forked from kscience/kmath
Remove extra enum class and data class. Fix docstrings and comments readability. Fix code style violations.
This commit is contained in:
parent
31be2b547b
commit
39244ebc52
@ -14,17 +14,9 @@ import kotlin.math.abs
|
|||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Offset constants which will be used later. Added them for avoiding "magical numbers" problem.
|
* Stores a result of [dynamicTimeWarping]. The class contains:
|
||||||
*/
|
* 1. [Total penalty cost][totalCost] for series alignment.
|
||||||
internal enum class DtwOffset {
|
* 2. [Align matrix][alignMatrix] that describes which point of the first series matches to point of the other series.
|
||||||
LEFT,
|
|
||||||
BOTTOM,
|
|
||||||
DIAGONAL
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Public class to store result of method. Class contains total penalty cost for series alignment.
|
|
||||||
* Also, this class contains align matrix (which point of the first series matches to point of the other series).
|
|
||||||
*/
|
*/
|
||||||
public data class DynamicTimeWarpingData(
|
public data class DynamicTimeWarpingData(
|
||||||
val totalCost : Double = 0.0,
|
val totalCost : Double = 0.0,
|
||||||
@ -32,41 +24,21 @@ public data class DynamicTimeWarpingData(
|
|||||||
)
|
)
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* PathIndices class for better code perceptibility.
|
* DTW method implementation. Returns alignment matrix for two series comparing and penalty for this alignment.
|
||||||
* Special fun moveOption represent offset for indices. Arguments of this function
|
|
||||||
* is flags for bottom, diagonal or left offsets respectively.
|
|
||||||
*/
|
|
||||||
internal data class PathIndices (var id_x: Int, var id_y: Int) {
|
|
||||||
fun moveOption (direction: DtwOffset) {
|
|
||||||
when(direction) {
|
|
||||||
DtwOffset.BOTTOM -> id_x--
|
|
||||||
DtwOffset.DIAGONAL -> {
|
|
||||||
id_x--
|
|
||||||
id_y--
|
|
||||||
}
|
|
||||||
DtwOffset.LEFT -> id_y--
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Final DTW method realization. Returns alignment matrix
|
|
||||||
* for two series comparing and penalty for this alignment.
|
|
||||||
*/
|
*/
|
||||||
@OptIn(PerformancePitfall::class)
|
@OptIn(PerformancePitfall::class)
|
||||||
public fun DoubleFieldOpsND.dynamicTimeWarping(series1 : DoubleBuffer, series2 : DoubleBuffer) : DynamicTimeWarpingData {
|
public fun DoubleFieldOpsND.dynamicTimeWarping(series1 : DoubleBuffer, series2 : DoubleBuffer) : DynamicTimeWarpingData {
|
||||||
var cost = 0.0
|
// Create a special matrix of costs alignment for the two series.
|
||||||
var pathLength = 0
|
val costMatrix = structureND(ShapeND(series1.size, series2.size)) { (row, col) ->
|
||||||
// Special matrix of costs alignment for two series.
|
abs(series1[row] - series2[col])
|
||||||
val costMatrix = structureND(ShapeND(series1.size, series2.size)) {
|
|
||||||
(row, col) -> abs(series1[row] - series2[col])
|
|
||||||
}
|
}
|
||||||
// Formula: costMatrix[i, j] = euqlideanNorm(series1(i), series2(j)) +
|
|
||||||
|
// Initialise the cost matrix by formulas
|
||||||
|
// costMatrix[i, j] = euclideanNorm(series1(i), series2(j)) +
|
||||||
// min(costMatrix[i - 1, j], costMatrix[i, j - 1], costMatrix[i - 1, j - 1]).
|
// min(costMatrix[i - 1, j], costMatrix[i, j - 1], costMatrix[i - 1, j - 1]).
|
||||||
for ( (row, col) in costMatrix.indices) {
|
for ((row, col) in costMatrix.indices) {
|
||||||
costMatrix[row, col] += when {
|
costMatrix[row, col] += when {
|
||||||
// There is special cases for i = 0 or j = 0.
