From 37ad48e820cde271ba93d1249b84b0abfd033f21 Mon Sep 17 00:00:00 2001
From: Gleb Minaev <43728100+lounres@users.noreply.github.com>
Date: Mon, 13 Jun 2022 02:06:15 +0300
Subject: [PATCH] Sift # 3. Filtered last sift and usages of [ListPolynomial]s.

---
 .../kmath/functions/LabeledPolynomial.kt      | 539 ------------------
 .../functions/LabeledRationalFunction.kt      | 139 -----
 .../kmath/functions/ListPolynomial.kt         |  80 ++-
 .../kmath/functions/ListRationalFunction.kt   | 158 +++--
 .../kmath/functions/NumberedPolynomial.kt     | 389 -------------
 .../functions/NumberedRationalFunction.kt     | 188 ------
 .../kscience/kmath/functions/Polynomial.kt    | 152 ++++-
 .../kmath/functions/RationalFunction.kt       | 511 ++++++++++++-----
 .../kmath/functions/labeledConstructors.kt    | 203 -------
 .../kmath/functions/labeledPolynomialUtil.kt  | 495 ----------------
 .../functions/labeledRationalFunctionUtil.kt  |  33 --
 .../kmath/functions/listConstructors.kt       |  61 +-
 .../kmath/functions/listPolynomialUtil.kt     | 233 --------
 .../kscience/kmath/functions/listUtil.kt      | 268 +++++++++
 ...alFunctionUtil.kt => listUtilOptimized.kt} | 129 +++--
 .../space/kscience/kmath/functions/misc.kt    |  13 +
 .../kmath/functions/numberedConstructors.kt   | 195 -------
 .../kmath/functions/numberedPolynomialUtil.kt | 528 -----------------
 .../functions/numberedRationalFunctionUtil.kt |  33 --
 .../kmath/functions/ListPolynomialTest.kt     |  32 +-
 .../kmath/functions/ListPolynomialUtilTest.kt |   2 +
 .../kscience/kmath/test/misc/IntModulo.kt     | 138 +++++
 .../kscience/kmath/test/misc/Rational.kt      | 135 +++++
 .../space/kscience/kmath/test/misc/misc.kt    |  29 +
 24 files changed, 1378 insertions(+), 3305 deletions(-)
 delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledPolynomial.kt
 delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledRationalFunction.kt
 delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedPolynomial.kt
 delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedRationalFunction.kt
 delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledConstructors.kt
 delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledPolynomialUtil.kt
 delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledRationalFunctionUtil.kt
 delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listPolynomialUtil.kt
 create mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listUtil.kt
 rename kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/{listRationalFunctionUtil.kt => listUtilOptimized.kt} (72%)
 create mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/misc.kt
 delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedConstructors.kt
 delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedPolynomialUtil.kt
 delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedRationalFunctionUtil.kt
 create mode 100644 kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/IntModulo.kt
 create mode 100644 kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/Rational.kt
 create mode 100644 kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/misc.kt

diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledPolynomial.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledPolynomial.kt
deleted file mode 100644
index b904f7331..000000000
--- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledPolynomial.kt
+++ /dev/null
@@ -1,539 +0,0 @@
-/*
- * Copyright 2018-2021 KMath contributors.
- * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
- */
-
-package space.kscience.kmath.functions
-
-import space.kscience.kmath.expressions.Symbol
-import space.kscience.kmath.operations.Ring
-import space.kscience.kmath.operations.ScaleOperations
-import kotlin.math.max
-
-
-/**
- * Represents multivariate polynomials with labeled variables.
- *
- * @param C Ring in which the polynomial is considered.
- */
-public data class LabeledPolynomial<C>
-internal constructor(
-    /**
-     * Map that collects coefficients of the polynomial. Every non-zero monomial
-     * `a x_1^{d_1} ... x_n^{d_n}` is represented as pair "key-value" in the map, where value is coefficients `a` and
-     * key is map that associates variables in the monomial with multiplicity of them occurring in the monomial.
