (i in 1..space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size) res += space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.arrayBuffer[space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size - i]
}
@Benchmark
fun nativeBufferRead() {
var res = 0
for (i in 1..space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size) res += space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.nativeBuffer[space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size - i]
}
companion object {
const val size: Int = 1000
val array: IntArray = IntArray(space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size) { it }
val arrayBuffer: IntBuffer = IntBuffer.wrap(space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.array)
val nativeBuffer: IntBuffer = IntBuffer.allocate(space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size).also { for (i in 0 until space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size) it.put(i, i) }
}
}

View File

@ -1,67 +0,0 @@
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import space.kscience.kmath.commons.linear.CMMatrixContext
import space.kscience.kmath.ejml.EjmlMatrixContext
import space.kscience.kmath.linear.BufferMatrixContext
import space.kscience.kmath.linear.Matrix
import space.kscience.kmath.linear.RealMatrixContext
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.Buffer
import kotlin.random.Random
@State(Scope.Benchmark)
internal class DotBenchmark {
companion object {
val random = Random(12224)
val dim = 1000
//creating invertible matrix
val matrix1 = Matrix.real(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
val matrix2 = Matrix.real(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
val cmMatrix1 = CMMatrixContext { matrix1.toCM() }
val cmMatrix2 = CMMatrixContext { matrix2.toCM() }
val ejmlMatrix1 = EjmlMatrixContext { matrix1.toEjml() }
val ejmlMatrix2 = EjmlMatrixContext { matrix2.toEjml() }
}
@Benchmark
fun cmDot() {
CMMatrixContext {
cmMatrix1 dot cmMatrix2
}
}
@Benchmark
fun ejmlDot() {
EjmlMatrixContext {
ejmlMatrix1 dot ejmlMatrix2
}
}
@Benchmark
fun ejmlDotWithConversion() {
EjmlMatrixContext {
matrix1 dot matrix2
}
}
@Benchmark
fun bufferedDot() {
BufferMatrixContext(RealField, Buffer.Companion::real).invoke {
matrix1 dot matrix2
}
}
@Benchmark
fun realDot() {
RealMatrixContext {
matrix1 dot matrix2
}
}
}

View File

@ -1,71 +0,0 @@
package space.kscience.kmath.benchmarks
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import space.kscience.kmath.asm.compile
import space.kscience.kmath.ast.mstInField
import space.kscience.kmath.expressions.Expression
import space.kscience.kmath.expressions.expressionInField
import space.kscience.kmath.expressions.invoke
import space.kscience.kmath.expressions.symbol
import space.kscience.kmath.operations.Field
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.operations.bindSymbol
import kotlin.random.Random
@State(Scope.Benchmark)
internal class ExpressionsInterpretersBenchmark {
private val algebra: Field<Double> = RealField
val x by symbol
@Benchmark
fun functionalExpression() {
val expr = algebra.expressionInField {
val x = bindSymbol(x)
x * const(2.0) + const(2.0) / x - const(16.0)
}
invokeAndSum(expr)
}
@Benchmark
fun mstExpression() {
val expr = algebra.mstInField {
val x = bindSymbol(x)
x * 2.0 + 2.0 / x - 16.0
}
invokeAndSum(expr)
}
@Benchmark
fun asmExpression() {
val expr = algebra.mstInField {
val x = bindSymbol(x)
x * 2.0 + 2.0 / x - 16.0
}.compile()
invokeAndSum(expr)
}
@Benchmark
fun rawExpression() {
val expr = Expression<Double> { args ->
val x = args.getValue(x)
x * 2.0 + 2.0 / x - 16.0
}
invokeAndSum(expr)
}
private fun invokeAndSum(expr: Expression<Double>) {
val random = Random(0)
var sum = 0.0
repeat(1000000) {
sum += expr(x to random.nextDouble())
}
println(sum)
}
}

View File

@ -1,47 +0,0 @@
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import space.kscience.kmath.commons.linear.CMMatrixContext
import space.kscience.kmath.commons.linear.CMMatrixContext.dot
import space.kscience.kmath.commons.linear.inverse
import space.kscience.kmath.ejml.EjmlMatrixContext
import space.kscience.kmath.ejml.inverse
import space.kscience.kmath.linear.Matrix
import space.kscience.kmath.linear.MatrixContext
import space.kscience.kmath.linear.inverseWithLup
import space.kscience.kmath.linear.real
import kotlin.random.Random
@State(Scope.Benchmark)
internal class LinearAlgebraBenchmark {
companion object {
val random = Random(1224)
val dim = 100
//creating invertible matrix
val u = Matrix.real(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
val l = Matrix.real(dim, dim) { i, j -> if (i >= j) random.nextDouble() else 0.0 }
val matrix = l dot u
}
@Benchmark
fun kmathLupInversion() {
MatrixContext.real.inverseWithLup(matrix)
}
@Benchmark
fun cmLUPInversion() {
with(CMMatrixContext) {
inverse(matrix)
}
}
@Benchmark
fun ejmlInverse() {
with(EjmlMatrixContext) {
inverse(matrix)
}
}
}

View File

@ -1,44 +0,0 @@
package space.kscience.kmath.benchmarks
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.structures.Buffer
@State(Scope.Benchmark)
internal class NDFieldBenchmark {
@Benchmark
fun autoFieldAdd() {
with(autoField) {
var res: NDStructure<Double> = one
repeat(n) { res += one }
}
}
@Benchmark
fun specializedFieldAdd() {
with(specializedField) {
var res: NDStructure<Double> = one
repeat(n) { res += 1.0 }
}
}
@Benchmark
fun boxingFieldAdd() {
with(genericField) {
var res: NDStructure<Double> = one
repeat(n) { res += 1.0 }
}
}
companion object {
const val dim: Int = 1000
const val n: Int = 100
val autoField = NDAlgebra.auto(RealField, dim, dim)
val specializedField: RealNDField = NDAlgebra.real(dim, dim)
val genericField = NDAlgebra.field(RealField, Buffer.Companion::boxing, dim, dim)
}
}

View File

@ -1,51 +0,0 @@
package space.kscience.kmath.benchmarks
import org.jetbrains.bio.viktor.F64Array
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.viktor.ViktorNDField
@State(Scope.Benchmark)
internal class ViktorBenchmark {
final val dim: Int = 1000
final val n: Int = 100
// automatically build context most suited for given type.
final val autoField: NDField<Double, RealField> = NDAlgebra.auto(RealField, dim, dim)
final val realField: RealNDField = NDAlgebra.real(dim, dim)
final val viktorField: ViktorNDField = ViktorNDField(dim, dim)
@Benchmark
fun automaticFieldAddition() {
with(autoField) {
var res: NDStructure<Double> = one
repeat(n) { res += 1.0 }
}
}
@Benchmark
fun realFieldAddition() {
with(realField) {
var res: NDStructure<Double> = one
repeat(n) { res += 1.0 }
}
}
@Benchmark
fun viktorFieldAddition() {
with(viktorField) {
var res = one
repeat(n) { res += 1.0 }
}
}
@Benchmark
fun rawViktor() {
val one = F64Array.full(init = 1.0, shape = intArrayOf(dim, dim))
var res = one
repeat(n) { res = res + one }
}
}

View File

@ -1,48 +0,0 @@
package space.kscience.kmath.benchmarks
import org.jetbrains.bio.viktor.F64Array
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.viktor.ViktorNDField
@State(Scope.Benchmark)
internal class ViktorLogBenchmark {
final val dim: Int = 1000
final val n: Int = 100
// automatically build context most suited for given type.
final val autoField: NDField<Double, RealField> = NDAlgebra.auto(RealField, dim, dim)
final val realField: RealNDField = NDAlgebra.real(dim, dim)
final val viktorField: ViktorNDField = ViktorNDField(intArrayOf(dim, dim))
@Benchmark
fun realFieldLog() {
with(realField) {
val fortyTwo = produce { 42.0 }
var res = one
repeat(n) { res = ln(fortyTwo) }
}
}
@Benchmark
fun viktorFieldLog() {
with(viktorField) {
val fortyTwo = produce { 42.0 }
var res = one
repeat(n) { res = ln(fortyTwo) }
}
}
@Benchmark
fun rawViktorLog() {
val fortyTwo = F64Array.full(dim, dim, init = 42.0)
var res: F64Array
repeat(n) {
res = fortyTwo.log()
}
}
}

View File

@ -0,0 +1,26 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast
import space.kscience.kmath.ast.rendering.FeaturedMathRendererWithPostProcess
import space.kscience.kmath.ast.rendering.LatexSyntaxRenderer
import space.kscience.kmath.ast.rendering.MathMLSyntaxRenderer
import space.kscience.kmath.ast.rendering.renderWithStringBuilder
public fun main() {
val mst = "exp(sqrt(x))-asin(2*x)/(2e10+x^3)/(-12)".parseMath()
val syntax = FeaturedMathRendererWithPostProcess.Default.render(mst)
println("MathSyntax:")
println(syntax)
println()
val latex = LatexSyntaxRenderer.renderWithStringBuilder(syntax)
println("LaTeX:")
println(latex)
println()
val mathML = MathMLSyntaxRenderer.renderWithStringBuilder(syntax)
println("MathML:")
println(mathML)
}

View File

@ -1,15 +1,22 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast package space.kscience.kmath.ast
import space.kscience.kmath.expressions.invoke import space.kscience.kmath.expressions.MstField
import space.kscience.kmath.operations.RealField import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.interpret
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.invoke
fun main() { fun main() {
val expr = RealField.mstInField { val expr = MstField {
val x = bindSymbol("x") x * 2.0 + number(2.0) / x - 16.0
x * 2.0 + 2.0 / x - 16.0
} }
repeat(10000000) { repeat(10000000) {
expr.invoke("x" to 1.0) expr.interpret(DoubleField, x to 1.0)
} }
} }

View File

@ -1,24 +1,27 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast package space.kscience.kmath.ast
import space.kscience.kmath.asm.compile
import space.kscience.kmath.expressions.derivative import space.kscience.kmath.expressions.derivative
import space.kscience.kmath.expressions.invoke import space.kscience.kmath.expressions.invoke
import space.kscience.kmath.expressions.symbol import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.kotlingrad.differentiable import space.kscience.kmath.expressions.toExpression
import space.kscience.kmath.operations.RealField import space.kscience.kmath.kotlingrad.toKotlingradExpression
import space.kscience.kmath.operations.DoubleField
/** /**
* In this example, x^2-4*x-44 function is differentiated with Kotlin, and the autodiff result is compared with * In this example, x^2-4*x-44 function is differentiated with Kotlin, and the autodiff result is compared with
* valid derivative. * valid derivative in a certain point.
*/ */
fun main() { fun main() {
val x by symbol val actualDerivative = "x^2-4*x-44"
.parseMath()
val actualDerivative = MstExpression(RealField, "x^2-4*x-44".parseMath()) .toKotlingradExpression(DoubleField)
.differentiable()
.derivative(x) .derivative(x)
.compile()
val expectedDerivative = MstExpression(RealField, "2*x-4".parseMath()).compile() val expectedDerivative = "2*x-4".parseMath().toExpression(DoubleField)
assert(actualDerivative("x" to 123.0) == expectedDerivative("x" to 123.0)) check(actualDerivative(x to 123.0) == expectedDerivative(x to 123.0))
} }

View File

@ -0,0 +1,27 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast
import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.derivative
import space.kscience.kmath.expressions.invoke
import space.kscience.kmath.expressions.toExpression
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.symja.toSymjaExpression
/**
* In this example, x^2-4*x-44 function is differentiated with Symja, and the autodiff result is compared with
* valid derivative in a certain point.
*/
fun main() {
val actualDerivative = "x^2-4*x-44"
.parseMath()
.toSymjaExpression(DoubleField)
.derivative(x)
val expectedDerivative = "2*x-4".parseMath().toExpression(DoubleField)
check(actualDerivative(x to 123.0) == expectedDerivative(x to 123.0))
}

View File

@ -1,19 +1,27 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.commons.fit package space.kscience.kmath.commons.fit
import kotlinx.html.br import kotlinx.html.br
import kotlinx.html.h3 import kotlinx.html.h3
import kscience.plotly.*
import kscience.plotly.models.ScatterMode
import kscience.plotly.models.TraceValues
import space.kscience.kmath.commons.optimization.chiSquared import space.kscience.kmath.commons.optimization.chiSquared
import space.kscience.kmath.commons.optimization.minimize import space.kscience.kmath.commons.optimization.minimize
import space.kscience.kmath.distributions.NormalDistribution
import space.kscience.kmath.expressions.symbol import space.kscience.kmath.expressions.symbol
import space.kscience.kmath.real.RealVector import space.kscience.kmath.optimization.FunctionOptimization
import space.kscience.kmath.optimization.OptimizationResult
import space.kscience.kmath.real.DoubleVector
import space.kscience.kmath.real.map import space.kscience.kmath.real.map
import space.kscience.kmath.real.step import space.kscience.kmath.real.step
import space.kscience.kmath.stat.* import space.kscience.kmath.stat.RandomGenerator
import space.kscience.kmath.structures.asIterable import space.kscience.kmath.structures.asIterable
import space.kscience.kmath.structures.toList import space.kscience.kmath.structures.toList
import space.kscience.plotly.*
import space.kscience.plotly.models.ScatterMode
import space.kscience.plotly.models.TraceValues
import kotlin.math.pow import kotlin.math.pow
import kotlin.math.sqrt import kotlin.math.sqrt
@ -26,17 +34,16 @@ private val c by symbol
/** /**
* Shortcut to use buffers in plotly * Shortcut to use buffers in plotly
*/ */
operator fun TraceValues.invoke(vector: RealVector) { operator fun TraceValues.invoke(vector: DoubleVector) {
numbers = vector.asIterable() numbers = vector.asIterable()
} }
/** /**
* Least squares fie with auto-differentiation. Uses `kmath-commons` and `kmath-for-real` modules. * Least squares fie with auto-differentiation. Uses `kmath-commons` and `kmath-for-real` modules.
*/ */
fun main() { suspend fun main() {
//A generator for a normally distributed values //A generator for a normally distributed values
val generator = Distribution.normal() val generator = NormalDistribution(2.0, 7.0)
//A chain/flow of random values with the given seed //A chain/flow of random values with the given seed
val chain = generator.sample(RandomGenerator.default(112667)) val chain = generator.sample(RandomGenerator.default(112667))
@ -49,7 +56,7 @@ fun main() {
//Perform an operation on each x value (much more effective, than numpy) //Perform an operation on each x value (much more effective, than numpy)
val y = x.map { val y = x.map {
val value = it.pow(2) + it + 1 val value = it.pow(2) + it + 1
value + chain.nextDouble() * sqrt(value) value + chain.next() * sqrt(value)
} }
// this will also work, but less effective: // this will also work, but less effective:
// val y = x.pow(2)+ x + 1 + chain.nextDouble() // val y = x.pow(2)+ x + 1 + chain.nextDouble()
@ -58,10 +65,10 @@ fun main() {
val yErr = y.map { sqrt(it) }//RealVector.same(x.size, sigma) val yErr = y.map { sqrt(it) }//RealVector.same(x.size, sigma)
// compute differentiable chi^2 sum for given model ax^2 + bx + c // compute differentiable chi^2 sum for given model ax^2 + bx + c
val chi2 = Fitting.chiSquared(x, y, yErr) { x1 -> val chi2 = FunctionOptimization.chiSquared(x, y, yErr) { x1 ->
//bind variables to autodiff context //bind variables to autodiff context
val a = bind(a) val a = bindSymbol(a)
val b = bind(b) val b = bindSymbol(b)
//Include default value for c if it is not provided as a parameter //Include default value for c if it is not provided as a parameter
val c = bindSymbolOrNull(c) ?: one val c = bindSymbolOrNull(c) ?: one
a * x1.pow(2) + b * x1 + c a * x1.pow(2) + b * x1 + c

View File

@ -0,0 +1,23 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
import space.kscience.kmath.integration.gaussIntegrator
import space.kscience.kmath.integration.integrate
import space.kscience.kmath.integration.value
import space.kscience.kmath.operations.DoubleField
import kotlin.math.pow
fun main() {
//Define a function
val function: UnivariateFunction<Double> = { x -> 3 * x.pow(2) + 2 * x + 1 }
//get the result of the integration
val result = DoubleField.gaussIntegrator.integrate(0.0..10.0, function = function)
//the value is nullable because in some cases the integration could not succeed
println(result.value)
}

View File

@ -0,0 +1,54 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
import space.kscience.kmath.interpolation.SplineInterpolator
import space.kscience.kmath.interpolation.interpolatePolynomials
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.plotly.Plotly
import space.kscience.plotly.UnstablePlotlyAPI
import space.kscience.plotly.makeFile
import space.kscience.plotly.models.functionXY
import space.kscience.plotly.scatter
import kotlin.math.PI
import kotlin.math.sin
@OptIn(UnstablePlotlyAPI::class)
fun main() {
val data = (0..10).map {
val x = it.toDouble() / 5 * PI
x to sin(x)
}
val polynomial: PiecewisePolynomial<Double> = SplineInterpolator(
DoubleField, ::DoubleBuffer
).interpolatePolynomials(data)
val function = polynomial.asFunction(DoubleField, 0.0)
val cmInterpolate = org.apache.commons.math3.analysis.interpolation.SplineInterpolator().interpolate(
data.map { it.first }.toDoubleArray(),
data.map { it.second }.toDoubleArray()
)
Plotly.plot {
scatter {
name = "interpolated"
x.numbers = data.map { it.first }
y.numbers = x.doubles.map { function(it) }
}
scatter {
name = "original"
functionXY(0.0..(2 * PI), 0.1) { sin(it) }
}
scatter {
name = "cm"
x.numbers = data.map { it.first }
y.numbers = x.doubles.map { cmInterpolate.value(it) }
}
}.makeFile()
}

View File

@ -0,0 +1,45 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
import space.kscience.kmath.interpolation.SplineInterpolator
import space.kscience.kmath.interpolation.interpolatePolynomials
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.real.step
import space.kscience.kmath.structures.map
import space.kscience.plotly.Plotly
import space.kscience.plotly.UnstablePlotlyAPI
import space.kscience.plotly.makeFile
import space.kscience.plotly.models.functionXY
import space.kscience.plotly.scatter
@OptIn(UnstablePlotlyAPI::class)
fun main() {
val function: UnivariateFunction<Double> = { x ->
if (x in 30.0..50.0) {
1.0
} else {
0.0
}
}
val xs = 0.0..100.0 step 0.5
val ys = xs.map(function)
val polynomial: PiecewisePolynomial<Double> = SplineInterpolator.double.interpolatePolynomials(xs, ys)
val polyFunction = polynomial.asFunction(DoubleField, 0.0)
Plotly.plot {
scatter {
name = "interpolated"
functionXY(25.0..55.0, 0.1) { polyFunction(it) }
}
scatter {
name = "original"
functionXY(25.0..55.0, 0.1) { function(it) }
}
}.makeFile()
}