|
row == 0 && col == 0 -> continue
|
||||||
row == 0 && col == 0 -> 0.0
|
|
||||||
row == 0 -> costMatrix[row, col - 1]
|
row == 0 -> costMatrix[row, col - 1]
|
||||||
col == 0 -> costMatrix[row - 1, col]
|
col == 0 -> costMatrix[row - 1, col]
|
||||||
else -> minOf(
|
else -> minOf(
|
||||||
@ -76,33 +48,37 @@ public fun DoubleFieldOpsND.dynamicTimeWarping(series1 : DoubleBuffer, series2 :
|
|||||||
)
|
)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// alignMatrix contains non-zero values at position where two points from series matches
|
// alignMatrix contains non-zero values at position where two points from series matches
|
||||||
// Values are penalty for concatenation of current points.
|
// Values are penalty for concatenation of current points.
|
||||||
val alignMatrix = structureND(ShapeND(series1.size, series2.size)) {(_, _) -> 0.0}
|
val alignMatrix = structureND(ShapeND(series1.size, series2.size)) { _ -> 0.0}
|
||||||
val indexes = PathIndices(series1.size - 1, series2.size - 1)
|
var index1 = series1.size - 1
|
||||||
|
var index2 = series2.size - 1
|
||||||
|
var cost = 0.0
|
||||||
|
var pathLength = 0
|
||||||
|
|
||||||
with(indexes) {
|
alignMatrix[index1, index2] = costMatrix[index1, index2]
|
||||||
alignMatrix[id_x, id_y] = costMatrix[id_x, id_y]
|
cost += costMatrix[index1, index2]
|
||||||
cost += costMatrix[id_x, id_y]
|
|
||||||
pathLength++
|
pathLength++
|
||||||
while (id_x != 0 || id_y != 0) {
|
while (index1 != 0 || index2 != 0) {
|
||||||
when {
|
when {
|
||||||
id_x == 0 || costMatrix[id_x, id_y] == costMatrix[id_x, id_y - 1] + abs(series1[id_x] - series2[id_y]) -> {
|
index1 == 0 || costMatrix[index1, index2] == costMatrix[index1, index2 - 1] + abs(series1[index1] - series2[index2]) -> {
|
||||||
moveOption(DtwOffset.LEFT)
|
index2--
|
||||||
}
|
}
|
||||||
id_y == 0 || costMatrix[id_x, id_y] == costMatrix[id_x - 1, id_y] + abs(series1[id_x] - series2[id_y]) -> {
|
index2 == 0 || costMatrix[index1, index2] == costMatrix[index1 - 1, index2] + abs(series1[index1] - series2[index2]) -> {
|
||||||
moveOption(DtwOffset.BOTTOM)
|
index1--
|
||||||
}
|
}
|
||||||
costMatrix[id_x, id_y] == costMatrix[id_x - 1, id_y - 1] + abs(series1[id_x] - series2[id_y]) -> {
|
costMatrix[index1, index2] == costMatrix[index1 - 1, index2 - 1] + abs(series1[index1] - series2[index2]) -> {
|
||||||
moveOption(DtwOffset.DIAGONAL)
|
index1--
|
||||||
|
index2--
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
alignMatrix[id_x, id_y] = costMatrix[id_x, id_y]
|
alignMatrix[index1, index2] = costMatrix[index1, index2]
|
||||||
cost += costMatrix[id_x, id_y]
|
cost += costMatrix[index1, index2]
|
||||||
pathLength++
|
pathLength++
|
||||||
}
|
}
|
||||||
cost /= pathLength
|
cost /= pathLength
|
||||||
}
|
|
||||||
return DynamicTimeWarpingData(cost, alignMatrix)
|
return DynamicTimeWarpingData(cost, alignMatrix)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -15,8 +15,7 @@ import kotlin.test.Test
|
|||||||
class DTWTest {
|
class DTWTest {
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
fun someData() : Unit {
|
fun someData() {
|
||||||
with(Double.algebra.bufferAlgebra.seriesAlgebra()) {
|
|
||||||
val firstSequence: DoubleArray = doubleArrayOf(0.0, 2.0, 3.0, 1.0, 3.0, 0.1, 0.0, 1.0)
|
val firstSequence: DoubleArray = doubleArrayOf(0.0, 2.0, 3.0, 1.0, 3.0, 0.1, 0.0, 1.0)
|
||||||
val secondSequence: DoubleArray = doubleArrayOf(1.0, 0.0, 3.0, 0.0, 0.0, 3.0, 2.0, 0.0, 2.0)
|
val secondSequence: DoubleArray = doubleArrayOf(1.0, 0.0, 3.0, 0.0, 0.0, 3.0, 2.0, 0.0, 2.0)
|
||||||
|
|
||||||
@ -33,7 +32,4 @@ class DTWTest {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user