forked from kscience/kmath
add options for optimizers
This commit is contained in:
parent
b288c4ce59
commit
3c92bfda59
@ -316,7 +316,8 @@ class JNoa {
|
|||||||
|
|
||||||
public static native void zeroGradAdamOptim(long adamOptHandle);
|
public static native void zeroGradAdamOptim(long adamOptHandle);
|
||||||
|
|
||||||
public static native long rmsOptim(long jitModuleHandle, double learningRate);
|
public static native long rmsOptim(long jitModuleHandle, double learningRate, double alpha,
|
||||||
|
double eps, double weight_decay, double momentum, boolean centered);
|
||||||
|
|
||||||
public static native void disposeRmsOptim(long rmsOptHandle);
|
public static native void disposeRmsOptim(long rmsOptHandle);
|
||||||
|
|
||||||
@ -324,7 +325,8 @@ class JNoa {
|
|||||||
|
|
||||||
public static native void zeroGradRmsOptim(long rmsOptHandle);
|
public static native void zeroGradRmsOptim(long rmsOptHandle);
|
||||||
|
|
||||||
public static native long adamWOptim(long jitModuleHandle, double learningRate);
|
public static native long adamWOptim(long jitModuleHandle, double learningRate, double beta1,
|
||||||
|
double beta2, double eps, double weight_decay, boolean amsgrad);
|
||||||
|
|
||||||
public static native void disposeAdamWOptim(long adamWOptHandle);
|
public static native void disposeAdamWOptim(long adamWOptHandle);
|
||||||
|
|
||||||
@ -332,7 +334,8 @@ class JNoa {
|
|||||||
|
|
||||||
public static native void zeroGradAdamWOptim(long adamWOptHandle);
|
public static native void zeroGradAdamWOptim(long adamWOptHandle);
|
||||||
|
|
||||||
public static native long adagradOptim(long jitModuleHandle, double learningRate);
|
public static native long adagradOptim(long jitModuleHandle, double learningRate, double weight_decay,
|
||||||
|
double lr_decay, double initial_accumulator_value, double eps);
|
||||||
|
|
||||||
public static native void disposeAdagradOptim(long adagradOptHandle);
|
public static native void disposeAdagradOptim(long adagradOptHandle);
|
||||||
|
|
||||||
@ -340,7 +343,8 @@ class JNoa {
|
|||||||
|
|
||||||
public static native void zeroGradAdagradOptim(long adagradOptHandle);
|
public static native void zeroGradAdagradOptim(long adagradOptHandle);
|
||||||
|
|
||||||
public static native long sgdOptim(long jitModuleHandle, double learningRate);
|
public static native long sgdOptim(long jitModuleHandle, double learningRate, double momentum,
|
||||||
|
double dampening, double weight_decay, boolean nesterov);
|
||||||
|
|
||||||
public static native void disposeSgdOptim(long sgdOptHandle);
|
public static native void disposeSgdOptim(long sgdOptHandle);
|
||||||
|
|
||||||
|
@ -343,17 +343,59 @@ protected constructor(scope: NoaScope) :
|
|||||||
public fun NoaJitModule.adamOptimiser(learningRate: Double): AdamOptimiser =
|
public fun NoaJitModule.adamOptimiser(learningRate: Double): AdamOptimiser =
|
||||||
AdamOptimiser(scope, JNoa.adamOptim(jitModuleHandle, learningRate))
|
AdamOptimiser(scope, JNoa.adamOptim(jitModuleHandle, learningRate))
|
||||||
|
|
||||||
public fun NoaJitModule.rmsOptimiser(learningRate: Double): RMSpropOptimiser =
|
/**
|
||||||
RMSpropOptimiser(scope, JNoa.rmsOptim(jitModuleHandle, learningRate))
|
* Implements RMSprop algorithm. Receive `learning rate`, `alpha` (smoothing constant),
|
||||||
|
* `eps` (term added to the denominator to improve numerical stability), `weight_decay`,
|
||||||
|
* `momentum` factor, `centered` (if True, compute the centered RMSProp).