-     * For example polynomial
-     * ```
-     * 5 a^2 c^3 - 6 b + 0 b c
-     * ```
-     * has coefficients represented as
-     * ```
-     * mapOf(
-     *      mapOf(
-     *          a to 2,
-     *          c to 3
-     *      ) to 5,
-     *      mapOf(
-     *          b to 1
-     *      ) to (-6)
-     * )
-     * ```
-     * where `a`, `b` and `c` are corresponding [Symbol] objects.
-     */
-    public val coefficients: Map<Map<Symbol, UInt>, C>
-) : Polynomial<C> {
-    override fun toString(): String = "LabeledPolynomial$coefficients"
-}
-
-/**
- * Space of polynomials.
- *
- * @param C the type of operated polynomials.
- * @param A the intersection of [Ring] of [C] and [ScaleOperations] of [C].
- * @param ring the [A] instance.
- */
-public class LabeledPolynomialSpace<C, A : Ring<C>>(
-    public override val ring: A,
-) : MultivariatePolynomialSpace<C, Symbol, LabeledPolynomial<C>>, PolynomialSpaceOverRing<C, LabeledPolynomial<C>, A> {
-    public override operator fun Symbol.plus(other: Int): LabeledPolynomial<C> =
-        if (other == 0) LabeledPolynomial<C>(mapOf(
-            mapOf(this@plus to 1U) to constantOne,
-        ))
-        else LabeledPolynomial<C>(mapOf(
-            mapOf(this@plus to 1U) to constantOne,
-            emptyMap<Symbol, UInt>() to constantOne * other,
-        ))
-    public override operator fun Symbol.minus(other: Int): LabeledPolynomial<C> =
-        if (other == 0) LabeledPolynomial<C>(mapOf(
-            mapOf(this@minus to 1U) to -constantOne,
-        ))
-        else LabeledPolynomial<C>(mapOf(
-            mapOf(this@minus to 1U) to -constantOne,
-            emptyMap<Symbol, UInt>() to constantOne * other,
-        ))
-    public override operator fun Symbol.times(other: Int): LabeledPolynomial<C> =
-        if (other == 0) zero
-        else LabeledPolynomial<C>(mapOf(
-            mapOf(this to 1U) to constantOne * other,
-        ))
-
-    public override operator fun Int.plus(other: Symbol): LabeledPolynomial<C> =
-        if (this == 0) LabeledPolynomial<C>(mapOf(
-            mapOf(other to 1U) to constantOne,
-        ))
-        else LabeledPolynomial<C>(mapOf(
-            mapOf(other to 1U) to constantOne,
-            emptyMap<Symbol, UInt>() to constantOne * this@plus,
-        ))
-    public override operator fun Int.minus(other: Symbol): LabeledPolynomial<C> =
-        if (this == 0) LabeledPolynomial<C>(mapOf(
-            mapOf(other to 1U) to -constantOne,
-        ))
-        else LabeledPolynomial<C>(mapOf(
-            mapOf(other to 1U) to -constantOne,
-            emptyMap<Symbol, UInt>() to constantOne * this@minus,
-        ))
-    public override operator fun Int.times(other: Symbol): LabeledPolynomial<C> =
-        if (this == 0) zero
-        else LabeledPolynomial<C>(mapOf(
-            mapOf(other to 1U) to constantOne * this@times,
-        ))
-
-    /**
-     * Returns sum of the polynomial and the integer represented as polynomial.
-     *
-     * The operation is equivalent to adding [other] copies of unit polynomial to [this].
-     */
-    public override operator fun LabeledPolynomial<C>.plus(other: Int): LabeledPolynomial<C> =
-        if (other == 0) this
-        else with(coefficients) {
-            if (isEmpty()) LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to other.asConstant()))
-            else LabeledPolynomial<C>(
-                toMutableMap()
-                    .apply {
-                        val degs = emptyMap<Symbol, UInt>()
-
-                        this[degs] = getOrElse(degs) { constantZero } + other
-                    }
-            )
-        }
-    /**
-     * Returns difference between the polynomial and the integer represented as polynomial.
-     *
-     * The operation is equivalent to subtraction [other] copies of unit polynomial from [this].