View File

@ -0,0 +1,33 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
import space.kscience.kmath.integration.gaussIntegrator
import space.kscience.kmath.integration.integrate
import space.kscience.kmath.integration.value
import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.nd
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.invoke
fun main(): Unit = DoubleField {
nd(2, 2) {
//Produce a diagonal StructureND
fun diagonal(v: Double) = produce { (i, j) ->
if (i == j) v else 0.0
}
//Define a function in a nd space
val function: (Double) -> StructureND<Double> = { x: Double -> 3 * number(x).pow(2) + 2 * diagonal(x) + 1 }
//get the result of the integration
val result = gaussIntegrator.integrate(0.0..10.0, function = function)
//the value is nullable because in some cases the integration could not succeed
println(result.value)
}
}

View File

@ -0,0 +1,17 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.jafama
import net.jafama.FastMath
fun main(){
val a = JafamaDoubleField.number(2.0)
val b = StrictJafamaDoubleField.power(FastMath.E,a)
println(JafamaDoubleField.add(b,a))
println(StrictJafamaDoubleField.ln(b))
}

View File

@ -0,0 +1,33 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.linear
import space.kscience.kmath.real.*
import space.kscience.kmath.structures.DoubleBuffer
fun main() {
val x0 = DoubleVector(0.0, 0.0, 0.0)
val sigma = DoubleVector(1.0, 1.0, 1.0)
val gaussian: (Point<Double>) -> Double = { x ->
require(x.size == x0.size)
kotlin.math.exp(-((x - x0) / sigma).square().sum())
}
fun ((Point<Double>) -> Double).grad(x: Point<Double>): Point<Double> {
require(x.size == x0.size)
return DoubleBuffer(x.size) { i ->
val h = sigma[i] / 5
val dVector = DoubleBuffer(x.size) { if (it == i) h else 0.0 }
val f1 = this(x + dVector / 2)
val f0 = this(x - dVector / 2)
(f1 - f0) / h
}
}
println(gaussian.grad(x0))
}

View File

@ -1,3 +1,8 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.operations package space.kscience.kmath.operations
fun main() { fun main() {

View File

@ -1,18 +1,23 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.operations package space.kscience.kmath.operations
import space.kscience.kmath.complex.Complex import space.kscience.kmath.complex.Complex
import space.kscience.kmath.complex.complex import space.kscience.kmath.complex.complex
import space.kscience.kmath.nd.NDAlgebra import space.kscience.kmath.nd.AlgebraND
fun main() { fun main() {
// 2d element // 2d element
val element = NDAlgebra.complex(2, 2).produce { (i, j) -> val element = AlgebraND.complex(2, 2).produce { (i, j) ->
Complex(i.toDouble() - j.toDouble(), i.toDouble() + j.toDouble()) Complex(i.toDouble() - j.toDouble(), i.toDouble() + j.toDouble())
} }
println(element) println(element)
// 1d element operation // 1d element operation
val result = with(NDAlgebra.complex(8)) { val result = with(AlgebraND.complex(8)) {
val a = produce { (it) -> i * it - it.toDouble() } val a = produce { (it) -> i * it - it.toDouble() }
val b = 3 val b = 3
val c = Complex(1.0, 1.0) val c = Complex(1.0, 1.0)

View File

@ -1,23 +1,29 @@
package kscience.kmath.commons.prob /*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.stat
import kotlinx.coroutines.Dispatchers import kotlinx.coroutines.Dispatchers
import kotlinx.coroutines.async import kotlinx.coroutines.async
import kotlinx.coroutines.runBlocking import kotlinx.coroutines.runBlocking
import org.apache.commons.rng.sampling.distribution.ZigguratNormalizedGaussianSampler import org.apache.commons.rng.sampling.distribution.BoxMullerNormalizedGaussianSampler
import org.apache.commons.rng.simple.RandomSource import org.apache.commons.rng.simple.RandomSource
import space.kscience.kmath.stat.* import space.kscience.kmath.samplers.GaussianSampler
import java.time.Duration import java.time.Duration
import java.time.Instant import java.time.Instant
import org.apache.commons.rng.sampling.distribution.GaussianSampler as CMGaussianSampler
private fun runChain(): Duration { private suspend fun runKMathChained(): Duration {
val generator = RandomGenerator.fromSource(RandomSource.MT, 123L) val generator = RandomGenerator.fromSource(RandomSource.MT, 123L)
val normal = Distribution.normal(NormalSamplerMethod.Ziggurat) val normal = GaussianSampler(7.0, 2.0)
val chain = normal.sample(generator) val chain = normal.sample(generator)
val startTime = Instant.now() val startTime = Instant.now()
var sum = 0.0 var sum = 0.0
repeat(10000001) { counter -> repeat(10000001) { counter ->
sum += chain.nextDouble() sum += chain.next()
if (counter % 100000 == 0) { if (counter % 100000 == 0) {
val duration = Duration.between(startTime, Instant.now()) val duration = Duration.between(startTime, Instant.now())
@ -29,9 +35,15 @@ private fun runChain(): Duration {
return Duration.between(startTime, Instant.now()) return Duration.between(startTime, Instant.now())
} }
private fun runDirect(): Duration { private fun runApacheDirect(): Duration {
val provider = RandomSource.create(RandomSource.MT, 123L) val rng = RandomSource.create(RandomSource.MT, 123L)
val sampler = ZigguratNormalizedGaussianSampler(provider)
val sampler = CMGaussianSampler.of(
BoxMullerNormalizedGaussianSampler.of(rng),
7.0,
2.0
)
val startTime = Instant.now() val startTime = Instant.now()
var sum = 0.0 var sum = 0.0
@ -51,11 +63,9 @@ private fun runDirect(): Duration {
/** /**
* Comparing chain sampling performance with direct sampling performance * Comparing chain sampling performance with direct sampling performance
*/ */
fun main() { fun main(): Unit = runBlocking(Dispatchers.Default) {
runBlocking(Dispatchers.Default) { val directJob = async { runApacheDirect() }
val chainJob = async { runChain() } val chainJob = async { runKMathChained() }
val directJob = async { runDirect() } println("KMath Chained: ${chainJob.await()}")
println("Chain: ${chainJob.await()}") println("Apache Direct: ${directJob.await()}")
println("Direct: ${directJob.await()}")
}
} }

View File

@ -1,16 +1,22 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.stat package space.kscience.kmath.stat
import kotlinx.coroutines.runBlocking import kotlinx.coroutines.runBlocking
import space.kscience.kmath.chains.Chain import space.kscience.kmath.chains.Chain
import space.kscience.kmath.chains.collectWithState import space.kscience.kmath.chains.collectWithState
import space.kscience.kmath.distributions.NormalDistribution
/** /**
* The state of distribution averager * The state of distribution averager.
*/ */
private data class AveragingChainState(var num: Int = 0, var value: Double = 0.0) private data class AveragingChainState(var num: Int = 0, var value: Double = 0.0)
/** /**
* Averaging * Averaging.
*/ */
private fun Chain<Double>.mean(): Chain<Double> = collectWithState(AveragingChainState(), { it.copy() }) { chain -> private fun Chain<Double>.mean(): Chain<Double> = collectWithState(AveragingChainState(), { it.copy() }) { chain ->
val next = chain.next() val next = chain.next()
@ -21,7 +27,7 @@ private fun Chain<Double>.mean(): Chain<Double> = collectWithState(AveragingChai
fun main() { fun main() {
val normal = Distribution.normal() val normal = NormalDistribution(0.0, 2.0)
val chain = normal.sample(RandomGenerator.default).mean() val chain = normal.sample(RandomGenerator.default).mean()
runBlocking { runBlocking {

View File

@ -1,11 +1,16 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@file:Suppress("unused") @file:Suppress("unused")
package space.kscience.kmath.structures package space.kscience.kmath.structures
import space.kscience.kmath.complex.* import space.kscience.kmath.complex.*
import space.kscience.kmath.linear.transpose import space.kscience.kmath.linear.transpose
import space.kscience.kmath.nd.NDAlgebra import space.kscience.kmath.nd.AlgebraND
import space.kscience.kmath.nd.NDStructure import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.as2D import space.kscience.kmath.nd.as2D
import space.kscience.kmath.nd.real import space.kscience.kmath.nd.real
import space.kscience.kmath.operations.invoke import space.kscience.kmath.operations.invoke
@ -15,12 +20,12 @@ fun main() {
val dim = 1000 val dim = 1000
val n = 1000 val n = 1000
val realField = NDAlgebra.real(dim, dim) val realField = AlgebraND.real(dim, dim)
val complexField: ComplexNDField = NDAlgebra.complex(dim, dim) val complexField: ComplexFieldND = AlgebraND.complex(dim, dim)
val realTime = measureTimeMillis { val realTime = measureTimeMillis {
realField { realField {
var res: NDStructure<Double> = one var res: StructureND<Double> = one
repeat(n) { repeat(n) {
res += 1.0 res += 1.0
} }
@ -31,7 +36,7 @@ fun main() {
val complexTime = measureTimeMillis { val complexTime = measureTimeMillis {
complexField { complexField {
var res: NDStructure<Complex> = one var res: StructureND<Complex> = one
repeat(n) { repeat(n) {
res += 1.0 res += 1.0
} }

View File

@ -1,10 +1,16 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.structures package space.kscience.kmath.structures
import kotlinx.coroutines.DelicateCoroutinesApi
import kotlinx.coroutines.GlobalScope import kotlinx.coroutines.GlobalScope
import org.nd4j.linalg.factory.Nd4j import org.nd4j.linalg.factory.Nd4j
import space.kscience.kmath.nd.* import space.kscience.kmath.nd.*
import space.kscience.kmath.nd4j.Nd4jArrayField import space.kscience.kmath.nd4j.Nd4jArrayField
import space.kscience.kmath.operations.RealField import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.invoke import space.kscience.kmath.operations.invoke
import space.kscience.kmath.viktor.ViktorNDField import space.kscience.kmath.viktor.ViktorNDField
import kotlin.contracts.InvocationKind import kotlin.contracts.InvocationKind
@ -17,6 +23,7 @@ internal inline fun measureAndPrint(title: String, block: () -> Unit) {
println("$title completed in $time millis") println("$title completed in $time millis")
} }
@OptIn(DelicateCoroutinesApi::class)
fun main() { fun main() {
// initializing Nd4j // initializing Nd4j
Nd4j.zeros(0) Nd4j.zeros(0)
@ -24,56 +31,56 @@ fun main() {
val n = 1000 val n = 1000
// automatically build context most suited for given type. // automatically build context most suited for given type.
val autoField = NDAlgebra.auto(RealField, dim, dim) val autoField = AlgebraND.auto(DoubleField, dim, dim)
// specialized nd-field for Double. It works as generic Double field as well // specialized nd-field for Double. It works as generic Double field as well
val realField = NDAlgebra.real(dim, dim) val realField = AlgebraND.real(dim, dim)
//A generic boxing field. It should be used for objects, not primitives. //A generic boxing field. It should be used for objects, not primitives.
val boxingField = NDAlgebra.field(RealField, Buffer.Companion::boxing, dim, dim) val boxingField = AlgebraND.field(DoubleField, Buffer.Companion::boxing, dim, dim)
// Nd4j specialized field. // Nd4j specialized field.
val nd4jField = Nd4jArrayField.real(dim, dim) val nd4jField = Nd4jArrayField.real(dim, dim)
//viktor field //viktor field
val viktorField = ViktorNDField(dim, dim) val viktorField = ViktorNDField(dim, dim)
//parallel processing based on Java Streams //parallel processing based on Java Streams
val parallelField = NDAlgebra.realWithStream(dim,dim) val parallelField = AlgebraND.realWithStream(dim, dim)
measureAndPrint("Boxing addition") { measureAndPrint("Boxing addition") {
boxingField { boxingField {
var res: NDStructure<Double> = one var res: StructureND<Double> = one
repeat(n) { res += 1.0 } repeat(n) { res += 1.0 }
} }
} }
measureAndPrint("Specialized addition") { measureAndPrint("Specialized addition") {
realField { realField {
var res: NDStructure<Double> = one var res: StructureND<Double> = one
repeat(n) { res += 1.0 } repeat(n) { res += 1.0 }
} }
} }
measureAndPrint("Nd4j specialized addition") { measureAndPrint("Nd4j specialized addition") {
nd4jField { nd4jField {
var res: NDStructure<Double> = one var res: StructureND<Double> = one
repeat(n) { res += 1.0 } repeat(n) { res += 1.0 }
} }
} }
measureAndPrint("Viktor addition") { measureAndPrint("Viktor addition") {
viktorField { viktorField {
var res: NDStructure<Double> = one var res: StructureND<Double> = one
repeat(n) { res += 1.0 } repeat(n) { res += 1.0 }
} }
} }
measureAndPrint("Parallel stream addition") { measureAndPrint("Parallel stream addition") {
parallelField { parallelField {
var res: NDStructure<Double> = one var res: StructureND<Double> = one
repeat(n) { res += 1.0 } repeat(n) { res += 1.0 }
} }
} }
measureAndPrint("Automatic field addition") { measureAndPrint("Automatic field addition") {
autoField { autoField {
var res: NDStructure<Double> = one var res: StructureND<Double> = one
repeat(n) { res += 1.0 } repeat(n) { res += 1.0 }
} }
} }

View File

@ -1,103 +0,0 @@
package space.kscience.kmath.structures
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.ExtendedField
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.operations.RingWithNumbers
import java.util.*
import java.util.stream.IntStream
/**
* A demonstration implementation of NDField over Real using Java [DoubleStream] for parallel execution
*/
@OptIn(UnstableKMathAPI::class)
class StreamRealNDField(
override val shape: IntArray,
) : NDField<Double, RealField>,
RingWithNumbers<NDStructure<Double>>,
ExtendedField<NDStructure<Double>> {
private val strides = DefaultStrides(shape)
override val elementContext: RealField get() = RealField
override val zero: NDBuffer<Double> by lazy { produce { zero } }
override val one: NDBuffer<Double> by lazy { produce { one } }
override fun number(value: Number): NDBuffer<Double> {
val d = value.toDouble() // minimize conversions
return produce { d }
}
private val NDStructure<Double>.buffer: RealBuffer
get() = when {
!shape.contentEquals(this@StreamRealNDField.shape) -> throw ShapeMismatchException(
this@StreamRealNDField.shape,
shape
)
this is NDBuffer && this.strides == this@StreamRealNDField.strides -> this.buffer as RealBuffer
else -> RealBuffer(strides.linearSize) { offset -> get(strides.index(offset)) }
}
override fun produce(initializer: RealField.(IntArray) -> Double): NDBuffer<Double> {
val array = IntStream.range(0, strides.linearSize).parallel().mapToDouble { offset ->
val index = strides.index(offset)
RealField.initializer(index)
}.toArray()
return NDBuffer(strides, array.asBuffer())
}
override fun NDStructure<Double>.map(
transform: RealField.(Double) -> Double,
): NDBuffer<Double> {
val array = Arrays.stream(buffer.array).parallel().map { RealField.transform(it) }.toArray()
return NDBuffer(strides, array.asBuffer())
}
override fun NDStructure<Double>.mapIndexed(
transform: RealField.(index: IntArray, Double) -> Double,
): NDBuffer<Double> {
val array = IntStream.range(0, strides.linearSize).parallel().mapToDouble { offset ->
RealField.transform(
strides.index(offset),
buffer.array[offset]
)
}.toArray()
return NDBuffer(strides, array.asBuffer())
}
override fun combine(
a: NDStructure<Double>,
b: NDStructure<Double>,
transform: RealField.(Double, Double) -> Double,
): NDBuffer<Double> {
val array = IntStream.range(0, strides.linearSize).parallel().mapToDouble { offset ->
RealField.transform(a.buffer.array[offset], b.buffer.array[offset])
}.toArray()
return NDBuffer(strides, array.asBuffer())
}
override fun power(arg: NDStructure<Double>, pow: Number): NDBuffer<Double> = arg.map() { power(it, pow) }
override fun exp(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { exp(it) }
override fun ln(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { ln(it) }
override fun sin(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { sin(it) }
override fun cos(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { cos(it) }
override fun tan(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { tan(it) }
override fun asin(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { asin(it) }
override fun acos(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { acos(it) }
override fun atan(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { atan(it) }
override fun sinh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { sinh(it) }
override fun cosh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { cosh(it) }
override fun tanh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { tanh(it) }
override fun asinh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { asinh(it) }
override fun acosh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { acosh(it) }
override fun atanh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { atanh(it) }
}
fun NDAlgebra.Companion.realWithStream(vararg shape: Int): StreamRealNDField = StreamRealNDField(shape)

View File

@ -0,0 +1,108 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.structures
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.ExtendedField
import space.kscience.kmath.operations.NumbersAddOperations
import java.util.*
import java.util.stream.IntStream
/**
* A demonstration implementation of NDField over Real using Java [java.util.stream.DoubleStream] for parallel
* execution.
*/
class StreamDoubleFieldND(override val shape: IntArray) : FieldND<Double, DoubleField>,
NumbersAddOperations<StructureND<Double>>,
ExtendedField<StructureND<Double>> {
private val strides = DefaultStrides(shape)
override val elementContext: DoubleField get() = DoubleField
override val zero: BufferND<Double> by lazy { produce { zero } }
override val one: BufferND<Double> by lazy { produce { one } }
override fun number(value: Number): BufferND<Double> {
val d = value.toDouble() // minimize conversions
return produce { d }
}
private val StructureND<Double>.buffer: DoubleBuffer
get() = when {
!shape.contentEquals(this@StreamDoubleFieldND.shape) -> throw ShapeMismatchException(
this@StreamDoubleFieldND.shape,
shape
)
this is BufferND && this.strides == this@StreamDoubleFieldND.strides -> this.buffer as DoubleBuffer
else -> DoubleBuffer(strides.linearSize) { offset -> get(strides.index(offset)) }
}
override fun produce(initializer: DoubleField.(IntArray) -> Double): BufferND<Double> {
val array = IntStream.range(0, strides.linearSize).parallel().mapToDouble { offset ->
val index = strides.index(offset)
DoubleField.initializer(index)
}.toArray()
return BufferND(strides, array.asBuffer())
}
override fun StructureND<Double>.map(
transform: DoubleField.(Double) -> Double,
): BufferND<Double> {
val array = Arrays.stream(buffer.array).parallel().map { DoubleField.transform(it) }.toArray()
return BufferND(strides, array.asBuffer())
}
override fun StructureND<Double>.mapIndexed(
transform: DoubleField.(index: IntArray, Double) -> Double,
): BufferND<Double> {
val array = IntStream.range(0, strides.linearSize).parallel().mapToDouble { offset ->
DoubleField.transform(
strides.index(offset),
buffer.array[offset]
)
}.toArray()
return BufferND(strides, array.asBuffer())
}
override fun combine(
a: StructureND<Double>,
b: StructureND<Double>,
transform: DoubleField.(Double, Double) -> Double,
): BufferND<Double> {
val array = IntStream.range(0, strides.linearSize).parallel().mapToDouble { offset ->
DoubleField.transform(a.buffer.array[offset], b.buffer.array[offset])
}.toArray()
return BufferND(strides, array.asBuffer())
}
override fun StructureND<Double>.unaryMinus(): StructureND<Double> = map { -it }
override fun scale(a: StructureND<Double>, value: Double): StructureND<Double> = a.map { it * value }
override fun power(arg: StructureND<Double>, pow: Number): BufferND<Double> = arg.map { power(it, pow) }
override fun exp(arg: StructureND<Double>): BufferND<Double> = arg.map { exp(it) }
override fun ln(arg: StructureND<Double>): BufferND<Double> = arg.map { ln(it) }
override fun sin(arg: StructureND<Double>): BufferND<Double> = arg.map { sin(it) }
override fun cos(arg: StructureND<Double>): BufferND<Double> = arg.map { cos(it) }
override fun tan(arg: StructureND<Double>): BufferND<Double> = arg.map { tan(it) }
override fun asin(arg: StructureND<Double>): BufferND<Double> = arg.map { asin(it) }
override fun acos(arg: StructureND<Double>): BufferND<Double> = arg.map { acos(it) }
override fun atan(arg: StructureND<Double>): BufferND<Double> = arg.map { atan(it) }
override fun sinh(arg: StructureND<Double>): BufferND<Double> = arg.map { sinh(it) }
override fun cosh(arg: StructureND<Double>): BufferND<Double> = arg.map { cosh(it) }
override fun tanh(arg: StructureND<Double>): BufferND<Double> = arg.map { tanh(it) }
override fun asinh(arg: StructureND<Double>): BufferND<Double> = arg.map { asinh(it) }
override fun acosh(arg: StructureND<Double>): BufferND<Double> = arg.map { acosh(it) }
override fun atanh(arg: StructureND<Double>): BufferND<Double> = arg.map { atanh(it) }
}
fun AlgebraND.Companion.realWithStream(vararg shape: Int): StreamDoubleFieldND = StreamDoubleFieldND(shape)