|
||||||
|
* For more information: https://pytorch.org/docs/stable/generated/torch.optim.RMSprop.html
|
||||||
|
*
|
||||||
|
* @receiver the `learning rate`, `alpha`, `eps`, `weight_decay`, `momentum`, `centered`.
|
||||||
|
* @return RMSpropOptimiser.
|
||||||
|
*/
|
||||||
|
public fun NoaJitModule.rmsOptimiser(learningRate: Double, alpha: Double,
|
||||||
|
eps: Double, weightDecay: Double, momentum: Double, centered: Boolean): RMSpropOptimiser =
|
||||||
|
RMSpropOptimiser(scope, JNoa.rmsOptim(jitModuleHandle, learningRate, alpha,
|
||||||
|
eps, weightDecay, momentum, centered))
|
||||||
|
|
||||||
public fun NoaJitModule.adamWOptimiser(learningRate: Double): AdamWOptimiser =
|
/**
|
||||||
AdamWOptimiser(scope, JNoa.adamWOptim(jitModuleHandle, learningRate))
|
* Implements AdamW algorithm. Receive `learning rate`, `beta1` and `beta2` (coefficients used
|
||||||
|
* for computing running averages of gradient and its square), `eps` (term added to the denominator
|
||||||
|
* to improve numerical stability), `weight_decay`, `amsgrad`.
|
||||||
|
* For more information: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
|
||||||
|
*
|
||||||
|
* @receiver the `learning rate`, `beta1`, `beta2`, `eps`, `weight_decay`, `amsgrad`.
|
||||||
|
* @return AdamWOptimiser.
|
||||||
|
*/
|
||||||
|
public fun NoaJitModule.adamWOptimiser(learningRate: Double, beta1: Double,
|
||||||
|
beta2: Double, eps: Double, weightDecay: Double, amsgrad: Boolean): AdamWOptimiser =
|
||||||
|
AdamWOptimiser(scope, JNoa.adamWOptim(jitModuleHandle, learningRate, beta1,
|
||||||
|
beta2, eps, weightDecay, amsgrad))
|
||||||
|
|
||||||
public fun NoaJitModule.adagradOptimiser(learningRate: Double): AdagradOptimiser =
|
/**
|
||||||
AdagradOptimiser(scope, JNoa.adagradOptim(jitModuleHandle, learningRate))
|
* Implements Adagrad algorithm. Receive `learning rate`, `weight_decay`,
|
||||||
|
* `learning rate decay`, `initial accumulator value`, `eps`.
|
||||||
|
* For more information: https://pytorch.org/docs/stable/generated/torch.optim.Adagrad.html
|
||||||
|
*
|
||||||
|
* @receiver the `learning rate`, `weight_decay`, `learning rate decay`, `initial accumulator value`, `eps`.
|
||||||
|
* @return AdagradOptimiser.
|
||||||
|
*/
|
||||||
|
public fun NoaJitModule.adagradOptimiser(learningRate: Double, weightDecay: Double,
|
||||||
|
lrDecay: Double, initialAccumulatorValue: Double, eps: Double): AdagradOptimiser =
|
||||||
|
AdagradOptimiser(scope, JNoa.adagradOptim(jitModuleHandle, learningRate, weightDecay,
|
||||||
|
lrDecay, initialAccumulatorValue, eps))
|
||||||
|
|
||||||
public fun NoaJitModule.sgdOptimiser(learningRate: Double): SgdOptimiser =
|
/**
|
||||||
SgdOptimiser(scope, JNoa.sgdOptim(jitModuleHandle, learningRate))
|
* Implements stochastic gradient descent. Receive `learning rate`, `momentum` factor,
|
||||||
|
* `dampening` for momentum, `weight_decay`, `nesterov` (enables Nesterov momentum).
|
||||||
|
* For more information: https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
|
||||||
|
*
|
||||||
|
* @receiver the `learning rate`, `momentum`, `dampening`, `weight_decay`, `nesterov`.
|
||||||
|
* @return SgdOptimiser.