-     */
-    public override operator fun LabeledPolynomial<C>.minus(other: Int): LabeledPolynomial<C> =
-        if (other == 0) this
-        else with(coefficients) {
-            if (isEmpty()) LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to (-other).asConstant()))
-            else LabeledPolynomial<C>(
-                toMutableMap()
-                    .apply {
-                        val degs = emptyMap<Symbol, UInt>()
-
-                        this[degs] = getOrElse(degs) { constantZero } - other
-                    }
-            )
-        }
-    /**
-     * Returns product of the polynomial and the integer represented as polynomial.
-     *
-     * The operation is equivalent to sum of [other] copies of [this].
-     */
-    public override operator fun LabeledPolynomial<C>.times(other: Int): LabeledPolynomial<C> =
-        if (other == 0) zero
-        else LabeledPolynomial(
-            coefficients
-                .toMutableMap()
-                .apply {
-                    for (degs in keys) this[degs] = this[degs]!! * other
-                }
-        )
-
-    /**
-     * Returns sum of the integer represented as polynomial and the polynomial.
-     *
-     * The operation is equivalent to adding [this] copies of unit polynomial to [other].
-     */
-    public override operator fun Int.plus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
-        if (this == 0) other
-        else with(other.coefficients) {
-            if (isEmpty()) LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to this@plus.asConstant()))
-            else LabeledPolynomial<C>(
-                toMutableMap()
-                    .apply {
-                        val degs = emptyMap<Symbol, UInt>()
-
-                        this[degs] = this@plus + getOrElse(degs) { constantZero }
-                    }
-            )
-        }
-    /**
-     * Returns difference between the integer represented as polynomial and the polynomial.
-     *
-     * The operation is equivalent to subtraction [this] copies of unit polynomial from [other].
-     */
-    public override operator fun Int.minus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
-        if (this == 0) other
-        else with(other.coefficients) {
-            if (isEmpty()) LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to this@minus.asConstant()))
-            else LabeledPolynomial<C>(
-                toMutableMap()
-                    .apply {
-                        val degs = emptyMap<Symbol, UInt>()
-
-                        this[degs] = this@minus - getOrElse(degs) { constantZero }
-                    }
-            )
-        }
-    /**
-     * Returns product of the integer represented as polynomial and the polynomial.
-     *
-     * The operation is equivalent to sum of [this] copies of [other].
-     */
-    public override operator fun Int.times(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
-        if (this == 0) zero
-        else LabeledPolynomial(
-            other.coefficients
-                .toMutableMap()
-                .apply {
-                    for (degs in keys) this[degs] = this@times * this[degs]!!
-                }
-        )
-
-    /**
-     * Converts the integer [value] to polynomial.
-     */
-    public override fun number(value: Int): LabeledPolynomial<C> = number(constantNumber(value))
-
-    public override operator fun C.plus(other: Symbol): LabeledPolynomial<C> =
-        LabeledPolynomial<C>(mapOf(
-            mapOf(other to 1U) to constantOne,
-            emptyMap<Symbol, UInt>() to this@plus,
-        ))
-    public override operator fun C.minus(other: Symbol): LabeledPolynomial<C> =
-        LabeledPolynomial<C>(mapOf(
-            mapOf(other to 1U) to -constantOne,
-            emptyMap<Symbol, UInt>() to this@minus,
-        ))
-    public override operator fun C.times(other: Symbol): LabeledPolynomial<C> =
-        LabeledPolynomial<C>(mapOf(
-            mapOf(other to 1U) to this@times,
-        ))
-
-    public override operator fun Symbol.plus(other: C): LabeledPolynomial<C> =
-        LabeledPolynomial<C>(mapOf(
-            mapOf(this@plus to 1U) to constantOne,
-            emptyMap<Symbol, UInt>() to other,
-        ))
-    public override operator fun Symbol.minus(other: C): LabeledPolynomial<C> =
-        LabeledPolynomial<C>(mapOf(
-            mapOf(this@minus to 1U) to -constantOne,
-            emptyMap<Symbol, UInt>() to other,
-        ))
-    public override operator fun Symbol.times(other: C): LabeledPolynomial<C> =
-        LabeledPolynomial<C>(mapOf(
-            mapOf(this@times to 1U) to other,
-        ))
-
-    /**
-     * Returns sum of the constant represented as polynomial and the polynomial.