View File

@ -1,16 +1,21 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.structures package space.kscience.kmath.structures
import space.kscience.kmath.nd.BufferND
import space.kscience.kmath.nd.DefaultStrides import space.kscience.kmath.nd.DefaultStrides
import space.kscience.kmath.nd.NDBuffer
import kotlin.system.measureTimeMillis import kotlin.system.measureTimeMillis
@Suppress("ASSIGNED_BUT_NEVER_ACCESSED_VARIABLE") @Suppress("ASSIGNED_BUT_NEVER_ACCESSED_VARIABLE")
fun main() { fun main() {
val n = 6000 val n = 6000
val array = DoubleArray(n * n) { 1.0 } val array = DoubleArray(n * n) { 1.0 }
val buffer = RealBuffer(array) val buffer = DoubleBuffer(array)
val strides = DefaultStrides(intArrayOf(n, n)) val strides = DefaultStrides(intArrayOf(n, n))
val structure = NDBuffer(strides, buffer) val structure = BufferND(strides, buffer)
measureTimeMillis { measureTimeMillis {
var res = 0.0 var res = 0.0

View File

@ -1,13 +1,18 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.structures package space.kscience.kmath.structures
import space.kscience.kmath.nd.NDStructure import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.mapToBuffer import space.kscience.kmath.nd.mapToBuffer
import kotlin.system.measureTimeMillis import kotlin.system.measureTimeMillis
@Suppress("UNUSED_VARIABLE") @Suppress("UNUSED_VARIABLE")
fun main() { fun main() {
val n = 6000 val n = 6000
val structure = NDStructure.build(intArrayOf(n, n), Buffer.Companion::auto) { 1.0 } val structure = StructureND.buffered(intArrayOf(n, n), Buffer.Companion::auto) { 1.0 }
structure.mapToBuffer { it + 1 } // warm-up structure.mapToBuffer { it + 1 } // warm-up
val time1 = measureTimeMillis { val res = structure.mapToBuffer { it + 1 } } val time1 = measureTimeMillis { val res = structure.mapToBuffer { it + 1 } }
println("Structure mapping finished in $time1 millis") println("Structure mapping finished in $time1 millis")
@ -20,10 +25,10 @@ fun main() {
println("Array mapping finished in $time2 millis") println("Array mapping finished in $time2 millis")
val buffer = RealBuffer(DoubleArray(n * n) { 1.0 }) val buffer = DoubleBuffer(DoubleArray(n * n) { 1.0 })
val time3 = measureTimeMillis { val time3 = measureTimeMillis {
val target = RealBuffer(DoubleArray(n * n)) val target = DoubleBuffer(DoubleArray(n * n))
val res = array.forEachIndexed { index, value -> val res = array.forEachIndexed { index, value ->
target[index] = value + 1 target[index] = value + 1
} }

View File

@ -1,3 +1,8 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.structures package space.kscience.kmath.structures
import space.kscience.kmath.dimensions.D2 import space.kscience.kmath.dimensions.D2
@ -5,7 +10,7 @@ import space.kscience.kmath.dimensions.D3
import space.kscience.kmath.dimensions.DMatrixContext import space.kscience.kmath.dimensions.DMatrixContext
import space.kscience.kmath.dimensions.Dimension import space.kscience.kmath.dimensions.Dimension
private fun DMatrixContext<Double>.simple() { private fun DMatrixContext<Double, *>.simple() {
val m1 = produce<D2, D3> { i, j -> (i + j).toDouble() } val m1 = produce<D2, D3> { i, j -> (i + j).toDouble() }
val m2 = produce<D3, D2> { i, j -> (i + j).toDouble() } val m2 = produce<D3, D2> { i, j -> (i + j).toDouble() }
@ -17,7 +22,7 @@ private object D5 : Dimension {
override val dim: UInt = 5u override val dim: UInt = 5u
} }
private fun DMatrixContext<Double>.custom() { private fun DMatrixContext<Double, *>.custom() {
val m1 = produce<D2, D5> { i, j -> (i + j).toDouble() } val m1 = produce<D2, D5> { i, j -> (i + j).toDouble() }
val m2 = produce<D5, D2> { i, j -> (i - j).toDouble() } val m2 = produce<D5, D2> { i, j -> (i - j).toDouble() }
val m3 = produce<D2, D2> { i, j -> (i - j).toDouble() } val m3 = produce<D2, D2> { i, j -> (i - j).toDouble() }

View File

@ -0,0 +1,42 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra
// Dataset normalization
fun main() = BroadcastDoubleTensorAlgebra { // work in context with broadcast methods
// take dataset of 5-element vectors from normal distribution
val dataset = randomNormal(intArrayOf(100, 5)) * 1.5 // all elements from N(0, 1.5)
dataset += fromArray(
intArrayOf(5),
doubleArrayOf(0.0, 1.0, 1.5, 3.0, 5.0) // rows means
)
// find out mean and standard deviation of each column
val mean = dataset.mean(0, false)
val std = dataset.std(0, false)
println("Mean:\n$mean")
println("Standard deviation:\n$std")
// also we can calculate other statistic as minimum and maximum of rows
println("Minimum:\n${dataset.min(0, false)}")
println("Maximum:\n${dataset.max(0, false)}")
// now we can scale dataset with mean normalization
val datasetScaled = (dataset - mean) / std
// find out mean and std of scaled dataset
println("Mean of scaled:\n${datasetScaled.mean(0, false)}")
println("Mean of scaled:\n${datasetScaled.std(0, false)}")
}

View File

@ -0,0 +1,93 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra
import space.kscience.kmath.tensors.core.DoubleTensor
// solving linear system with LUP decomposition
fun main() = BroadcastDoubleTensorAlgebra {// work in context with linear operations
// set true value of x
val trueX = fromArray(
intArrayOf(4),
doubleArrayOf(-2.0, 1.5, 6.8, -2.4)
)
// and A matrix
val a = fromArray(
intArrayOf(4, 4),
doubleArrayOf(
0.5, 10.5, 4.5, 1.0,
8.5, 0.9, 12.8, 0.1,
5.56, 9.19, 7.62, 5.45,
1.0, 2.0, -3.0, -2.5
)
)
// calculate y value
val b = a dot trueX
// check out A and b
println("A:\n$a")
println("b:\n$b")
// solve `Ax = b` system using LUP decomposition
// get P, L, U such that PA = LU
val (p, l, u) = a.lu()
// check that P is permutation matrix
println("P:\n$p")
// L is lower triangular matrix and U is upper triangular matrix
println("L:\n$l")
println("U:\n$u")
// and PA = LU
println("PA:\n${p dot a}")
println("LU:\n${l dot u}")
/* Ax = b;
PAx = Pb;
LUx = Pb;
let y = Ux, then
Ly = Pb -- this system can be easily solved, since the matrix L is lower triangular;
Ux = y can be solved the same way, since the matrix L is upper triangular
*/
// this function returns solution x of a system lx = b, l should be lower triangular
fun solveLT(l: DoubleTensor, b: DoubleTensor): DoubleTensor {
val n = l.shape[0]
val x = zeros(intArrayOf(n))
for (i in 0 until n) {
x[intArrayOf(i)] = (b[intArrayOf(i)] - l[i].dot(x).value()) / l[intArrayOf(i, i)]
}
return x
}
val y = solveLT(l, p dot b)
// solveLT(l, b) function can be easily adapted for upper triangular matrix by the permutation matrix revMat
// create it by placing ones on side diagonal
val revMat = u.zeroesLike()
val n = revMat.shape[0]
for (i in 0 until n) {
revMat[intArrayOf(i, n - 1 - i)] = 1.0
}
// solution of system ux = b, u should be upper triangular
fun solveUT(u: DoubleTensor, b: DoubleTensor): DoubleTensor = revMat dot solveLT(
revMat dot u dot revMat, revMat dot b
)
val x = solveUT(u, y)
println("True x:\n$trueX")
println("x founded with LU method:\n$x")
}

View File

@ -0,0 +1,239 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.toDoubleArray
import kotlin.math.sqrt
const val seed = 100500L
// Simple feedforward neural network with backpropagation training
// interface of network layer
interface Layer {
fun forward(input: DoubleTensor): DoubleTensor
fun backward(input: DoubleTensor, outputError: DoubleTensor): DoubleTensor
}
// activation layer
open class Activation(
val activation: (DoubleTensor) -> DoubleTensor,
val activationDer: (DoubleTensor) -> DoubleTensor,
) : Layer {
override fun forward(input: DoubleTensor): DoubleTensor {
return activation(input)
}
override fun backward(input: DoubleTensor, outputError: DoubleTensor): DoubleTensor {
return DoubleTensorAlgebra { outputError * activationDer(input) }
}
}
fun relu(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
x.map { if (it > 0) it else 0.0 }
}
fun reluDer(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
x.map { if (it > 0) 1.0 else 0.0 }
}
// activation layer with relu activator
class ReLU : Activation(::relu, ::reluDer)
fun sigmoid(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
1.0 / (1.0 + (-x).exp())
}
fun sigmoidDer(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
sigmoid(x) * (1.0 - sigmoid(x))
}
// activation layer with sigmoid activator
class Sigmoid : Activation(::sigmoid, ::sigmoidDer)
// dense layer
class Dense(
private val inputUnits: Int,
private val outputUnits: Int,
private val learningRate: Double = 0.1,
) : Layer {
private val weights: DoubleTensor = DoubleTensorAlgebra {
randomNormal(
intArrayOf(inputUnits, outputUnits),
seed
) * sqrt(2.0 / (inputUnits + outputUnits))
}
private val bias: DoubleTensor = DoubleTensorAlgebra { zeros(intArrayOf(outputUnits)) }
override fun forward(input: DoubleTensor): DoubleTensor = BroadcastDoubleTensorAlgebra {
(input dot weights) + bias
}
override fun backward(input: DoubleTensor, outputError: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
val gradInput = outputError dot weights.transpose()
val gradW = input.transpose() dot outputError
val gradBias = outputError.mean(dim = 0, keepDim = false) * input.shape[0].toDouble()
weights -= learningRate * gradW
bias -= learningRate * gradBias
gradInput
}
}
// simple accuracy equal to the proportion of correct answers
fun accuracy(yPred: DoubleTensor, yTrue: DoubleTensor): Double {
check(yPred.shape contentEquals yTrue.shape)
val n = yPred.shape[0]
var correctCnt = 0
for (i in 0 until n) {
if (yPred[intArrayOf(i, 0)] == yTrue[intArrayOf(i, 0)]) {
correctCnt += 1
}
}
return correctCnt.toDouble() / n.toDouble()
}
// neural network class
@OptIn(ExperimentalStdlibApi::class)
class NeuralNetwork(private val layers: List<Layer>) {
private fun softMaxLoss(yPred: DoubleTensor, yTrue: DoubleTensor): DoubleTensor = BroadcastDoubleTensorAlgebra {
val onesForAnswers = yPred.zeroesLike()
yTrue.toDoubleArray().forEachIndexed { index, labelDouble ->
val label = labelDouble.toInt()
onesForAnswers[intArrayOf(index, label)] = 1.0
}
val softmaxValue = yPred.exp() / yPred.exp().sum(dim = 1, keepDim = true)
(-onesForAnswers + softmaxValue) / (yPred.shape[0].toDouble())
}
private fun forward(x: DoubleTensor): List<DoubleTensor> {
var input = x
return buildList {
layers.forEach { layer ->
val output = layer.forward(input)
add(output)
input = output
}
}
}
private fun train(xTrain: DoubleTensor, yTrain: DoubleTensor) {
val layerInputs = buildList {
add(xTrain)
addAll(forward(xTrain))
}
var lossGrad = softMaxLoss(layerInputs.last(), yTrain)
layers.zip(layerInputs).reversed().forEach { (layer, input) ->
lossGrad = layer.backward(input, lossGrad)
}
}
fun fit(xTrain: DoubleTensor, yTrain: DoubleTensor, batchSize: Int, epochs: Int) = DoubleTensorAlgebra {
fun iterBatch(x: DoubleTensor, y: DoubleTensor): Sequence<Pair<DoubleTensor, DoubleTensor>> = sequence {
val n = x.shape[0]
val shuffledIndices = (0 until n).shuffled()
for (i in 0 until n step batchSize) {
val excerptIndices = shuffledIndices.drop(i).take(batchSize).toIntArray()
val batch = x.rowsByIndices(excerptIndices) to y.rowsByIndices(excerptIndices)
yield(batch)
}
}
for (epoch in 0 until epochs) {
println("Epoch ${epoch + 1}/$epochs")
for ((xBatch, yBatch) in iterBatch(xTrain, yTrain)) {
train(xBatch, yBatch)
}
println("Accuracy:${accuracy(yTrain, predict(xTrain).argMax(1, true))}")
}
}
fun predict(x: DoubleTensor): DoubleTensor {
return forward(x).last()
}
}
@OptIn(ExperimentalStdlibApi::class)
fun main() = BroadcastDoubleTensorAlgebra {
val features = 5
val sampleSize = 250
val trainSize = 180
//val testSize = sampleSize - trainSize
// take sample of features from normal distribution
val x = randomNormal(intArrayOf(sampleSize, features), seed) * 2.5
x += fromArray(
intArrayOf(5),
doubleArrayOf(0.0, -1.0, -2.5, -3.0, 5.5) // rows means
)
// define class like '1' if the sum of features > 0 and '0' otherwise
val y = fromArray(
intArrayOf(sampleSize, 1),
DoubleArray(sampleSize) { i ->
if (x[i].sum() > 0.0) {
1.0
} else {
0.0
}
}
)
// split train ans test
val trainIndices = (0 until trainSize).toList().toIntArray()
val testIndices = (trainSize until sampleSize).toList().toIntArray()
val xTrain = x.rowsByIndices(trainIndices)
val yTrain = y.rowsByIndices(trainIndices)
val xTest = x.rowsByIndices(testIndices)
val yTest = y.rowsByIndices(testIndices)
// build model
val layers = buildList {
add(Dense(features, 64))
add(ReLU())
add(Dense(64, 16))
add(ReLU())
add(Dense(16, 2))
add(Sigmoid())
}
val model = NeuralNetwork(layers)
// fit it with train data
model.fit(xTrain, yTrain, batchSize = 20, epochs = 10)
// make prediction
val prediction = model.predict(xTest)
// process raw prediction via argMax
val predictionLabels = prediction.argMax(1, true)
// find out accuracy
val acc = accuracy(yTest, predictionLabels)
println("Test accuracy:$acc")
}

View File

@ -0,0 +1,68 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
import kotlin.math.abs
// OLS estimator using SVD
fun main() {
//seed for random
val randSeed = 100500L
// work in context with linear operations
DoubleTensorAlgebra {
// take coefficient vector from normal distribution
val alpha = randomNormal(
intArrayOf(5),
randSeed
) + fromArray(
intArrayOf(5),
doubleArrayOf(1.0, 2.5, 3.4, 5.0, 10.1)
)
println("Real alpha:\n$alpha")
// also take sample of size 20 from normal distribution for x
val x = randomNormal(
intArrayOf(20, 5),
randSeed
)
// calculate y and add gaussian noise (N(0, 0.05))
val y = x dot alpha
y += y.randomNormalLike(randSeed) * 0.05
// now restore the coefficient vector with OSL estimator with SVD
val (u, singValues, v) = x.svd()
// we have to make sure the singular values of the matrix are not close to zero
println("Singular values:\n$singValues")
// inverse Sigma matrix can be restored from singular values with diagonalEmbedding function
val sigma = diagonalEmbedding(singValues.map{ if (abs(it) < 1e-3) 0.0 else 1.0/it })
val alphaOLS = v dot sigma dot u.transpose() dot y
println("Estimated alpha:\n" +
"$alphaOLS")
// figure out MSE of approximation
fun mse(yTrue: DoubleTensor, yPred: DoubleTensor): Double {
require(yTrue.shape.size == 1)
require(yTrue.shape contentEquals yPred.shape)
val diff = yTrue - yPred
return diff.dot(diff).sqrt().value()
}
println("MSE: ${mse(alpha, alphaOLS)}")
}
}

View File

@ -0,0 +1,74 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra
// simple PCA
fun main(): Unit = BroadcastDoubleTensorAlgebra { // work in context with broadcast methods
val seed = 100500L
// assume x is range from 0 until 10
val x = fromArray(
intArrayOf(10),
(0 until 10).toList().map { it.toDouble() }.toDoubleArray()
)
// take y dependent on x with noise
val y = 2.0 * x + (3.0 + x.randomNormalLike(seed) * 1.5)
println("x:\n$x")
println("y:\n$y")
// stack them into single dataset
val dataset = stack(listOf(x, y)).transpose()
// normalize both x and y
val xMean = x.mean()
val yMean = y.mean()
val xStd = x.std()
val yStd = y.std()
val xScaled = (x - xMean) / xStd
val yScaled = (y - yMean) / yStd
// save means ans standard deviations for further recovery
val mean = fromArray(
intArrayOf(2),
doubleArrayOf(xMean, yMean)
)
println("Means:\n$mean")
val std = fromArray(
intArrayOf(2),
doubleArrayOf(xStd, yStd)
)
println("Standard deviations:\n$std")
// calculate the covariance matrix of scaled x and y
val covMatrix = cov(listOf(xScaled, yScaled))
println("Covariance matrix:\n$covMatrix")
// and find out eigenvector of it
val (_, evecs) = covMatrix.symEig()
val v = evecs[0]
println("Eigenvector:\n$v")
// reduce dimension of dataset
val datasetReduced = v dot stack(listOf(xScaled, yScaled))
println("Reduced data:\n$datasetReduced")
// we can restore original data from reduced data.
// for example, find 7th element of dataset
val n = 7
val restored = (datasetReduced[n] dot v.view(intArrayOf(1, 2))) * std + mean
println("Original value:\n${dataset[n]}")
println("Restored value:\n$restored")
}

View File

@ -1,8 +1,13 @@
#
# Copyright 2018-2021 KMath contributors.
# Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
#
kotlin.code.style=official kotlin.code.style=official
kotlin.mpp.enableGranularSourceSetsMetadata=true kotlin.mpp.enableGranularSourceSetsMetadata=true
kotlin.mpp.stability.nowarn=true kotlin.mpp.stability.nowarn=true
kotlin.native.enableDependencyPropagation=false kotlin.native.enableDependencyPropagation=false
kotlin.parallel.tasks.in.project=true kotlin.parallel.tasks.in.project=true
org.gradle.jvmargs=-XX:MaxMetaspaceSize=512m org.gradle.configureondemand=true
org.gradle.jvmargs=-XX:MaxMetaspaceSize=2G
org.gradle.parallel=true org.gradle.parallel=true
systemProp.org.gradle.internal.publish.checksums.insecure=true

Binary file not shown.