|
||||||
|
*/
|
||||||
|
public fun NoaJitModule.sgdOptimiser(learningRate: Double, momentum: Double,
|
||||||
|
dampening: Double, weightDecay: Double, nesterov: Boolean): SgdOptimiser =
|
||||||
|
SgdOptimiser(scope, JNoa.sgdOptim(jitModuleHandle, learningRate, momentum,
|
||||||
|
dampening, weightDecay, nesterov))
|
||||||
}
|
}
|
||||||
|
|
||||||
public sealed class NoaDoubleAlgebra
|
public sealed class NoaDoubleAlgebra
|
||||||
@ -734,4 +776,3 @@ protected constructor(scope: NoaScope) :
|
|||||||
override fun NoaIntTensor.set(dim: Int, slice: Slice, array: IntArray): Unit =
|
override fun NoaIntTensor.set(dim: Int, slice: Slice, array: IntArray): Unit =
|
||||||
JNoa.setSliceBlobInt(tensorHandle, dim, slice.first, slice.second, array)
|
JNoa.setSliceBlobInt(tensorHandle, dim, slice.first, slice.second, array)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -71,7 +71,7 @@ class TestJitModules {
|
|||||||
|
|
||||||
val yPred = netModule.forward(xTrain)
|
val yPred = netModule.forward(xTrain)
|
||||||
val loss = lossModule.forward(yPred)
|
val loss = lossModule.forward(yPred)
|
||||||
val optimiser = netModule.rmsOptimiser(0.005)
|
val optimiser = netModule.rmsOptimiser(0.005, 0.99, 1e-08, 0.0, 0.0, false)
|
||||||
|
|
||||||
repeat(250){
|
repeat(250){
|
||||||
optimiser.zeroGrad()
|
optimiser.zeroGrad()
|
||||||
@ -107,7 +107,7 @@ class TestJitModules {
|
|||||||
|
|
||||||
val yPred = netModule.forward(xTrain)
|
val yPred = netModule.forward(xTrain)
|
||||||
val loss = lossModule.forward(yPred)
|
val loss = lossModule.forward(yPred)
|
||||||
val optimiser = netModule.adamWOptimiser(0.005)
|
val optimiser = netModule.adamWOptimiser(0.005, 0.9, 0.999, 1e-08, 0.01, false)
|
||||||
|
|
||||||
repeat(250){
|
repeat(250){
|
||||||
optimiser.zeroGrad()
|
optimiser.zeroGrad()
|
||||||
@ -143,7 +143,7 @@ class TestJitModules {
|
|||||||
|
|
||||||
val yPred = netModule.forward(xTrain)
|
val yPred = netModule.forward(xTrain)
|
||||||
val loss = lossModule.forward(yPred)
|
val loss = lossModule.forward(yPred)
|
||||||
val optimiser = netModule.adagradOptimiser(0.005)
|
val optimiser = netModule.adagradOptimiser(0.05, 0.0, 0.0, 0.0, 1e-10)
|
||||||
|
|
||||||
repeat(250){
|
repeat(250){
|
||||||
optimiser.zeroGrad()
|
optimiser.zeroGrad()
|
||||||
@ -179,9 +179,9 @@ class TestJitModules {
|
|||||||
|
|
||||||
val yPred = netModule.forward(xTrain)
|
val yPred = netModule.forward(xTrain)
|
||||||
val loss = lossModule.forward(yPred)
|
val loss = lossModule.forward(yPred)
|
||||||
val optimiser = netModule.sgdOptimiser(0.005)
|
val optimiser = netModule.sgdOptimiser(0.01, 0.9, 0.0, 0.0, false)
|
||||||
|
|
||||||
repeat(250){
|
repeat(400){
|
||||||
optimiser.zeroGrad()
|
optimiser.zeroGrad()
|
||||||
netModule.forwardAssign(xTrain, yPred)
|
netModule.forwardAssign(xTrain, yPred)
|
||||||
lossModule.forwardAssign(yPred, loss)
|
lossModule.forwardAssign(yPred, loss)
|
||||||
|
Loading…
Reference in New Issue
Block a user