-     */
-    override operator fun C.plus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
-        with(other.coefficients) {
-            if (isEmpty()) LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to this@plus))
-            else LabeledPolynomial<C>(
-                toMutableMap()
-                    .apply {
-                        val degs = emptyMap<Symbol, UInt>()
-
-                        this[degs] = this@plus + getOrElse(degs) { constantZero }
-                    }
-            )
-        }
-    /**
-     * Returns difference between the constant represented as polynomial and the polynomial.
-     */
-    override operator fun C.minus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
-        with(other.coefficients) {
-            if (isEmpty()) LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to this@minus))
-            else LabeledPolynomial<C>(
-                toMutableMap()
-                    .apply {
-                        forEach { (degs, c) -> if(degs.isNotEmpty()) this[degs] = -c }
-
-                        val degs = emptyMap<Symbol, UInt>()
-
-                        this[degs] = this@minus - getOrElse(degs) { constantZero }
-                    }
-            )
-        }
-    /**
-     * Returns product of the constant represented as polynomial and the polynomial.
-     */
-    override operator fun C.times(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
-        LabeledPolynomial<C>(
-            other.coefficients
-                .toMutableMap()
-                .apply {
-                    for (degs in keys) this[degs] = this@times * this[degs]!!
-                }
-        )
-
-    /**
-     * Returns sum of the constant represented as polynomial and the polynomial.
-     */
-    override operator fun LabeledPolynomial<C>.plus(other: C): LabeledPolynomial<C> =
-        with(coefficients) {
-            if (isEmpty()) LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to other))
-            else LabeledPolynomial<C>(
-                toMutableMap()
-                    .apply {
-                        val degs = emptyMap<Symbol, UInt>()
-
-                        this[degs] = getOrElse(degs) { constantZero } + other
-                    }
-            )
-        }
-    /**
-     * Returns difference between the constant represented as polynomial and the polynomial.
-     */
-    override operator fun LabeledPolynomial<C>.minus(other: C): LabeledPolynomial<C> =
-        with(coefficients) {
-            if (isEmpty()) LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to other))
-            else LabeledPolynomial<C>(
-                toMutableMap()
-                    .apply {
-                        forEach { (degs, c) -> if(degs.isNotEmpty()) this[degs] = -c }
-
-                        val degs = emptyMap<Symbol, UInt>()
-
-                        this[degs] = getOrElse(degs) { constantZero } - other
-                    }
-            )
-        }
-    /**
-     * Returns product of the constant represented as polynomial and the polynomial.
-     */
-    override operator fun LabeledPolynomial<C>.times(other: C): LabeledPolynomial<C> =
-        LabeledPolynomial<C>(
-            coefficients
-                .toMutableMap()
-                .apply {
-                    for (degs in keys) this[degs] = this[degs]!! * other
-                }
-        )
-
-    /**
-     * Converts the constant [value] to polynomial.
-     */
-    public override fun number(value: C): LabeledPolynomial<C> =
-        LabeledPolynomial(mapOf(emptyMap<Symbol, UInt>() to value))
-
-    public override operator fun Symbol.unaryPlus(): LabeledPolynomial<C> =
-        LabeledPolynomial<C>(mapOf(
-            mapOf(this to 1U) to constantOne,
-        ))
-    public override operator fun Symbol.unaryMinus(): LabeledPolynomial<C> =
-        LabeledPolynomial<C>(mapOf(
-            mapOf(this to 1U) to -constantOne,
-        ))
-    public override operator fun Symbol.plus(other: Symbol): LabeledPolynomial<C> =
-        if (this == other) LabeledPolynomial<C>(mapOf(
-            mapOf(this to 1U) to constantOne * 2
-        ))
-        else LabeledPolynomial<C>(mapOf(
-            mapOf(this to 1U) to constantOne,
-            mapOf(other to 1U) to constantOne,
-        ))
-    public override operator fun Symbol.minus(other: Symbol): LabeledPolynomial<C> =
-        if (this == other) zero