View File

@ -1,5 +1,5 @@
distributionBase=GRADLE_USER_HOME distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists distributionPath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-6.8.2-bin.zip distributionUrl=https\://services.gradle.org/distributions/gradle-7.1.1-bin.zip
zipStoreBase=GRADLE_USER_HOME zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists zipStorePath=wrapper/dists

2
gradlew vendored
View File

@ -72,7 +72,7 @@ case "`uname`" in
Darwin* ) Darwin* )
darwin=true darwin=true
;; ;;
MINGW* ) MSYS* | MINGW* )
msys=true msys=true
;; ;;
NONSTOP* ) NONSTOP* )

View File

@ -1,75 +1,65 @@
# Abstract Syntax Tree Expression Representation and Operations (`kmath-ast`) # Module kmath-ast
This subproject implements the following features: Performance and visualization extensions to MST API.
- [expression-language](src/jvmMain/kotlin/kscience/kmath/ast/parser.kt) : Expression language and its parser - [expression-language](src/commonMain/kotlin/space/kscience/kmath/ast/parser.kt) : Expression language and its parser
- [mst](src/commonMain/kotlin/kscience/kmath/ast/MST.kt) : MST (Mathematical Syntax Tree) as expression language's syntax intermediate representation - [mst-jvm-codegen](src/jvmMain/kotlin/space/kscience/kmath/asm/asm.kt) : Dynamic MST to JVM bytecode compiler
- [mst-building](src/commonMain/kotlin/kscience/kmath/ast/MstAlgebra.kt) : MST building algebraic structure - [mst-js-codegen](src/jsMain/kotlin/space/kscience/kmath/estree/estree.kt) : Dynamic MST to JS compiler
- [mst-interpreter](src/commonMain/kotlin/kscience/kmath/ast/MST.kt) : MST interpreter - [rendering](src/commonMain/kotlin/space/kscience/kmath/ast/rendering/MathRenderer.kt) : Extendable MST rendering
- [mst-jvm-codegen](src/jvmMain/kotlin/kscience/kmath/asm/asm.kt) : Dynamic MST to JVM bytecode compiler
- [mst-js-codegen](src/jsMain/kotlin/kscience/kmath/estree/estree.kt) : Dynamic MST to JS compiler
> #### Artifact: ## Artifact:
>
> This module artifact: `space.kscience:kmath-ast:0.2.0`. The Maven coordinates of this project are `space.kscience:kmath-ast:0.3.0-dev-14`.
>
> Bintray release version: [ ![Download](https://api.bintray.com/packages/mipt-npm/kscience/kmath-ast/images/download.svg) ](https://bintray.com/mipt-npm/kscience/kmath-ast/_latestVersion) **Gradle:**
> ```gradle
> Bintray development version: [ ![Download](https://api.bintray.com/packages/mipt-npm/dev/kmath-ast/images/download.svg) ](https://bintray.com/mipt-npm/dev/kmath-ast/_latestVersion) repositories {
> maven { url 'https://repo.kotlin.link' }
> **Gradle:** mavenCentral()
> }
> ```gradle
> repositories { dependencies {
> maven { url 'https://repo.kotlin.link' } implementation 'space.kscience:kmath-ast:0.3.0-dev-14'
> maven { url 'https://dl.bintray.com/hotkeytlt/maven' } }
> maven { url "https://dl.bintray.com/kotlin/kotlin-eap" } // include for builds based on kotlin-eap ```
>// Uncomment if repo.kotlin.link is unavailable **Gradle Kotlin DSL:**
>// maven { url 'https://dl.bintray.com/mipt-npm/kscience' } ```kotlin
>// maven { url 'https://dl.bintray.com/mipt-npm/dev' } repositories {
> } maven("https://repo.kotlin.link")
> mavenCentral()
> dependencies { }
> implementation 'space.kscience:kmath-ast:0.2.0'
> } dependencies {
> ``` implementation("space.kscience:kmath-ast:0.3.0-dev-14")
> **Gradle Kotlin DSL:** }
> ```
> ```kotlin
> repositories {
> maven("https://repo.kotlin.link")
> maven("https://dl.bintray.com/kotlin/kotlin-eap") // include for builds based on kotlin-eap
> maven("https://dl.bintray.com/hotkeytlt/maven") // required for a
>// Uncomment if repo.kotlin.link is unavailable
>// maven("https://dl.bintray.com/mipt-npm/kscience")
>// maven("https://dl.bintray.com/mipt-npm/dev")
> }
>
> dependencies {
> implementation("space.kscience:kmath-ast:0.2.0")
> }
> ```
## Dynamic expression code generation ## Dynamic expression code generation
### On JVM ### On JVM
`kmath-ast` JVM module supports runtime code generation to eliminate overhead of tree traversal. Code generator builds `kmath-ast` JVM module supports runtime code generation to eliminate overhead of tree traversal. Code generator builds a
a special implementation of `Expression<T>` with implemented `invoke` function. special implementation of `Expression<T>` with implemented `invoke` function.
For example, the following builder: For example, the following builder:
```kotlin ```kotlin
RealField.mstInField { symbol("x") + 2 }.compile() import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.*
import space.kscience.kmath.operations.*
import space.kscience.kmath.asm.*
MstField { x + 2 }.compileToExpression(DoubleField)
``` ```
… leads to generation of bytecode, which can be decompiled to the following Java class: ... leads to generation of bytecode, which can be decompiled to the following Java class:
```java ```java
package space.kscience.kmath.asm.generated; package space.kscience.kmath.asm.generated;
import java.util.Map; import java.util.Map;
import kotlin.jvm.functions.Function2; import kotlin.jvm.functions.Function2;
import space.kscience.kmath.asm.internal.MapIntrinsics; import space.kscience.kmath.asm.internal.MapIntrinsics;
import space.kscience.kmath.expressions.Expression; import space.kscience.kmath.expressions.Expression;
@ -89,19 +79,10 @@ public final class AsmCompiledExpression_45045_0 implements Expression<Double> {
``` ```
### Example Usage
This API extends MST and MstExpression, so you may optimize as both of them:
```kotlin
RealField.mstInField { symbol("x") + 2 }.compile()
RealField.expression("x+2".parseMath())
```
#### Known issues #### Known issues
- The same classes may be generated and loaded twice, so it is recommended to cache compiled expressions to avoid - The same classes may be generated and loaded twice, so it is recommended to cache compiled expressions to avoid class
class loading overhead. loading overhead.
- This API is not supported by non-dynamic JVM implementations (like TeaVM and GraalVM) because of using class loaders. - This API is not supported by non-dynamic JVM implementations (like TeaVM and GraalVM) because of using class loaders.
### On JS ### On JS
@ -109,7 +90,12 @@ RealField.expression("x+2".parseMath())
A similar feature is also available on JS. A similar feature is also available on JS.
```kotlin ```kotlin
RealField.mstInField { symbol("x") + 2 }.compile() import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.*
import space.kscience.kmath.operations.*
import space.kscience.kmath.estree.*
MstField { x + 2 }.compileToExpression(DoubleField)
``` ```
The code above returns expression implemented with such a JS function: The code above returns expression implemented with such a JS function:
@ -120,6 +106,133 @@ var executable = function (constants, arguments) {
}; };
``` ```
JS also supports very experimental expression optimization with [WebAssembly](https://webassembly.org/) IR generation.
Currently, only expressions inside `DoubleField` and `IntRing` are supported.
```kotlin
import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.*
import space.kscience.kmath.operations.*
import space.kscience.kmath.wasm.*
MstField { x + 2 }.compileToExpression(DoubleField)
```
An example of emitted Wasm IR in the form of WAT:
```lisp
(func $executable (param $0 f64) (result f64)
(f64.add
(local.get $0)
(f64.const 2)
)
)
```
#### Known issues #### Known issues
- This feature uses `eval` which can be unavailable in several environments. - ESTree expression compilation uses `eval` which can be unavailable in several environments.
- WebAssembly isn't supported by old versions of browsers (see https://webassembly.org/roadmap/).
## Rendering expressions
kmath-ast also includes an extensible engine to display expressions in LaTeX or MathML syntax.
Example usage:
```kotlin
import space.kscience.kmath.ast.*
import space.kscience.kmath.ast.rendering.*
import space.kscience.kmath.misc.*
@OptIn(UnstableKMathAPI::class)
public fun main() {
val mst = "exp(sqrt(x))-asin(2*x)/(2e10+x^3)/(12)+x^(2/3)".parseMath()
val syntax = FeaturedMathRendererWithPostProcess.Default.render(mst)
val latex = LatexSyntaxRenderer.renderWithStringBuilder(syntax)
println("LaTeX:")
println(latex)
println()
val mathML = MathMLSyntaxRenderer.renderWithStringBuilder(syntax)
println("MathML:")
println(mathML)
}
```
Result LaTeX:
![](https://latex.codecogs.com/gif.latex?%5Coperatorname{exp}%5C,%5Cleft(%5Csqrt{x}%5Cright)-%5Cfrac{%5Cfrac{%5Coperatorname{arcsin}%5C,%5Cleft(2%5C,x%5Cright)}{2%5Ctimes10^{10}%2Bx^{3}}}{12}+x^{2/3})
Result MathML (can be used with MathJax or other renderers):
<details>
```html
<math xmlns="https://www.w3.org/1998/Math/MathML">
<mrow>
<mo>exp</mo>
<mspace width="0.167em"></mspace>
<mfenced open="(" close=")" separators="">
<msqrt>
<mi>x</mi>
</msqrt>
</mfenced>
<mo>-</mo>
<mfrac>
<mrow>
<mfrac>
<mrow>
<mo>arcsin</mo>
<mspace width="0.167em"></mspace>
<mfenced open="(" close=")" separators="">
<mn>2</mn>
<mspace width="0.167em"></mspace>
<mi>x</mi>
</mfenced>
</mrow>
<mrow>
<mn>2</mn>
<mo>&times;</mo>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mi>x</mi>
</mrow>
<mrow>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>+</mo>
<msup>
<mrow>
<mi>x</mi>
</mrow>
<mrow>
<mn>2</mn>
<mo>/</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</math>
```
</details>
It is also possible to create custom algorithms of render, and even add support of other markup languages
(see API reference).

View File

@ -1,7 +1,6 @@
import ru.mipt.npm.gradle.Maturity
plugins { plugins {
id("ru.mipt.npm.gradle.mpp") kotlin("multiplatform")
id("ru.mipt.npm.gradle.common")
} }
kotlin.js { kotlin.js {
@ -19,8 +18,13 @@ kotlin.js {
} }
kotlin.sourceSets { kotlin.sourceSets {
filter { it.name.contains("test", true) }
.map(org.jetbrains.kotlin.gradle.plugin.KotlinSourceSet::languageSettings)
.forEach { it.useExperimentalAnnotation("space.kscience.kmath.misc.UnstableKMathAPI") }
commonMain { commonMain {
dependencies { dependencies {
api("com.github.h0tk3y.betterParse:better-parse:0.4.2")
api(project(":kmath-core")) api(project(":kmath-core"))
} }
} }
@ -33,15 +37,15 @@ kotlin.sourceSets {
jsMain { jsMain {
dependencies { dependencies {
implementation(npm("astring", "1.7.0")) implementation(npm("astring", "1.7.5"))
implementation(npm("binaryen", "101.0.0"))
implementation(npm("js-base64", "3.6.1"))
} }
} }
jvmMain { jvmMain {
dependencies { dependencies {
api("com.github.h0tk3y.betterParse:better-parse:0.4.1") implementation("org.ow2.asm:asm-commons:9.2")
implementation("org.ow2.asm:asm:9.1")
implementation("org.ow2.asm:asm-commons:9.1")
} }
} }
} }
@ -52,42 +56,26 @@ tasks.dokkaHtml {
} }
readme { readme {
maturity = Maturity.PROTOTYPE maturity = ru.mipt.npm.gradle.Maturity.EXPERIMENTAL
propertyByTemplate("artifact", rootProject.file("docs/templates/ARTIFACT-TEMPLATE.md")) propertyByTemplate("artifact", rootProject.file("docs/templates/ARTIFACT-TEMPLATE.md"))
feature( feature(
id = "expression-language", id = "expression-language",
description = "Expression language and its parser", ref = "src/commonMain/kotlin/space/kscience/kmath/ast/parser.kt"
ref = "src/jvmMain/kotlin/kscience/kmath/ast/parser.kt" ) { "Expression language and its parser" }
)
feature(
id = "mst",
description = "MST (Mathematical Syntax Tree) as expression language's syntax intermediate representation",
ref = "src/commonMain/kotlin/kscience/kmath/ast/MST.kt"
)
feature(
id = "mst-building",
description = "MST building algebraic structure",
ref = "src/commonMain/kotlin/kscience/kmath/ast/MstAlgebra.kt"
)
feature(
id = "mst-interpreter",
description = "MST interpreter",
ref = "src/commonMain/kotlin/kscience/kmath/ast/MST.kt"
)
feature( feature(
id = "mst-jvm-codegen", id = "mst-jvm-codegen",
description = "Dynamic MST to JVM bytecode compiler", ref = "src/jvmMain/kotlin/space/kscience/kmath/asm/asm.kt"
ref = "src/jvmMain/kotlin/kscience/kmath/asm/asm.kt" ) { "Dynamic MST to JVM bytecode compiler" }
)
feature( feature(
id = "mst-js-codegen", id = "mst-js-codegen",
description = "Dynamic MST to JS compiler", ref = "src/jsMain/kotlin/space/kscience/kmath/estree/estree.kt"
ref = "src/jsMain/kotlin/kscience/kmath/estree/estree.kt" ) { "Dynamic MST to JS compiler" }
)
feature(
id = "rendering",
ref = "src/commonMain/kotlin/space/kscience/kmath/ast/rendering/MathRenderer.kt"
) { "Extendable MST rendering" }
} }

View File

@ -1,6 +1,6 @@
# Abstract Syntax Tree Expression Representation and Operations (`kmath-ast`) # Module kmath-ast
This subproject implements the following features: Performance and visualization extensions to MST API.
${features} ${features}
@ -10,21 +10,27 @@ ${artifact}
### On JVM ### On JVM
`kmath-ast` JVM module supports runtime code generation to eliminate overhead of tree traversal. Code generator builds `kmath-ast` JVM module supports runtime code generation to eliminate overhead of tree traversal. Code generator builds a
a special implementation of `Expression<T>` with implemented `invoke` function. special implementation of `Expression<T>` with implemented `invoke` function.
For example, the following builder: For example, the following builder:
```kotlin ```kotlin
RealField.mstInField { symbol("x") + 2 }.compile() import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.*
import space.kscience.kmath.operations.*
import space.kscience.kmath.asm.*
MstField { x + 2 }.compileToExpression(DoubleField)
``` ```
… leads to generation of bytecode, which can be decompiled to the following Java class: ... leads to generation of bytecode, which can be decompiled to the following Java class:
```java ```java
package space.kscience.kmath.asm.generated; package space.kscience.kmath.asm.generated;
import java.util.Map; import java.util.Map;
import kotlin.jvm.functions.Function2; import kotlin.jvm.functions.Function2;
import space.kscience.kmath.asm.internal.MapIntrinsics; import space.kscience.kmath.asm.internal.MapIntrinsics;
import space.kscience.kmath.expressions.Expression; import space.kscience.kmath.expressions.Expression;
@ -44,19 +50,10 @@ public final class AsmCompiledExpression_45045_0 implements Expression<Double> {
``` ```
### Example Usage
This API extends MST and MstExpression, so you may optimize as both of them:
```kotlin
RealField.mstInField { symbol("x") + 2 }.compile()
RealField.expression("x+2".parseMath())
```
#### Known issues #### Known issues
- The same classes may be generated and loaded twice, so it is recommended to cache compiled expressions to avoid - The same classes may be generated and loaded twice, so it is recommended to cache compiled expressions to avoid class
class loading overhead. loading overhead.
- This API is not supported by non-dynamic JVM implementations (like TeaVM and GraalVM) because of using class loaders. - This API is not supported by non-dynamic JVM implementations (like TeaVM and GraalVM) because of using class loaders.
### On JS ### On JS
@ -64,7 +61,12 @@ RealField.expression("x+2".parseMath())
A similar feature is also available on JS. A similar feature is also available on JS.
```kotlin ```kotlin
RealField.mstInField { symbol("x") + 2 }.compile() import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.*
import space.kscience.kmath.operations.*
import space.kscience.kmath.estree.*
MstField { x + 2 }.compileToExpression(DoubleField)
``` ```
The code above returns expression implemented with such a JS function: The code above returns expression implemented with such a JS function:
@ -75,6 +77,133 @@ var executable = function (constants, arguments) {
}; };
``` ```
JS also supports very experimental expression optimization with [WebAssembly](https://webassembly.org/) IR generation.
Currently, only expressions inside `DoubleField` and `IntRing` are supported.
```kotlin
import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.*
import space.kscience.kmath.operations.*
import space.kscience.kmath.wasm.*
MstField { x + 2 }.compileToExpression(DoubleField)
```
An example of emitted Wasm IR in the form of WAT:
```lisp
(func \$executable (param \$0 f64) (result f64)
(f64.add
(local.get \$0)
(f64.const 2)
)
)
```
#### Known issues #### Known issues
- This feature uses `eval` which can be unavailable in several environments. - ESTree expression compilation uses `eval` which can be unavailable in several environments.
- WebAssembly isn't supported by old versions of browsers (see https://webassembly.org/roadmap/).
## Rendering expressions
kmath-ast also includes an extensible engine to display expressions in LaTeX or MathML syntax.
Example usage:
```kotlin
import space.kscience.kmath.ast.*
import space.kscience.kmath.ast.rendering.*
import space.kscience.kmath.misc.*
@OptIn(UnstableKMathAPI::class)
public fun main() {
val mst = "exp(sqrt(x))-asin(2*x)/(2e10+x^3)/(12)+x^(2/3)".parseMath()
val syntax = FeaturedMathRendererWithPostProcess.Default.render(mst)
val latex = LatexSyntaxRenderer.renderWithStringBuilder(syntax)
println("LaTeX:")
println(latex)
println()
val mathML = MathMLSyntaxRenderer.renderWithStringBuilder(syntax)
println("MathML:")
println(mathML)
}
```
Result LaTeX:
![](https://latex.codecogs.com/gif.latex?%5Coperatorname{exp}%5C,%5Cleft(%5Csqrt{x}%5Cright)-%5Cfrac{%5Cfrac{%5Coperatorname{arcsin}%5C,%5Cleft(2%5C,x%5Cright)}{2%5Ctimes10^{10}%2Bx^{3}}}{12}+x^{2/3})
Result MathML (can be used with MathJax or other renderers):
<details>
```html
<math xmlns="https://www.w3.org/1998/Math/MathML">
<mrow>
<mo>exp</mo>
<mspace width="0.167em"></mspace>
<mfenced open="(" close=")" separators="">
<msqrt>
<mi>x</mi>
</msqrt>
</mfenced>
<mo>-</mo>
<mfrac>
<mrow>
<mfrac>
<mrow>
<mo>arcsin</mo>
<mspace width="0.167em"></mspace>
<mfenced open="(" close=")" separators="">
<mn>2</mn>
<mspace width="0.167em"></mspace>
<mi>x</mi>
</mfenced>
</mrow>
<mrow>
<mn>2</mn>
<mo>&times;</mo>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mi>x</mi>
</mrow>
<mrow>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>+</mo>
<msup>
<mrow>
<mi>x</mi>
</mrow>
<mrow>
<mn>2</mn>
<mo>/</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</math>
```
</details>
It is also possible to create custom algorithms of render, and even add support of other markup languages
(see API reference).

View File

@ -1,136 +0,0 @@
package space.kscience.kmath.ast
import space.kscience.kmath.expressions.*
import space.kscience.kmath.operations.*
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
/**
* The expression evaluates MST on-flight. Should be much faster than functional expression, but slower than
* ASM-generated expressions.
*
* @property algebra the algebra that provides operations.
* @property mst the [MST] node.
* @author Alexander Nozik
*/
public class MstExpression<T, out A : Algebra<T>>(public val algebra: A, public val mst: MST) : Expression<T> {
private inner class InnerAlgebra(val arguments: Map<Symbol, T>) : NumericAlgebra<T> {
override fun bindSymbol(value: String): T = try {
algebra.bindSymbol(value)
} catch (ignored: IllegalStateException) {
null
} ?: arguments.getValue(StringSymbol(value))
override fun unaryOperation(operation: String, arg: T): T =
algebra.unaryOperation(operation, arg)
override fun binaryOperation(operation: String, left: T, right: T): T =
algebra.binaryOperation(operation, left, right)
override fun unaryOperationFunction(operation: String): (arg: T) -> T =
algebra.unaryOperationFunction(operation)
override fun binaryOperationFunction(operation: String): (left: T, right: T) -> T =
algebra.binaryOperationFunction(operation)
@Suppress("UNCHECKED_CAST")
override fun number(value: Number): T = if (algebra is NumericAlgebra<*>)
(algebra as NumericAlgebra<T>).number(value)
else
error("Numeric nodes are not supported by $this")
}
override operator fun invoke(arguments: Map<Symbol, T>): T = InnerAlgebra(arguments).evaluate(mst)
}
/**
* Builds [MstExpression] over [Algebra].
*
* @author Alexander Nozik
*/
public inline fun <reified T : Any, A : Algebra<T>, E : Algebra<MST>> A.mst(
mstAlgebra: E,
block: E.() -> MST,
): MstExpression<T, A> = MstExpression(this, mstAlgebra.block())
/**
* Builds [MstExpression] over [Space].
*
* @author Alexander Nozik
*/
public inline fun <reified T : Any, A : Space<T>> A.mstInSpace(block: MstSpace.() -> MST): MstExpression<T, A> {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return MstExpression(this, MstSpace.block())
}
/**
* Builds [MstExpression] over [Ring].
*
* @author Alexander Nozik
*/
public inline fun <reified T : Any, A : Ring<T>> A.mstInRing(block: MstRing.() -> MST): MstExpression<T, A> {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return MstExpression(this, MstRing.block())
}
/**
* Builds [MstExpression] over [Field].
*
* @author Alexander Nozik
*/
public inline fun <reified T : Any, A : Field<T>> A.mstInField(block: MstField.() -> MST): MstExpression<T, A> {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return MstExpression(this, MstField.block())
}
/**
* Builds [MstExpression] over [ExtendedField].
*
* @author Iaroslav Postovalov
*/
public inline fun <reified T : Any, A : ExtendedField<T>> A.mstInExtendedField(block: MstExtendedField.() -> MST): MstExpression<T, A> {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return MstExpression(this, MstExtendedField.block())
}
/**
* Builds [MstExpression] over [FunctionalExpressionSpace].
*
* @author Alexander Nozik
*/
public inline fun <reified T : Any, A : Space<T>> FunctionalExpressionSpace<T, A>.mstInSpace(block: MstSpace.() -> MST): MstExpression<T, A> {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return algebra.mstInSpace(block)
}
/**
* Builds [MstExpression] over [FunctionalExpressionRing].
*
* @author Alexander Nozik
*/
public inline fun <reified T : Any, A : Ring<T>> FunctionalExpressionRing<T, A>.mstInRing(block: MstRing.() -> MST): MstExpression<T, A> {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return algebra.mstInRing(block)
}
/**
* Builds [MstExpression] over [FunctionalExpressionField].
*
* @author Alexander Nozik
*/
public inline fun <reified T : Any, A : Field<T>> FunctionalExpressionField<T, A>.mstInField(block: MstField.() -> MST): MstExpression<T, A> {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return algebra.mstInField(block)
}
/**
* Builds [MstExpression] over [FunctionalExpressionExtendedField].
*
* @author Iaroslav Postovalov
*/
public inline fun <reified T : Any, A : ExtendedField<T>> FunctionalExpressionExtendedField<T, A>.mstInExtendedField(
block: MstExtendedField.() -> MST,
): MstExpression<T, A> {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return algebra.mstInExtendedField(block)
}

View File

@ -1,4 +1,7 @@
// TODO move to common when https://github.com/h0tk3y/better-parse/pull/37 is merged /*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast package space.kscience.kmath.ast
@ -13,18 +16,20 @@ import com.github.h0tk3y.betterParse.lexer.literalToken
import com.github.h0tk3y.betterParse.lexer.regexToken import com.github.h0tk3y.betterParse.lexer.regexToken
import com.github.h0tk3y.betterParse.parser.ParseResult import com.github.h0tk3y.betterParse.parser.ParseResult
import com.github.h0tk3y.betterParse.parser.Parser import com.github.h0tk3y.betterParse.parser.Parser
import space.kscience.kmath.expressions.MST
import space.kscience.kmath.expressions.StringSymbol
import space.kscience.kmath.operations.FieldOperations import space.kscience.kmath.operations.FieldOperations
import space.kscience.kmath.operations.GroupOperations
import space.kscience.kmath.operations.PowerOperations import space.kscience.kmath.operations.PowerOperations
import space.kscience.kmath.operations.RingOperations import space.kscience.kmath.operations.RingOperations
import space.kscience.kmath.operations.SpaceOperations
/** /**
* better-parse implementation of grammar defined in the ArithmeticsEvaluator.g4. * better-parse implementation of grammar defined in the ArithmeticsEvaluator.g4.
* *
* @author Alexander Nozik and Iaroslav Postovalov * @author Alexander Nozik
* @author Iaroslav Postovalov
*/ */
public object ArithmeticsEvaluator : Grammar<MST>() { public object ArithmeticsEvaluator : Grammar<MST>() {
// TODO replace with "...".toRegex() when better-parse 0.4.1 is released
private val num: Token by regexToken("[\\d.]+(?:[eE][-+]?\\d+)?".toRegex()) private val num: Token by regexToken("[\\d.]+(?:[eE][-+]?\\d+)?".toRegex())
private val id: Token by regexToken("[a-z_A-Z][\\da-z_A-Z]*".toRegex()) private val id: Token by regexToken("[a-z_A-Z][\\da-z_A-Z]*".toRegex())
private val lpar: Token by literalToken("(") private val lpar: Token by literalToken("(")
@ -38,7 +43,7 @@ public object ArithmeticsEvaluator : Grammar<MST>() {
private val ws: Token by regexToken("\\s+".toRegex(), ignore = true) private val ws: Token by regexToken("\\s+".toRegex(), ignore = true)
private val number: Parser<MST> by num use { MST.Numeric(text.toDouble()) } private val number: Parser<MST> by num use { MST.Numeric(text.toDouble()) }
private val singular: Parser<MST> by id use { MST.Symbolic(text) } private val singular: Parser<MST> by id use { StringSymbol(text) }
private val unaryFunction: Parser<MST> by (id and -lpar and parser(ArithmeticsEvaluator::subSumChain) and -rpar) private val unaryFunction: Parser<MST> by (id and -lpar and parser(ArithmeticsEvaluator::subSumChain) and -rpar)
.map { (id, term) -> MST.Unary(id.text, term) } .map { (id, term) -> MST.Unary(id.text, term) }
@ -55,7 +60,7 @@ public object ArithmeticsEvaluator : Grammar<MST>() {
.or(binaryFunction) .or(binaryFunction)
.or(unaryFunction) .or(unaryFunction)
.or(singular) .or(singular)
.or(-minus and parser(ArithmeticsEvaluator::term) map { MST.Unary(SpaceOperations.MINUS_OPERATION, it) }) .or(-minus and parser(ArithmeticsEvaluator::term) map { MST.Unary(GroupOperations.MINUS_OPERATION, it) })
.or(-lpar and parser(ArithmeticsEvaluator::subSumChain) and -rpar) .or(-lpar and parser(ArithmeticsEvaluator::subSumChain) and -rpar)
private val powChain: Parser<MST> by leftAssociative(term = term, operator = pow) { a, _, b -> private val powChain: Parser<MST> by leftAssociative(term = term, operator = pow) { a, _, b ->
@ -77,9 +82,9 @@ public object ArithmeticsEvaluator : Grammar<MST>() {
operator = plus or minus use TokenMatch::type operator = plus or minus use TokenMatch::type
) { a, op, b -> ) { a, op, b ->
if (op == plus) if (op == plus)
MST.Binary(SpaceOperations.PLUS_OPERATION, a, b) MST.Binary(GroupOperations.PLUS_OPERATION, a, b)
else else
MST.Binary(SpaceOperations.MINUS_OPERATION, a, b) MST.Binary(GroupOperations.MINUS_OPERATION, a, b)
} }
override val rootParser: Parser<MST> by subSumChain override val rootParser: Parser<MST> by subSumChain

View File

@ -0,0 +1,150 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast.rendering
import space.kscience.kmath.misc.UnstableKMathAPI
/**
* [SyntaxRenderer] implementation for LaTeX.
*
* The generated string is a valid LaTeX fragment to be used in the Math Mode.
*
* Example usage:
*
* ```
* \documentclass{article}
* \begin{document}
* \begin{equation}
* %code generated by the syntax renderer
* \end{equation}
* \end{document}
* ```
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public object LatexSyntaxRenderer : SyntaxRenderer {
public override fun render(node: MathSyntax, output: Appendable): Unit = output.run {
fun render(syntax: MathSyntax) = render(syntax, output)
when (node) {
is NumberSyntax -> append(node.string)
is SymbolSyntax -> append(node.string)
is OperatorNameSyntax -> {
append("\\operatorname{")
append(node.name)
append('}')
}
is SpecialSymbolSyntax -> when (node.kind) {
SpecialSymbolSyntax.Kind.INFINITY -> append("\\infty")
SpecialSymbolSyntax.Kind.SMALL_PI -> append("\\pi")
}
is OperandSyntax -> {
if (node.parentheses) append("\\left(")
render(node.operand)
if (node.parentheses) append("\\right)")
}
is UnaryOperatorSyntax -> {
render(node.prefix)
append("\\,")
render(node.operand)
}
is UnaryPlusSyntax -> {
append('+')
render(node.operand)
}
is UnaryMinusSyntax -> {
append('-')
render(node.operand)
}
is RadicalSyntax -> {
append("\\sqrt")
append('{')
render(node.operand)
append('}')
}
is ExponentSyntax -> if (node.useOperatorForm) {
append("\\operatorname{exp}\\,")
render(node.operand)
} else {
append("e^{")
render(node.operand)
append('}')
}
is SuperscriptSyntax -> {
render(node.left)
append("^{")
render(node.right)
append('}')
}
is SubscriptSyntax -> {
render(node.left)
append("_{")
render(node.right)
append('}')
}
is BinaryOperatorSyntax -> {
render(node.prefix)
append("\\left(")
render(node.left)
append(',')
render(node.right)
append("\\right)")
}
is BinaryPlusSyntax -> {
render(node.left)
append('+')
render(node.right)
}
is BinaryMinusSyntax -> {
render(node.left)
append('-')
render(node.right)
}
is FractionSyntax -> if (node.infix) {
render(node.left)
append('/')
render(node.right)
} else {
append("\\frac{")
render(node.left)
append("}{")
render(node.right)
append('}')
}
is RadicalWithIndexSyntax -> {
append("\\sqrt")
append('[')
render(node.left)
append(']')
append('{')
render(node.right)
append('}')
}
is MultiplicationSyntax -> {
render(node.left)
append(if (node.times) "\\times" else "\\,")
render(node.right)
}
}
}
}

View File

@ -0,0 +1,157 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast.rendering
import space.kscience.kmath.misc.UnstableKMathAPI
/**
* [SyntaxRenderer] implementation for MathML.
*
* The generated XML string is a valid MathML instance.
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public object MathMLSyntaxRenderer : SyntaxRenderer {
public override fun render(node: MathSyntax, output: Appendable) {
output.append("<math xmlns=\"https://www.w3.org/1998/Math/MathML\"><mrow>")
renderPart(node, output)
output.append("</mrow></math>")
}
/**
* Renders a part of syntax returning a correct MathML tag not the whole MathML instance.
*/
public fun renderPart(node: MathSyntax, output: Appendable): Unit = output.run {
fun tag(tagName: String, vararg attr: Pair<String, String>, block: () -> Unit = {}) {
append('<')
append(tagName)
if (attr.isNotEmpty()) {
append(' ')
var count = 0
for ((name, value) in attr) {
if (++count > 1) append(' ')
append(name)
append("=\"")
append(value)
append('"')
}
}
append('>')
block()
append("</")
append(tagName)
append('>')
}
fun render(syntax: MathSyntax) = renderPart(syntax, output)
when (node) {
is NumberSyntax -> tag("mn") { append(node.string) }
is SymbolSyntax -> tag("mi") { append(node.string) }
is OperatorNameSyntax -> tag("mo") { append(node.name) }
is SpecialSymbolSyntax -> when (node.kind) {
SpecialSymbolSyntax.Kind.INFINITY -> tag("mo") { append("&infin;") }
SpecialSymbolSyntax.Kind.SMALL_PI -> tag("mo") { append("&pi;") }
}
is OperandSyntax -> if (node.parentheses) {
tag("mfenced", "open" to "(", "close" to ")", "separators" to "") {
render(node.operand)
}
} else {
render(node.operand)
}
is UnaryOperatorSyntax -> {
render(node.prefix)
tag("mspace", "width" to "0.167em")
render(node.operand)
}
is UnaryPlusSyntax -> {
tag("mo") { append('+') }
render(node.operand)
}
is UnaryMinusSyntax -> {
tag("mo") { append("-") }
render(node.operand)
}
is RadicalSyntax -> tag("msqrt") { render(node.operand) }
is ExponentSyntax -> if (node.useOperatorForm) {
tag("mo") { append("exp") }
tag("mspace", "width" to "0.167em")
render(node.operand)
} else {
tag("msup") {
tag("mrow") {
tag("mi") { append("e") }
}
tag("mrow") { render(node.operand) }
}
}
is SuperscriptSyntax -> tag("msup") {
tag("mrow") { render(node.left) }
tag("mrow") { render(node.right) }
}
is SubscriptSyntax -> tag("msub") {
tag("mrow") { render(node.left) }
tag("mrow") { render(node.right) }
}
is BinaryOperatorSyntax -> {
render(node.prefix)
tag("mfenced", "open" to "(", "close" to ")", "separators" to "") {
render(node.left)
tag("mo") { append(',') }
render(node.right)
}
}
is BinaryPlusSyntax -> {
render(node.left)
tag("mo") { append('+') }
render(node.right)
}
is BinaryMinusSyntax -> {
render(node.left)
tag("mo") { append('-') }
render(node.right)
}
is FractionSyntax -> if (node.infix) {
render(node.left)
tag("mo") { append('/') }
render(node.right)
} else tag("mfrac") {
tag("mrow") { render(node.left) }
tag("mrow") { render(node.right) }
}
is RadicalWithIndexSyntax -> tag("mroot") {
tag("mrow") { render(node.right) }
tag("mrow") { render(node.left) }
}
is MultiplicationSyntax -> {
render(node.left)
if (node.times) tag("mo") { append("&times;") } else tag("mspace", "width" to "0.167em")
render(node.right)
}
}
}
}

View File

@ -0,0 +1,115 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast.rendering
import space.kscience.kmath.expressions.MST
import space.kscience.kmath.misc.UnstableKMathAPI
/**
* Renders [MST] to [MathSyntax].
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public fun interface MathRenderer {
/**
* Renders [MST] to [MathSyntax].
*/
public fun render(mst: MST): MathSyntax
}
/**
* Implements [MST] render process with sequence of features.
*
* @property features The applied features.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public open class FeaturedMathRenderer(public val features: List<RenderFeature>) : MathRenderer {
public override fun render(mst: MST): MathSyntax {
for (feature in features) feature.render(this, mst)?.let { return it }
throw UnsupportedOperationException("Renderer $this has no appropriate feature to render node $mst.")
}
/**
* Logical unit of [MST] rendering.
*/
public fun interface RenderFeature {
/**
* Renders [MST] to [MathSyntax] in the context of owning renderer.
*/
public fun render(renderer: FeaturedMathRenderer, node: MST): MathSyntax?
}
}
/**
* Extends [FeaturedMathRenderer] by adding post-processing stages.
*
* @property stages The applied stages.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public open class FeaturedMathRendererWithPostProcess(
features: List<RenderFeature>,
public val stages: List<PostProcessPhase>,
) : FeaturedMathRenderer(features) {
public override fun render(mst: MST): MathSyntax {
val res = super.render(mst)
for (stage in stages) stage.perform(res)
return res
}
/**
* Logical unit of [MathSyntax] post-processing.
*/
public fun interface PostProcessPhase {
/**
* Performs the specified action over [MathSyntax].
*/
public fun perform(node: MathSyntax)
}
public companion object {
/**
* The default setup of [FeaturedMathRendererWithPostProcess].
*/
public val Default: FeaturedMathRendererWithPostProcess = FeaturedMathRendererWithPostProcess(
listOf(
// Printing known operations
BinaryPlus.Default,
BinaryMinus.Default,
UnaryPlus.Default,
UnaryMinus.Default,
Multiplication.Default,
Fraction.Default,
Power.Default,
SquareRoot.Default,
Exponent.Default,
InverseTrigonometricOperations.Default,
InverseHyperbolicOperations.Default,
// Fallback option for unknown operations - printing them as operator
BinaryOperator.Default,
UnaryOperator.Default,
// Pretty printing for some objects
PrettyPrintFloats.Default,
PrettyPrintIntegers.Default,
PrettyPrintPi.Default,
// Printing terminal nodes as string
PrintNumeric,
PrintSymbol,
),
listOf(
BetterExponent,
BetterFraction,
SimplifyParentheses.Default,
BetterMultiplication,
),
)
}
}