-        else LabeledPolynomial<C>(mapOf(
-            mapOf(this to 1U) to constantOne,
-            mapOf(other to 1U) to -constantOne,
-        ))
-    public override operator fun Symbol.times(other: Symbol): LabeledPolynomial<C> =
-        if (this == other) LabeledPolynomial<C>(mapOf(
-            mapOf(this to 2U) to constantOne
-        ))
-        else LabeledPolynomial<C>(mapOf(
-            mapOf(this to 1U, other to 1U) to constantOne,
-        ))
-
-    public override operator fun Symbol.plus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
-        with(other.coefficients) {
-            if (isEmpty()) LabeledPolynomial<C>(mapOf(mapOf(this@plus to 1u) to constantOne))
-            else LabeledPolynomial<C>(
-                toMutableMap()
-                    .apply {
-                        val degs = mapOf(this@plus to 1U)
-
-                        this[degs] = constantOne + getOrElse(degs) { constantZero }
-                    }
-            )
-        }
-    public override operator fun Symbol.minus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
-        with(other.coefficients) {
-            if (isEmpty()) LabeledPolynomial<C>(mapOf(mapOf(this@minus to 1u) to constantOne))
-            else LabeledPolynomial<C>(
-                toMutableMap()
-                    .apply {
-                        forEach { (degs, c) -> if(degs.isNotEmpty()) this[degs] = -c }
-
-                        val degs = mapOf(this@minus to 1U)
-
-                        this[degs] = constantOne - getOrElse(degs) { constantZero }
-                    }
-            )
-        }
-    public override operator fun Symbol.times(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
-        LabeledPolynomial<C>(
-            other.coefficients
-                .mapKeys { (degs, _) -> degs.toMutableMap().also{ it[this] = if (this in it) it[this]!! + 1U else 1U } }
-        )
-
-    public override operator fun LabeledPolynomial<C>.plus(other: Symbol): LabeledPolynomial<C> =
-        with(coefficients) {
-            if (isEmpty()) LabeledPolynomial<C>(mapOf(mapOf(other to 1u) to constantOne))
-            else LabeledPolynomial<C>(
-                toMutableMap()
-                    .apply {
-                        val degs = mapOf(other to 1U)
-
-                        this[degs] = constantOne + getOrElse(degs) { constantZero }
-                    }
-            )
-        }
-    public override operator fun LabeledPolynomial<C>.minus(other: Symbol): LabeledPolynomial<C> =
-        with(coefficients) {
-            if (isEmpty()) LabeledPolynomial<C>(mapOf(mapOf(other to 1u) to constantOne))
-            else LabeledPolynomial<C>(
-                toMutableMap()
-                    .apply {
-                        val degs = mapOf(other to 1U)
-
-                        this[degs] = constantOne - getOrElse(degs) { constantZero }
-                    }
-            )
-        }
-    public override operator fun LabeledPolynomial<C>.times(other: Symbol): LabeledPolynomial<C> =
-        LabeledPolynomial<C>(
-            coefficients
-                .mapKeys { (degs, _) -> degs.toMutableMap().also{ it[other] = if (other in it) it[other]!! + 1U else 1U } }
-        )
-
-    /**
-     * Returns negation of the polynomial.
-     */
-    override fun LabeledPolynomial<C>.unaryMinus(): LabeledPolynomial<C> =
-        LabeledPolynomial<C>(
-            coefficients.mapValues { -it.value }
-        )
-    /**
-     * Returns sum of the polynomials.
-     */
-    override operator fun LabeledPolynomial<C>.plus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
-        LabeledPolynomial<C>(
-            buildMap(coefficients.size + other.coefficients.size) {
-                other.coefficients.mapValuesTo(this) { it.value }
-                other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! + value else value }
-            }
-        )
-    /**
-     * Returns difference of the polynomials.
-     */
-    override operator fun LabeledPolynomial<C>.minus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
-        LabeledPolynomial<C>(
-            buildMap(coefficients.size + other.coefficients.size) {
-                other.coefficients.mapValuesTo(this) { it.value }
-                other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! - value else -value }
-            }
-        )
-    /**
-     * Returns product of the polynomials.