View File

@ -0,0 +1,381 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast.rendering
import space.kscience.kmath.misc.UnstableKMathAPI
/**
* Mathematical typography syntax node.
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public sealed class MathSyntax {
/**
* The parent node of this syntax node.
*/
public var parent: MathSyntax? = null
}
/**
* Terminal node, which should not have any children nodes.
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public sealed class TerminalSyntax : MathSyntax()
/**
* Node containing a certain operation.
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public sealed class OperationSyntax : MathSyntax() {
/**
* The operation token.
*/
public abstract val operation: String
}
/**
* Unary node, which has only one child.
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public sealed class UnarySyntax : OperationSyntax() {
/**
* The operand of this node.
*/
public abstract val operand: MathSyntax
}
/**
* Binary node, which has only two children.
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public sealed class BinarySyntax : OperationSyntax() {
/**
* The left-hand side operand.
*/
public abstract val left: MathSyntax
/**
* The right-hand side operand.
*/
public abstract val right: MathSyntax
}
/**
* Represents a number.
*
* @property string The digits of number.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class NumberSyntax(public var string: String) : TerminalSyntax()
/**
* Represents a symbol.
*
* @property string The symbol.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class SymbolSyntax(public var string: String) : TerminalSyntax()
/**
* Represents special typing for operator name.
*
* @property name The operator name.
* @see BinaryOperatorSyntax
* @see UnaryOperatorSyntax
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class OperatorNameSyntax(public var name: String) : TerminalSyntax()
/**
* Represents a usage of special symbols (e.g., *&infin;*).
*
* @property kind The kind of symbol.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class SpecialSymbolSyntax(public var kind: Kind) : TerminalSyntax() {
/**
* The kind of symbol.
*/
public enum class Kind {
/**
* The infinity (&infin;) symbol.
*/
INFINITY,
/**
* The Pi (&pi;) symbol.
*/
SMALL_PI;
}
}
/**
* Represents operand of a certain operator wrapped with parentheses or not.
*
* @property operand The operand.
* @property parentheses Whether the operand should be wrapped with parentheses.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class OperandSyntax(
public val operand: MathSyntax,
public var parentheses: Boolean,
) : MathSyntax() {
init {
operand.parent = this
}
}
/**
* Represents unary, prefix operator syntax (like *f(x)*).
*
* @property prefix The prefix.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class UnaryOperatorSyntax(
public override val operation: String,
public var prefix: MathSyntax,
public override val operand: OperandSyntax,
) : UnarySyntax() {
init {
operand.parent = this
}
}
/**
* Represents prefix, unary plus operator (*+x*).
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class UnaryPlusSyntax(
public override val operation: String,
public override val operand: OperandSyntax,
) : UnarySyntax() {
init {
operand.parent = this
}
}
/**
* Represents prefix, unary minus operator (*-x*).
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class UnaryMinusSyntax(
public override val operation: String,
public override val operand: OperandSyntax,
) : UnarySyntax() {
init {
operand.parent = this
}
}
/**
* Represents radical with a node inside it (*&radic;x*).
*
* @property operand The radicand.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class RadicalSyntax(
public override val operation: String,
public override val operand: MathSyntax,
) : UnarySyntax() {
init {
operand.parent = this
}
}
/**
* Represents exponential function.
*
* @property operand The argument of function.
* @property useOperatorForm `true` if operator form is used (*exp (x)*), `false` if exponentiation form is used
* (*e<sup>x</sup>*).
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class ExponentSyntax(
public override val operation: String,
public override val operand: OperandSyntax,
public var useOperatorForm: Boolean,
) : UnarySyntax() {
init {
operand.parent = this
}
}
/**
* Represents a syntax node with superscript (*x<sup>2</sup>*).
*
* @property left The node.
* @property right The superscript.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class SuperscriptSyntax(
public override val operation: String,
public override val left: MathSyntax,
public override val right: MathSyntax,
) : BinarySyntax() {
init {
left.parent = this
right.parent = this
}
}
/**
* Represents a syntax node with subscript (*x<sub>i</sup>*).
*
* @property left The node.
* @property right The subscript.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class SubscriptSyntax(
public override val operation: String,
public override val left: MathSyntax,
public override val right: MathSyntax,
) : BinarySyntax() {
init {
left.parent = this
right.parent = this
}
}
/**
* Represents binary, prefix operator syntax (like *f(a, b)*).
*
* @property prefix The prefix.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class BinaryOperatorSyntax(
public override val operation: String,
public var prefix: MathSyntax,
public override val left: MathSyntax,
public override val right: MathSyntax,
) : BinarySyntax() {
init {
left.parent = this
right.parent = this
}
}
/**
* Represents binary, infix addition (*42 + 42*).
*
* @param left The augend.
* @param right The addend.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class BinaryPlusSyntax(
public override val operation: String,
public override val left: OperandSyntax,
public override val right: OperandSyntax,
) : BinarySyntax() {
init {
left.parent = this
right.parent = this
}
}
/**
* Represents binary, infix subtraction (*42 - 42*).
*
* @param left The minuend.
* @param right The subtrahend.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class BinaryMinusSyntax(
public override val operation: String,
public override val left: OperandSyntax,
public override val right: OperandSyntax,
) : BinarySyntax() {
init {
left.parent = this
right.parent = this
}
}
/**
* Represents fraction with numerator and denominator.
*
* @property left The numerator.
* @property right The denominator.
* @property infix Whether infix (*1 / 2*) or normal (*&frac12;*) fraction should be made.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class FractionSyntax(
public override val operation: String,
public override val left: OperandSyntax,
public override val right: OperandSyntax,
public var infix: Boolean,
) : BinarySyntax() {
init {
left.parent = this
right.parent = this
}
}
/**
* Represents radical syntax with index (*<sup>3</sup>&radic;x*).
*
* @property left The index.
* @property right The radicand.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class RadicalWithIndexSyntax(
public override val operation: String,
public override val left: MathSyntax,
public override val right: MathSyntax,
) : BinarySyntax() {
init {
left.parent = this
right.parent = this
}
}
/**
* Represents binary, infix multiplication in the form of coefficient (*2 x*) or with operator (*x &times; 2*).
*
* @property left The multiplicand.
* @property right The multiplier.
* @property times Whether the times (&times;) symbol should be used.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public data class MultiplicationSyntax(
public override val operation: String,
public override val left: OperandSyntax,
public override val right: OperandSyntax,
public var times: Boolean,
) : BinarySyntax() {
init {
left.parent = this
right.parent = this
}
}

View File

@ -0,0 +1,34 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast.rendering
import space.kscience.kmath.misc.UnstableKMathAPI
/**
* Abstraction of writing [MathSyntax] as a string of an actual markup language. Typical implementation should
* involve traversal of MathSyntax with handling each its subtype.
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public fun interface SyntaxRenderer {
/**
* Renders the [MathSyntax] to [output].
*/
public fun render(node: MathSyntax, output: Appendable)
}
/**
* Calls [SyntaxRenderer.render] with given [node] and a new [StringBuilder] instance, and returns its content.
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public fun SyntaxRenderer.renderWithStringBuilder(node: MathSyntax): String {
val sb = StringBuilder()
render(node, sb)
return sb.toString()
}

View File

@ -0,0 +1,483 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast.rendering
import space.kscience.kmath.ast.rendering.FeaturedMathRenderer.RenderFeature
import space.kscience.kmath.expressions.MST
import space.kscience.kmath.expressions.Symbol
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.*
import kotlin.reflect.KClass
/**
* Prints any [Symbol] as a [SymbolSyntax] containing the [Symbol.value] of it.
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public val PrintSymbol: RenderFeature = RenderFeature { _, node ->
if (node !is Symbol) null
else SymbolSyntax(string = node.identity)
}
/**
* Prints any [MST.Numeric] as a [NumberSyntax] containing the [Any.toString] result of it.
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public val PrintNumeric: RenderFeature = RenderFeature { _, node ->
if (node !is MST.Numeric)
null
else
NumberSyntax(string = node.value.toString())
}
@UnstableKMathAPI
private fun printSignedNumberString(s: String): MathSyntax = if (s.startsWith('-'))
UnaryMinusSyntax(
operation = GroupOperations.MINUS_OPERATION,
operand = OperandSyntax(
operand = NumberSyntax(string = s.removePrefix("-")),
parentheses = true,
),
)
else
NumberSyntax(string = s)
/**
* Special printing for numeric types which are printed in form of
* *('-'? (DIGIT+ ('.' DIGIT+)? ('E' '-'? DIGIT+)? | 'Infinity')) | 'NaN'*.
*
* @property types The suitable types.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public class PrettyPrintFloats(public val types: Set<KClass<out Number>>) : RenderFeature {
public override fun render(renderer: FeaturedMathRenderer, node: MST): MathSyntax? {
if (node !is MST.Numeric || node.value::class !in types) return null
val toString = when (val v = node.value) {
is Float -> v.multiplatformToString()
is Double -> v.multiplatformToString()
else -> v.toString()
}.removeSuffix(".0")
if (toString.contains('E', ignoreCase = true)) {
val (beforeE, afterE) = toString.split('E', ignoreCase = true)
val significand = beforeE.toDouble().toString().removeSuffix(".0")
val exponent = afterE.toDouble().toString().removeSuffix(".0")
return MultiplicationSyntax(
operation = RingOperations.TIMES_OPERATION,
left = OperandSyntax(operand = NumberSyntax(significand), parentheses = true),
right = OperandSyntax(
operand = SuperscriptSyntax(
operation = PowerOperations.POW_OPERATION,
left = NumberSyntax(string = "10"),
right = printSignedNumberString(exponent),
),
parentheses = true,
),
times = true,
)
}
if (toString.endsWith("Infinity")) {
val infty = SpecialSymbolSyntax(SpecialSymbolSyntax.Kind.INFINITY)
if (toString.startsWith('-'))
return UnaryMinusSyntax(
operation = GroupOperations.MINUS_OPERATION,
operand = OperandSyntax(operand = infty, parentheses = true),
)
return infty
}
return printSignedNumberString(toString)
}
public companion object {
/**
* The default instance containing [Float], and [Double].
*/
public val Default: PrettyPrintFloats = PrettyPrintFloats(setOf(Float::class, Double::class))
}
}
/**
* Special printing for numeric types which are printed in form of *'-'? DIGIT+*.
*
* @property types The suitable types.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public class PrettyPrintIntegers(public val types: Set<KClass<out Number>>) : RenderFeature {
public override fun render(renderer: FeaturedMathRenderer, node: MST): MathSyntax? =
if (node !is MST.Numeric || node.value::class !in types)
null
else
printSignedNumberString(node.value.toString())
public companion object {
/**
* The default instance containing [Byte], [Short], [Int], and [Long].
*/
public val Default: PrettyPrintIntegers =
PrettyPrintIntegers(setOf(Byte::class, Short::class, Int::class, Long::class))
}
}
/**
* Special printing for symbols meaning Pi.
*
* @property symbols The allowed symbols.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public class PrettyPrintPi(public val symbols: Set<String>) : RenderFeature {
public override fun render(renderer: FeaturedMathRenderer, node: MST): MathSyntax? =
if (node !is Symbol || node.identity !in symbols)
null
else
SpecialSymbolSyntax(kind = SpecialSymbolSyntax.Kind.SMALL_PI)
public companion object {
/**
* The default instance containing `pi`.
*/
public val Default: PrettyPrintPi = PrettyPrintPi(setOf("pi"))
}
}
/**
* Abstract printing of unary operations which discards [MST] if their operation is not in [operations] or its type is
* not [MST.Unary].
*
* @param operations the allowed operations. If `null`, any operation is accepted.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public abstract class Unary(public val operations: Collection<String>?) : RenderFeature {
/**
* The actual render function specialized for [MST.Unary].
*/
protected abstract fun renderUnary(parent: FeaturedMathRenderer, node: MST.Unary): MathSyntax?
public final override fun render(renderer: FeaturedMathRenderer, node: MST): MathSyntax? =
if (node !is MST.Unary || operations != null && node.operation !in operations)
null
else
renderUnary(renderer, node)
}
/**
* Abstract printing of unary operations which discards [MST] if their operation is not in [operations] or its type is
* not [MST.Binary].
*
* @property operations the allowed operations. If `null`, any operation is accepted.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public abstract class Binary(public val operations: Collection<String>?) : RenderFeature {
/**
* The actual render function specialized for [MST.Binary].
*/
protected abstract fun renderBinary(parent: FeaturedMathRenderer, node: MST.Binary): MathSyntax?
public final override fun render(renderer: FeaturedMathRenderer, node: MST): MathSyntax? {
if (node !is MST.Binary || operations != null && node.operation !in operations) return null
return renderBinary(renderer, node)
}
}
/**
* Handles binary nodes by producing [BinaryPlusSyntax].
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public class BinaryPlus(operations: Collection<String>?) : Binary(operations) {
public override fun renderBinary(parent: FeaturedMathRenderer, node: MST.Binary): MathSyntax =
BinaryPlusSyntax(
operation = node.operation,
left = OperandSyntax(parent.render(node.left), true),
right = OperandSyntax(parent.render(node.right), true),
)
public companion object {
/**
* The default instance configured with [GroupOperations.PLUS_OPERATION].
*/
public val Default: BinaryPlus = BinaryPlus(setOf(GroupOperations.PLUS_OPERATION))
}
}
/**
* Handles binary nodes by producing [BinaryMinusSyntax].
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public class BinaryMinus(operations: Collection<String>?) : Binary(operations) {
public override fun renderBinary(parent: FeaturedMathRenderer, node: MST.Binary): MathSyntax =
BinaryMinusSyntax(
operation = node.operation,
left = OperandSyntax(operand = parent.render(node.left), parentheses = true),
right = OperandSyntax(operand = parent.render(node.right), parentheses = true),
)
public companion object {
/**
* The default instance configured with [GroupOperations.MINUS_OPERATION].
*/
public val Default: BinaryMinus = BinaryMinus(setOf(GroupOperations.MINUS_OPERATION))
}
}
/**
* Handles unary nodes by producing [UnaryPlusSyntax].
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public class UnaryPlus(operations: Collection<String>?) : Unary(operations) {
public override fun renderUnary(parent: FeaturedMathRenderer, node: MST.Unary): MathSyntax = UnaryPlusSyntax(
operation = node.operation,
operand = OperandSyntax(operand = parent.render(node.value), parentheses = true),
)
public companion object {
/**
* The default instance configured with [GroupOperations.PLUS_OPERATION].
*/
public val Default: UnaryPlus = UnaryPlus(setOf(GroupOperations.PLUS_OPERATION))
}
}
/**
* Handles binary nodes by producing [UnaryMinusSyntax].
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public class UnaryMinus(operations: Collection<String>?) : Unary(operations) {
public override fun renderUnary(parent: FeaturedMathRenderer, node: MST.Unary): MathSyntax = UnaryMinusSyntax(
operation = node.operation,
operand = OperandSyntax(operand = parent.render(node.value), parentheses = true),
)
public companion object {
/**
* The default instance configured with [GroupOperations.MINUS_OPERATION].
*/
public val Default: UnaryMinus = UnaryMinus(setOf(GroupOperations.MINUS_OPERATION))
}
}
/**
* Handles binary nodes by producing [FractionSyntax].
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public class Fraction(operations: Collection<String>?) : Binary(operations) {
public override fun renderBinary(parent: FeaturedMathRenderer, node: MST.Binary): MathSyntax = FractionSyntax(
operation = node.operation,
left = OperandSyntax(operand = parent.render(node.left), parentheses = true),
right = OperandSyntax(operand = parent.render(node.right), parentheses = true),
infix = true,
)
public companion object {
/**
* The default instance configured with [FieldOperations.DIV_OPERATION].
*/
public val Default: Fraction = Fraction(setOf(FieldOperations.DIV_OPERATION))
}
}
/**
* Handles binary nodes by producing [BinaryOperatorSyntax].
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public class BinaryOperator(operations: Collection<String>?) : Binary(operations) {
public override fun renderBinary(parent: FeaturedMathRenderer, node: MST.Binary): MathSyntax =
BinaryOperatorSyntax(
operation = node.operation,
prefix = OperatorNameSyntax(name = node.operation),
left = parent.render(node.left),
right = parent.render(node.right),
)
public companion object {
/**
* The default instance configured with `null`.
*/
public val Default: BinaryOperator = BinaryOperator(null)
}
}
/**
* Handles unary nodes by producing [UnaryOperatorSyntax].
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public class UnaryOperator(operations: Collection<String>?) : Unary(operations) {
public override fun renderUnary(parent: FeaturedMathRenderer, node: MST.Unary): MathSyntax =
UnaryOperatorSyntax(
operation = node.operation,
prefix = OperatorNameSyntax(node.operation),
operand = OperandSyntax(parent.render(node.value), true),
)
public companion object {
/**
* The default instance configured with `null`.
*/
public val Default: UnaryOperator = UnaryOperator(null)
}
}
/**
* Handles binary nodes by producing [SuperscriptSyntax].
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public class Power(operations: Collection<String>?) : Binary(operations) {
public override fun renderBinary(parent: FeaturedMathRenderer, node: MST.Binary): MathSyntax =
SuperscriptSyntax(
operation = node.operation,
left = OperandSyntax(parent.render(node.left), true),
right = OperandSyntax(parent.render(node.right), true),
)
public companion object {
/**
* The default instance configured with [PowerOperations.POW_OPERATION].
*/
public val Default: Power = Power(setOf(PowerOperations.POW_OPERATION))
}
}
/**
* Handles binary nodes by producing [RadicalSyntax] with no index.
*/
@UnstableKMathAPI
public class SquareRoot(operations: Collection<String>?) : Unary(operations) {
public override fun renderUnary(parent: FeaturedMathRenderer, node: MST.Unary): MathSyntax =
RadicalSyntax(operation = node.operation, operand = parent.render(node.value))
public companion object {
/**
* The default instance configured with [PowerOperations.SQRT_OPERATION].
*/
public val Default: SquareRoot = SquareRoot(setOf(PowerOperations.SQRT_OPERATION))
}
}
/**
* Handles unary nodes by producing [ExponentSyntax].
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public class Exponent(operations: Collection<String>?) : Unary(operations) {
public override fun renderUnary(parent: FeaturedMathRenderer, node: MST.Unary): MathSyntax = ExponentSyntax(
operation = node.operation,
operand = OperandSyntax(operand = parent.render(node.value), parentheses = true),
useOperatorForm = true,
)
public companion object {
/**
* The default instance configured with [ExponentialOperations.EXP_OPERATION].
*/
public val Default: Exponent = Exponent(setOf(ExponentialOperations.EXP_OPERATION))
}
}
/**
* Handles binary nodes by producing [MultiplicationSyntax].
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public class Multiplication(operations: Collection<String>?) : Binary(operations) {
public override fun renderBinary(parent: FeaturedMathRenderer, node: MST.Binary): MathSyntax =
MultiplicationSyntax(
operation = node.operation,
left = OperandSyntax(operand = parent.render(node.left), parentheses = true),
right = OperandSyntax(operand = parent.render(node.right), parentheses = true),
times = true,
)
public companion object {
/**
* The default instance configured with [RingOperations.TIMES_OPERATION].
*/
public val Default: Multiplication = Multiplication(setOf(RingOperations.TIMES_OPERATION))
}
}
/**
* Handles binary nodes by producing inverse [UnaryOperatorSyntax] with *arc* prefix instead of *a*.
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public class InverseTrigonometricOperations(operations: Collection<String>?) : Unary(operations) {
public override fun renderUnary(parent: FeaturedMathRenderer, node: MST.Unary): MathSyntax =
UnaryOperatorSyntax(
operation = node.operation,
prefix = OperatorNameSyntax(name = node.operation.replaceFirst("a", "arc")),
operand = OperandSyntax(operand = parent.render(node.value), parentheses = true),
)
public companion object {
/**
* The default instance configured with [TrigonometricOperations.ACOS_OPERATION],
* [TrigonometricOperations.ASIN_OPERATION], [TrigonometricOperations.ATAN_OPERATION].
*/
public val Default: InverseTrigonometricOperations = InverseTrigonometricOperations(setOf(
TrigonometricOperations.ACOS_OPERATION,
TrigonometricOperations.ASIN_OPERATION,
TrigonometricOperations.ATAN_OPERATION,
))
}
}
/**
* Handles binary nodes by producing inverse [UnaryOperatorSyntax] with *ar* prefix instead of *a*.
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public class InverseHyperbolicOperations(operations: Collection<String>?) : Unary(operations) {
public override fun renderUnary(parent: FeaturedMathRenderer, node: MST.Unary): MathSyntax =
UnaryOperatorSyntax(
operation = node.operation,
prefix = OperatorNameSyntax(name = node.operation.replaceFirst("a", "ar")),
operand = OperandSyntax(operand = parent.render(node.value), parentheses = true),
)
public companion object {
/**
* The default instance configured with [ExponentialOperations.ACOSH_OPERATION],
* [ExponentialOperations.ASINH_OPERATION], and [ExponentialOperations.ATANH_OPERATION].
*/
public val Default: InverseHyperbolicOperations = InverseHyperbolicOperations(setOf(
ExponentialOperations.ACOSH_OPERATION,
ExponentialOperations.ASINH_OPERATION,
ExponentialOperations.ATANH_OPERATION,
))
}
}

View File

@ -0,0 +1,9 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast.rendering
internal expect fun Double.multiplatformToString(): String
internal expect fun Float.multiplatformToString(): String

View File

@ -0,0 +1,320 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast.rendering
import space.kscience.kmath.ast.rendering.FeaturedMathRendererWithPostProcess.PostProcessPhase
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.FieldOperations
import space.kscience.kmath.operations.GroupOperations
import space.kscience.kmath.operations.PowerOperations
import space.kscience.kmath.operations.RingOperations
/**
* Removes unnecessary times (&times;) symbols from [MultiplicationSyntax].
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public val BetterMultiplication: PostProcessPhase = PostProcessPhase { node ->
fun perform(node: MathSyntax): Unit = when (node) {
is NumberSyntax -> Unit
is SymbolSyntax -> Unit
is OperatorNameSyntax -> Unit
is SpecialSymbolSyntax -> Unit
is OperandSyntax -> perform(node.operand)
is UnaryOperatorSyntax -> {
perform(node.prefix)
perform(node.operand)
}
is UnaryPlusSyntax -> perform(node.operand)
is UnaryMinusSyntax -> perform(node.operand)
is RadicalSyntax -> perform(node.operand)
is ExponentSyntax -> perform(node.operand)
is SuperscriptSyntax -> {
perform(node.left)
perform(node.right)
}
is SubscriptSyntax -> {
perform(node.left)
perform(node.right)
}
is BinaryOperatorSyntax -> {
perform(node.prefix)
perform(node.left)
perform(node.right)
}
is BinaryPlusSyntax -> {
perform(node.left)
perform(node.right)
}
is BinaryMinusSyntax -> {
perform(node.left)
perform(node.right)
}
is FractionSyntax -> {
perform(node.left)
perform(node.right)
}
is RadicalWithIndexSyntax -> {
perform(node.left)
perform(node.right)
}
is MultiplicationSyntax -> {
node.times = node.right.operand is NumberSyntax && !node.right.parentheses
|| node.left.operand is NumberSyntax && node.right.operand is FractionSyntax
|| node.left.operand is NumberSyntax && node.right.operand is NumberSyntax
|| node.left.operand is NumberSyntax && node.right.operand is SuperscriptSyntax && node.right.operand.left is NumberSyntax
perform(node.left)
perform(node.right)
}
}
perform(node)
}
/**
* Chooses [FractionSyntax.infix] depending on the context.
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public val BetterFraction: PostProcessPhase = PostProcessPhase { node ->
fun perform(node: MathSyntax, infix: Boolean = false): Unit = when (node) {
is NumberSyntax -> Unit
is SymbolSyntax -> Unit
is OperatorNameSyntax -> Unit
is SpecialSymbolSyntax -> Unit
is OperandSyntax -> perform(node.operand, infix)
is UnaryOperatorSyntax -> {
perform(node.prefix, infix)
perform(node.operand, infix)
}
is UnaryPlusSyntax -> perform(node.operand, infix)
is UnaryMinusSyntax -> perform(node.operand, infix)
is RadicalSyntax -> perform(node.operand, infix)
is ExponentSyntax -> perform(node.operand, infix)
is SuperscriptSyntax -> {
perform(node.left, true)
perform(node.right, true)
}
is SubscriptSyntax -> {
perform(node.left, true)
perform(node.right, true)
}
is BinaryOperatorSyntax -> {
perform(node.prefix, infix)
perform(node.left, infix)
perform(node.right, infix)
}
is BinaryPlusSyntax -> {
perform(node.left, infix)
perform(node.right, infix)
}
is BinaryMinusSyntax -> {
perform(node.left, infix)
perform(node.right, infix)
}
is FractionSyntax -> {
node.infix = infix
perform(node.left, infix)
perform(node.right, infix)
}
is RadicalWithIndexSyntax -> {
perform(node.left, true)
perform(node.right, true)
}
is MultiplicationSyntax -> {
perform(node.left, infix)
perform(node.right, infix)
}
}
perform(node)
}
/**
* Applies [ExponentSyntax.useOperatorForm] to [ExponentSyntax] when the operand contains a fraction, a
* superscript or a subscript to improve readability.
*
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public val BetterExponent: PostProcessPhase = PostProcessPhase { node ->
fun perform(node: MathSyntax): Boolean {
return when (node) {
is NumberSyntax -> false
is SymbolSyntax -> false
is OperatorNameSyntax -> false
is SpecialSymbolSyntax -> false
is OperandSyntax -> perform(node.operand)
is UnaryOperatorSyntax -> perform(node.prefix) || perform(node.operand)
is UnaryPlusSyntax -> perform(node.operand)
is UnaryMinusSyntax -> perform(node.operand)
is RadicalSyntax -> true
is ExponentSyntax -> {
val r = perform(node.operand)
node.useOperatorForm = r
r
}
is SuperscriptSyntax -> true
is SubscriptSyntax -> true
is BinaryOperatorSyntax -> perform(node.prefix) || perform(node.left) || perform(node.right)
is BinaryPlusSyntax -> perform(node.left) || perform(node.right)
is BinaryMinusSyntax -> perform(node.left) || perform(node.right)
is FractionSyntax -> true
is RadicalWithIndexSyntax -> true
is MultiplicationSyntax -> perform(node.left) || perform(node.right)
}
}
perform(node)
}
/**
* Removes unnecessary parentheses from [OperandSyntax].
*
* @property precedenceFunction Returns the precedence number for syntax node. Higher number is lower priority.
* @author Iaroslav Postovalov
*/
@UnstableKMathAPI
public class SimplifyParentheses(public val precedenceFunction: (MathSyntax) -> Int) :
PostProcessPhase {
public override fun perform(node: MathSyntax): Unit = when (node) {
is NumberSyntax -> Unit
is SymbolSyntax -> Unit
is OperatorNameSyntax -> Unit
is SpecialSymbolSyntax -> Unit
is OperandSyntax -> {
val isRightOfSuperscript =
(node.parent is SuperscriptSyntax) && (node.parent as SuperscriptSyntax).right === node
val precedence = precedenceFunction(node.operand)
val needParenthesesByPrecedence = when (val parent = node.parent) {
null -> false
is BinarySyntax -> {
val parentPrecedence = precedenceFunction(parent)
parentPrecedence < precedence ||
parentPrecedence == precedence && parentPrecedence != 0 && node === parent.right
}
else -> precedence > precedenceFunction(parent)
}
val isInsideExpOperator =
node.parent is ExponentSyntax && (node.parent as ExponentSyntax).useOperatorForm
val isOnOrUnderNormalFraction = node.parent is FractionSyntax && !((node.parent as FractionSyntax).infix)
node.parentheses = !isRightOfSuperscript
&& (needParenthesesByPrecedence || node.parent is UnaryOperatorSyntax || isInsideExpOperator)
&& !isOnOrUnderNormalFraction
perform(node.operand)
}
is UnaryOperatorSyntax -> {
perform(node.prefix)
perform(node.operand)
}
is UnaryPlusSyntax -> perform(node.operand)
is UnaryMinusSyntax -> perform(node.operand)
is RadicalSyntax -> perform(node.operand)
is ExponentSyntax -> perform(node.operand)
is SuperscriptSyntax -> {
perform(node.left)
perform(node.right)
}
is SubscriptSyntax -> {
perform(node.left)
perform(node.right)
}
is BinaryOperatorSyntax -> {
perform(node.prefix)
perform(node.left)
perform(node.right)
}
is BinaryPlusSyntax -> {
perform(node.left)
perform(node.right)
}
is BinaryMinusSyntax -> {
perform(node.left)
perform(node.right)
}
is FractionSyntax -> {
perform(node.left)
perform(node.right)
}
is MultiplicationSyntax -> {
perform(node.left)
perform(node.right)
}
is RadicalWithIndexSyntax -> {
perform(node.left)
perform(node.right)
}
}
public companion object {
/**
* The default configuration of [SimplifyParentheses] where power is 1, multiplicative operations are 2,
* additive operations are 3.
*/
public val Default: SimplifyParentheses = SimplifyParentheses {
when (it) {
is TerminalSyntax -> 0
is UnarySyntax -> 2
is BinarySyntax -> when (it.operation) {
PowerOperations.POW_OPERATION -> 1
RingOperations.TIMES_OPERATION -> 3
FieldOperations.DIV_OPERATION -> 3
GroupOperations.MINUS_OPERATION -> 4
GroupOperations.PLUS_OPERATION -> 4
else -> 0
}
else -> 0
}
}
}
}

View File

@ -0,0 +1,56 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast
import space.kscience.kmath.expressions.MstField
import space.kscience.kmath.expressions.MstRing
import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.interpret
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.IntRing
import space.kscience.kmath.operations.bindSymbol
import space.kscience.kmath.operations.invoke
import kotlin.test.Test
import kotlin.test.assertEquals
internal class TestCompilerConsistencyWithInterpreter {
@Test
fun intRing() = runCompilerTest {
val mst = MstRing {
binaryOperationFunction("+")(
unaryOperationFunction("+")(
(x - (2.toByte() + (scale(
add(number(1), number(1)),
2.0,
) + 1.toByte()))) * 3.0 - 1.toByte()
),
number(1),
) * number(2)
}
assertEquals(
mst.interpret(IntRing, x to 3),
mst.compile(IntRing, x to 3),
)
}
@Test
fun doubleField() = runCompilerTest {
val mst = MstField {
+(3 - 2 + 2 * number(1) + 1.0) + binaryOperationFunction("+")(
(3.0 - (x + (scale(add(number(1.0), number(1.0)), 2.0) + 1.0))) * 3 - 1.0
+ number(1),
number(1) / 2 + number(2.0) * one,
) + zero
}
assertEquals(
mst.interpret(DoubleField, x to 2.0),
mst.compile(DoubleField, x to 2.0),
)
}
}

View File

@ -0,0 +1,64 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast
import space.kscience.kmath.expressions.MstExtendedField
import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.invoke
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.invoke
import kotlin.test.Test
import kotlin.test.assertEquals
internal class TestCompilerOperations {
@Test
fun testUnaryPlus() = runCompilerTest {
val expr = MstExtendedField { +x }.compileToExpression(DoubleField)
assertEquals(2.0, expr(x to 2.0))
}
@Test
fun testUnaryMinus() = runCompilerTest {
val expr = MstExtendedField { -x }.compileToExpression(DoubleField)
assertEquals(-2.0, expr(x to 2.0))
}
@Test
fun testAdd() = runCompilerTest {
val expr = MstExtendedField { x + x }.compileToExpression(DoubleField)
assertEquals(4.0, expr(x to 2.0))
}
@Test
fun testSine() = runCompilerTest {
val expr = MstExtendedField { sin(x) }.compileToExpression(DoubleField)
assertEquals(0.0, expr(x to 0.0))
}
@Test
fun testCosine() = runCompilerTest {
val expr = MstExtendedField { cos(x) }.compileToExpression(DoubleField)
assertEquals(1.0, expr(x to 0.0))
}
@Test
fun testSubtract() = runCompilerTest {
val expr = MstExtendedField { x - x }.compileToExpression(DoubleField)
assertEquals(0.0, expr(x to 2.0))
}
@Test
fun testDivide() = runCompilerTest {
val expr = MstExtendedField { x / x }.compileToExpression(DoubleField)
assertEquals(1.0, expr(x to 2.0))
}
@Test
fun testPower() = runCompilerTest {
val expr = MstExtendedField { x pow 2 }.compileToExpression(DoubleField)
assertEquals(4.0, expr(x to 2.0))
}
}

View File

@ -0,0 +1,30 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast
import space.kscience.kmath.expressions.MstRing
import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.invoke
import space.kscience.kmath.operations.IntRing
import space.kscience.kmath.operations.bindSymbol
import space.kscience.kmath.operations.invoke
import kotlin.test.Test
import kotlin.test.assertEquals
import kotlin.test.assertFailsWith
internal class TestCompilerVariables {
@Test
fun testVariable() = runCompilerTest {
val expr = MstRing { x }.compileToExpression(IntRing)
assertEquals(1, expr(x to 1))
}
@Test
fun testUndefinedVariableFails() = runCompilerTest {
val expr = MstRing { x }.compileToExpression(IntRing)
assertFailsWith<NoSuchElementException> { expr() }
}
}

View File

@ -1,29 +1,28 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast package space.kscience.kmath.ast
import space.kscience.kmath.complex.Complex import space.kscience.kmath.complex.Complex
import space.kscience.kmath.complex.ComplexField import space.kscience.kmath.complex.ComplexField
import space.kscience.kmath.expressions.invoke import space.kscience.kmath.expressions.evaluate
import space.kscience.kmath.operations.Algebra import space.kscience.kmath.operations.Algebra
import space.kscience.kmath.operations.RealField import space.kscience.kmath.operations.DoubleField
import kotlin.test.Test import kotlin.test.Test
import kotlin.test.assertEquals import kotlin.test.assertEquals
internal class ParserTest { internal class TestParser {
@Test @Test
fun `evaluate MST`() { fun evaluateParsedMst() {
val mst = "2+2*(2+2)".parseMath() val mst = "2+2*(2+2)".parseMath()
val res = ComplexField.evaluate(mst) val res = ComplexField.evaluate(mst)
assertEquals(Complex(10.0, 0.0), res) assertEquals(Complex(10.0, 0.0), res)
} }
@Test @Test
fun `evaluate MSTExpression`() { fun evaluateMstSymbol() {
val res = ComplexField.mstInField { number(2) + number(2) * (number(2) + number(2)) }()
assertEquals(Complex(10.0, 0.0), res)
}
@Test
fun `evaluate MST with singular`() {
val mst = "i".parseMath() val mst = "i".parseMath()
val res = ComplexField.evaluate(mst) val res = ComplexField.evaluate(mst)
assertEquals(ComplexField.i, res) assertEquals(ComplexField.i, res)
@ -31,16 +30,16 @@ internal class ParserTest {
@Test @Test
fun `evaluate MST with unary function`() { fun evaluateMstUnary() {
val mst = "sin(0)".parseMath() val mst = "sin(0)".parseMath()
val res = RealField.evaluate(mst) val res = DoubleField.evaluate(mst)
assertEquals(0.0, res) assertEquals(0.0, res)
} }
@Test @Test
fun `evaluate MST with binary function`() { fun evaluateMstBinary() {
val magicalAlgebra = object : Algebra<String> { val magicalAlgebra = object : Algebra<String> {
override fun bindSymbol(value: String): String = value override fun bindSymbolOrNull(value: String): String = value
override fun unaryOperationFunction(operation: String): (arg: String) -> String { override fun unaryOperationFunction(operation: String): (arg: String) -> String {
throw NotImplementedError() throw NotImplementedError()

View File

@ -1,13 +1,16 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast package space.kscience.kmath.ast
import space.kscience.kmath.operations.Field import space.kscience.kmath.expressions.evaluate
import space.kscience.kmath.operations.RealField import space.kscience.kmath.operations.DoubleField
import kotlin.test.Test import kotlin.test.Test
import kotlin.test.assertEquals import kotlin.test.assertEquals
internal class ParserPrecedenceTest { internal class TestParserPrecedence {
private val f: Field<Double> = RealField
@Test @Test
fun test1(): Unit = assertEquals(6.0, f.evaluate("2*2+2".parseMath())) fun test1(): Unit = assertEquals(6.0, f.evaluate("2*2+2".parseMath()))
@ -31,4 +34,8 @@ internal class ParserPrecedenceTest {
@Test @Test
fun test8(): Unit = assertEquals(18.0, f.evaluate("2*2^3+2".parseMath())) fun test8(): Unit = assertEquals(18.0, f.evaluate("2*2^3+2".parseMath()))
private companion object {
private val f = DoubleField
}
} }

View File

@ -0,0 +1,120 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast.rendering
import space.kscience.kmath.ast.rendering.TestUtils.testLatex
import space.kscience.kmath.expressions.MST.Numeric
import kotlin.test.Test
internal class TestFeatures {
@Test
fun printSymbolic() = testLatex("x", "x")
@Test
fun printNumeric() {
val num = object : Number() {
override fun toByte(): Byte = throw UnsupportedOperationException()
override fun toChar(): Char = throw UnsupportedOperationException()
override fun toDouble(): Double = throw UnsupportedOperationException()
override fun toFloat(): Float = throw UnsupportedOperationException()
override fun toInt(): Int = throw UnsupportedOperationException()
override fun toLong(): Long = throw UnsupportedOperationException()
override fun toShort(): Short = throw UnsupportedOperationException()
override fun toString(): String = "foo"
}
testLatex(Numeric(num), "foo")
}
@Test
fun prettyPrintFloats() {
testLatex(Numeric(Double.NaN), "NaN")
testLatex(Numeric(Double.POSITIVE_INFINITY), "\\infty")
testLatex(Numeric(Double.NEGATIVE_INFINITY), "-\\infty")
testLatex(Numeric(1.0), "1")
testLatex(Numeric(-1.0), "-1")
testLatex(Numeric(1.42), "1.42")
testLatex(Numeric(-1.42), "-1.42")
testLatex(Numeric(1.1e10), "1.1\\times10^{10}")
testLatex(Numeric(1.1e-10), "1.1\\times10^{-10}")
testLatex(Numeric(-1.1e-10), "-1.1\\times10^{-10}")
testLatex(Numeric(-1.1e10), "-1.1\\times10^{10}")
testLatex(Numeric(0.001), "0.001")
testLatex(Numeric(0.0000001), "1\\times10^{-7}")
testLatex(Numeric(Float.NaN), "NaN")
testLatex(Numeric(Float.POSITIVE_INFINITY), "\\infty")
testLatex(Numeric(Float.NEGATIVE_INFINITY), "-\\infty")
testLatex(Numeric(1.0f), "1")
testLatex(Numeric(-1.0f), "-1")
testLatex(Numeric(1.42f), "1.42")
testLatex(Numeric(-1.42f), "-1.42")
testLatex(Numeric(1e10f), "1\\times10^{10}")
testLatex(Numeric(1e-10f), "1\\times10^{-10}")
testLatex(Numeric(-1e-10f), "-1\\times10^{-10}")
testLatex(Numeric(-1e10f), "-1\\times10^{10}")
testLatex(Numeric(0.001f), "0.001")
testLatex(Numeric(0.0000001f), "1\\times10^{-7}")
}
@Test
fun prettyPrintIntegers() {
testLatex(Numeric(42), "42")
testLatex(Numeric(-42), "-42")
}
@Test
fun prettyPrintPi() {
testLatex("pi", "\\pi")
}
@Test
fun binaryPlus() = testLatex("2+2", "2+2")
@Test
fun binaryMinus() = testLatex("2-2", "2-2")
@Test
fun fraction() = testLatex("2/2", "\\frac{2}{2}")
@Test
fun binaryOperator() = testLatex("f(x, y)", "\\operatorname{f}\\left(x,y\\right)")
@Test
fun unaryOperator() = testLatex("f(x)", "\\operatorname{f}\\,\\left(x\\right)")
@Test
fun power() = testLatex("x^y", "x^{y}")
@Test
fun squareRoot() = testLatex("sqrt(x)", "\\sqrt{x}")
@Test
fun exponential() = testLatex("exp(x)", "e^{x}")
@Test
fun multiplication() = testLatex("x*1", "x\\times1")
@Test
fun inverseTrigonometric() {
testLatex("asin(x)", "\\operatorname{arcsin}\\,\\left(x\\right)")
testLatex("acos(x)", "\\operatorname{arccos}\\,\\left(x\\right)")
testLatex("atan(x)", "\\operatorname{arctan}\\,\\left(x\\right)")
}
@Test
fun inverseHyperbolic() {
testLatex("asinh(x)", "\\operatorname{arsinh}\\,\\left(x\\right)")
testLatex("acosh(x)", "\\operatorname{arcosh}\\,\\left(x\\right)")
testLatex("atanh(x)", "\\operatorname{artanh}\\,\\left(x\\right)")
}
// @Test
// fun unaryPlus() {
// testLatex("+1", "+1")
// testLatex("+1", "++1")
// }
}

View File

@ -0,0 +1,73 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast.rendering
import space.kscience.kmath.ast.rendering.TestUtils.testLatex
import space.kscience.kmath.expressions.MST
import space.kscience.kmath.operations.GroupOperations
import kotlin.test.Test
internal class TestLatex {
@Test
fun number() = testLatex("42", "42")
@Test
fun symbol() = testLatex("x", "x")
@Test
fun operatorName() = testLatex("sin(1)", "\\operatorname{sin}\\,\\left(1\\right)")
@Test
fun specialSymbol() {
testLatex(MST.Numeric(Double.POSITIVE_INFINITY), "\\infty")
testLatex("pi", "\\pi")
}
@Test
fun operand() {
testLatex("sin(1)", "\\operatorname{sin}\\,\\left(1\\right)")
testLatex("1+1", "1+1")
}
@Test
fun unaryOperator() = testLatex("sin(1)", "\\operatorname{sin}\\,\\left(1\\right)")
@Test
fun unaryPlus() = testLatex(MST.Unary(GroupOperations.PLUS_OPERATION, MST.Numeric(1)), "+1")
@Test
fun unaryMinus() = testLatex("-x", "-x")
@Test
fun radical() = testLatex("sqrt(x)", "\\sqrt{x}")
@Test
fun superscript() = testLatex("x^y", "x^{y}")
@Test
fun subscript() = testLatex(SubscriptSyntax("", SymbolSyntax("x"), NumberSyntax("123")), "x_{123}")
@Test
fun binaryOperator() = testLatex("f(x, y)", "\\operatorname{f}\\left(x,y\\right)")
@Test
fun binaryPlus() = testLatex("x+x", "x+x")
@Test
fun binaryMinus() = testLatex("x-x", "x-x")
@Test
fun fraction() = testLatex("x/x", "\\frac{x}{x}")
@Test
fun radicalWithIndex() = testLatex(RadicalWithIndexSyntax("", SymbolSyntax("x"), SymbolSyntax("y")), "\\sqrt[x]{y}")
@Test
fun multiplication() {
testLatex("x*1", "x\\times1")
testLatex("1*x", "1\\,x")
}
}

View File

@ -0,0 +1,92 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast.rendering
import space.kscience.kmath.ast.rendering.TestUtils.testMathML
import space.kscience.kmath.expressions.MST
import space.kscience.kmath.operations.GroupOperations
import kotlin.test.Test
internal class TestMathML {
@Test
fun number() = testMathML("42", "<mn>42</mn>")
@Test
fun symbol() = testMathML("x", "<mi>x</mi>")
@Test
fun operatorName() = testMathML(
"sin(1)",
"<mo>sin</mo><mspace width=\"0.167em\"></mspace><mfenced open=\"(\" close=\")\" separators=\"\"><mn>1</mn></mfenced>",
)
@Test
fun specialSymbol() {
testMathML(MST.Numeric(Double.POSITIVE_INFINITY), "<mo>&infin;</mo>")
testMathML("pi", "<mo>&pi;</mo>")
}
@Test
fun operand() {
testMathML(
"sin(1)",
"<mo>sin</mo><mspace width=\"0.167em\"></mspace><mfenced open=\"(\" close=\")\" separators=\"\"><mn>1</mn></mfenced>",
)
testMathML("1+1", "<mn>1</mn><mo>+</mo><mn>1</mn>")
}
@Test
fun unaryOperator() = testMathML(
"sin(1)",
"<mo>sin</mo><mspace width=\"0.167em\"></mspace><mfenced open=\"(\" close=\")\" separators=\"\"><mn>1</mn></mfenced>",
)
@Test
fun unaryPlus() =
testMathML(MST.Unary(GroupOperations.PLUS_OPERATION, MST.Numeric(1)), "<mo>+</mo><mn>1</mn>")
@Test
fun unaryMinus() = testMathML("-x", "<mo>-</mo><mi>x</mi>")
@Test
fun radical() = testMathML("sqrt(x)", "<msqrt><mi>x</mi></msqrt>")
@Test
fun superscript() = testMathML("x^y", "<msup><mrow><mi>x</mi></mrow><mrow><mi>y</mi></mrow></msup>")
@Test
fun subscript() = testMathML(
SubscriptSyntax("", SymbolSyntax("x"), NumberSyntax("123")),
"<msub><mrow><mi>x</mi></mrow><mrow><mn>123</mn></mrow></msub>",
)
@Test
fun binaryOperator() = testMathML(
"f(x, y)",
"<mo>f</mo><mfenced open=\"(\" close=\")\" separators=\"\"><mi>x</mi><mo>,</mo><mi>y</mi></mfenced>",
)
@Test
fun binaryPlus() = testMathML("x+x", "<mi>x</mi><mo>+</mo><mi>x</mi>")
@Test
fun binaryMinus() = testMathML("x-x", "<mi>x</mi><mo>-</mo><mi>x</mi>")
@Test
fun fraction() = testMathML("x/x", "<mfrac><mrow><mi>x</mi></mrow><mrow><mi>x</mi></mrow></mfrac>")
@Test
fun radicalWithIndex() =
testMathML(RadicalWithIndexSyntax("", SymbolSyntax("x"), SymbolSyntax("y")),
"<mroot><mrow><mi>y</mi></mrow><mrow><mi>x</mi></mrow></mroot>")
@Test
fun multiplication() {
testMathML("x*1", "<mi>x</mi><mo>&times;</mo><mn>1</mn>")
testMathML("1*x", "<mn>1</mn><mspace width=\"0.167em\"></mspace><mi>x</mi>")
}
}

View File

@ -0,0 +1,46 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast.rendering
import space.kscience.kmath.ast.rendering.TestUtils.testLatex
import kotlin.test.Test
internal class TestStages {
@Test
fun betterMultiplication() {
testLatex("a*1", "a\\times1")
testLatex("1*(2/3)", "1\\times\\left(\\frac{2}{3}\\right)")
testLatex("1*1", "1\\times1")
testLatex("2e10", "2\\times10^{10}")
testLatex("2*x", "2\\,x")
testLatex("2*(x+1)", "2\\,\\left(x+1\\right)")
testLatex("x*y", "x\\,y")
}
@Test
fun parentheses() {
testLatex("(x+1)", "x+1")
testLatex("x*x*x", "x\\,x\\,x")
testLatex("(x+x)*x", "\\left(x+x\\right)\\,x")
testLatex("x+x*x", "x+x\\,x")
testLatex("x+x^x*x+x", "x+x^{x}\\,x+x")
testLatex("(x+x)^x+x*x", "\\left(x+x\\right)^{x}+x\\,x")
testLatex("x^(x+x)", "x^{x+x}")
}
@Test
fun exponent() {
testLatex("exp(x)", "e^{x}")
testLatex("exp(x/2)", "\\operatorname{exp}\\,\\left(\\frac{x}{2}\\right)")
testLatex("exp(x^2)", "\\operatorname{exp}\\,\\left(x^{2}\\right)")
}
@Test
fun fraction() {
testLatex("x/y", "\\frac{x}{y}")
testLatex("x^(x/y)", "x^{x/y}")
}
}

View File

@ -0,0 +1,46 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast.rendering
import space.kscience.kmath.ast.parseMath
import space.kscience.kmath.expressions.MST
import kotlin.test.assertEquals
internal object TestUtils {
private fun mathSyntax(mst: MST) = FeaturedMathRendererWithPostProcess.Default.render(mst)
private fun latex(mst: MST) = LatexSyntaxRenderer.renderWithStringBuilder(mathSyntax(mst))
private fun mathML(mst: MST) = MathMLSyntaxRenderer.renderWithStringBuilder(mathSyntax(mst))
internal fun testLatex(mst: MST, expectedLatex: String) = assertEquals(
expected = expectedLatex,
actual = latex(mst),
)
internal fun testLatex(expression: String, expectedLatex: String) = assertEquals(
expected = expectedLatex,
actual = latex(expression.parseMath()),
)
internal fun testLatex(expression: MathSyntax, expectedLatex: String) = assertEquals(
expected = expectedLatex,
actual = LatexSyntaxRenderer.renderWithStringBuilder(expression),
)
internal fun testMathML(mst: MST, expectedMathML: String) = assertEquals(
expected = "<math xmlns=\"https://www.w3.org/1998/Math/MathML\"><mrow>$expectedMathML</mrow></math>",
actual = mathML(mst),
)
internal fun testMathML(expression: String, expectedMathML: String) = assertEquals(
expected = "<math xmlns=\"https://www.w3.org/1998/Math/MathML\"><mrow>$expectedMathML</mrow></math>",
actual = mathML(expression.parseMath()),
)
internal fun testMathML(expression: MathSyntax, expectedMathML: String) = assertEquals(
expected = "<math xmlns=\"https://www.w3.org/1998/Math/MathML\"><mrow>$expectedMathML</mrow></math>",
actual = MathMLSyntaxRenderer.renderWithStringBuilder(expression),
)
}

View File

@ -0,0 +1,25 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast
import space.kscience.kmath.expressions.Expression
import space.kscience.kmath.expressions.MST
import space.kscience.kmath.expressions.Symbol
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.IntRing
internal interface CompilerTestContext {
fun MST.compileToExpression(algebra: IntRing): Expression<Int>
fun MST.compile(algebra: IntRing, arguments: Map<Symbol, Int>): Int
fun MST.compile(algebra: IntRing, vararg arguments: Pair<Symbol, Int>): Int = compile(algebra, mapOf(*arguments))
fun MST.compileToExpression(algebra: DoubleField): Expression<Double>
fun MST.compile(algebra: DoubleField, arguments: Map<Symbol, Double>): Double
fun MST.compile(algebra: DoubleField, vararg arguments: Pair<Symbol, Double>): Double =
compile(algebra, mapOf(*arguments))
}
internal expect inline fun runCompilerTest(action: CompilerTestContext.() -> Unit)

View File

@ -0,0 +1,18 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast.rendering
internal actual fun Double.multiplatformToString(): String {
val d = this
if (d >= 1e7 || d <= -1e7) return js("d.toExponential()") as String
return toString()
}
internal actual fun Float.multiplatformToString(): String {
val d = this
if (d >= 1e7f || d <= -1e7f) return js("d.toExponential()") as String
return toString()
}

View File

@ -1,44 +1,48 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.estree package space.kscience.kmath.estree
import space.kscience.kmath.ast.MST
import space.kscience.kmath.ast.MST.*
import space.kscience.kmath.ast.MstExpression
import space.kscience.kmath.estree.internal.ESTreeBuilder import space.kscience.kmath.estree.internal.ESTreeBuilder
import space.kscience.kmath.estree.internal.estree.BaseExpression
import space.kscience.kmath.expressions.Expression import space.kscience.kmath.expressions.Expression
import space.kscience.kmath.expressions.MST
import space.kscience.kmath.expressions.MST.*
import space.kscience.kmath.expressions.Symbol
import space.kscience.kmath.expressions.invoke
import space.kscience.kmath.internal.estree.BaseExpression
import space.kscience.kmath.operations.Algebra import space.kscience.kmath.operations.Algebra
import space.kscience.kmath.operations.NumericAlgebra import space.kscience.kmath.operations.NumericAlgebra
import space.kscience.kmath.operations.bindSymbolOrNull
@PublishedApi @PublishedApi
internal fun <T> MST.compileWith(algebra: Algebra<T>): Expression<T> { internal fun <T> MST.compileWith(algebra: Algebra<T>): Expression<T> {
fun ESTreeBuilder<T>.visit(node: MST): BaseExpression = when (node) { fun ESTreeBuilder<T>.visit(node: MST): BaseExpression = when (node) {
is Symbolic -> { is Symbol -> {
val symbol = try { val symbol = algebra.bindSymbolOrNull(node)
algebra.bindSymbol(node.value)
} catch (ignored: IllegalStateException) {
null
}
if (symbol != null) if (symbol != null)
constant(symbol) constant(symbol)
else else
variable(node.value) variable(node.identity)
} }
is Numeric -> constant(node.value) is Numeric -> constant(node.value)
is Unary -> when { is Unary -> when {
algebra is NumericAlgebra && node.value is Numeric -> constant( algebra is NumericAlgebra && node.value is Numeric -> constant(
algebra.unaryOperationFunction(node.operation)(algebra.number(node.value.value))) algebra.unaryOperationFunction(node.operation)(algebra.number((node.value as Numeric).value)))
else -> call(algebra.unaryOperationFunction(node.operation), visit(node.value)) else -> call(algebra.unaryOperationFunction(node.operation), visit(node.value))
} }
is Binary -> when { is Binary -> when {
algebra is NumericAlgebra && node.left is Numeric && node.right is Numeric -> constant( algebra is NumericAlgebra && node.left is Numeric && node.right is Numeric -> constant(
algebra algebra.binaryOperationFunction(node.operation).invoke(
.binaryOperationFunction(node.operation) algebra.number((node.left as Numeric).value),
.invoke(algebra.number(node.left.value), algebra.number(node.right.value)) algebra.number((node.right as Numeric).value)
)
) )
algebra is NumericAlgebra && node.left is Numeric -> call( algebra is NumericAlgebra && node.left is Numeric -> call(
@ -64,19 +68,21 @@ internal fun <T> MST.compileWith(algebra: Algebra<T>): Expression<T> {
return ESTreeBuilder<T> { visit(this@compileWith) }.instance return ESTreeBuilder<T> { visit(this@compileWith) }.instance
} }
/**
* Create a compiled expression with given [MST] and given [algebra].
*/
public fun <T : Any> MST.compileToExpression(algebra: Algebra<T>): Expression<T> = compileWith(algebra)
/** /**
* Compiles an [MST] to ESTree generated expression using given algebra. * Compile given MST to expression and evaluate it against [arguments]
*
* @author Alexander Nozik.
*/ */
public fun <T : Any> Algebra<T>.expression(mst: MST): Expression<T> = public inline fun <reified T : Any> MST.compile(algebra: Algebra<T>, arguments: Map<Symbol, T>): T =
mst.compileWith(this) compileToExpression(algebra).invoke(arguments)
/** /**
* Optimizes performance of an [MstExpression] by compiling it into ESTree generated expression. * Compile given MST to expression and evaluate it against [arguments]
*
* @author Alexander Nozik.
*/ */
public fun <T : Any> MstExpression<T, Algebra<T>>.compile(): Expression<T> = public inline fun <reified T : Any> MST.compile(algebra: Algebra<T>, vararg arguments: Pair<Symbol, T>): T =
mst.compileWith(algebra) compileToExpression(algebra).invoke(*arguments)

Some files were not shown because too many files have changed in this diff Show More