-     */
-    override operator fun LabeledPolynomial<C>.times(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
-        LabeledPolynomial<C>(
-            buildMap(coefficients.size * other.coefficients.size) {
-                for ((degs1, c1) in coefficients) for ((degs2, c2) in other.coefficients) {
-                    val degs = degs1.toMutableMap()
-                    degs2.mapValuesTo(degs) { (variable, deg) -> degs.getOrElse(variable) { 0u } + deg }
-                    val c = c1 * c2
-                    this[degs] = if (degs in this) this[degs]!! + c else c
-                }
-            }
-        )
-
-    /**
-     * Instance of zero polynomial (zero of the polynomial ring).
-     */
-    override val zero: LabeledPolynomial<C> = LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to constantZero))
-    /**
-     * Instance of unit polynomial (unit of the polynomial ring).
-     */
-    override val one: LabeledPolynomial<C> = LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to constantOne))
-
-    /**
-     * Degree of the polynomial, [see also](https://en.wikipedia.org/wiki/Degree_of_a_polynomial). If the polynomial is
-     * zero, degree is -1.
-     */
-    override val LabeledPolynomial<C>.degree: Int
-        get() = coefficients.entries.maxOfOrNull { (degs, c) -> degs.values.sum().toInt() } ?: -1
-    /**
-     * Map that associates variables (that appear in the polynomial in positive exponents) with their most exponents
-     * in which they are appeared in the polynomial.
-     *
-     * As consequence all values in the map are positive integers. Also, if the polynomial is constant, the map is empty.
-     * And keys of the map is the same as in [variables].
-     */
-    public override val LabeledPolynomial<C>.degrees: Map<Symbol, UInt>
-        get() =
-            buildMap {
-                coefficients.entries.forEach { (degs, _) ->
-                    degs.mapValuesTo(this) { (variable, deg) ->
-                        max(getOrElse(variable) { 0u }, deg)
-                    }
-                }
-            }
-    /**
-     * Counts degree of the polynomial by the specified [variable].
-     */
-    public override fun LabeledPolynomial<C>.degreeBy(variable: Symbol): UInt =
-        coefficients.entries.maxOfOrNull { (degs, _) -> degs.getOrElse(variable) { 0u } } ?: 0u
-    /**
-     * Counts degree of the polynomial by the specified [variables].
-     */
-    public override fun LabeledPolynomial<C>.degreeBy(variables: Collection<Symbol>): UInt =
-        coefficients.entries.maxOfOrNull { (degs, _) -> degs.filterKeys { it in variables }.values.sum() } ?: 0u
-    /**
-     * Set of all variables that appear in the polynomial in positive exponents.
-     */
-    public override val LabeledPolynomial<C>.variables: Set<Symbol>
-        get() =
-            buildSet {
-                coefficients.entries.forEach { (degs, _) -> addAll(degs.keys) }
-            }
-    /**
-     * Count of all variables that appear in the polynomial in positive exponents.
-     */
-    public override val LabeledPolynomial<C>.countOfVariables: Int get() = variables.size
-
-//    @Suppress("NOTHING_TO_INLINE")
-//    public inline fun LabeledPolynomial<C>.substitute(argument: Map<Symbol, C>): LabeledPolynomial<C> = this.substitute(ring, argument)
-//    @Suppress("NOTHING_TO_INLINE")
-//    @JvmName("substitutePolynomial")
-//    public inline fun LabeledPolynomial<C>.substitute(argument: Map<Symbol, LabeledPolynomial<C>>): LabeledPolynomial<C> = this.substitute(ring, argument)
-//
-//    @Suppress("NOTHING_TO_INLINE")
-//    public inline fun LabeledPolynomial<C>.asFunction(): (Map<Symbol, C>) -> LabeledPolynomial<C> = { this.substitute(ring, it) }
-//    @Suppress("NOTHING_TO_INLINE")
-//    public inline fun LabeledPolynomial<C>.asFunctionOnConstants(): (Map<Symbol, C>) -> LabeledPolynomial<C> = { this.substitute(ring, it) }
-//    @Suppress("NOTHING_TO_INLINE")
-//    public inline fun LabeledPolynomial<C>.asFunctionOnPolynomials(): (Map<Symbol, LabeledPolynomial<C>>) -> LabeledPolynomial<C> = { this.substitute(ring, it) }
-//
-//    @Suppress("NOTHING_TO_INLINE")
-//    public inline operator fun LabeledPolynomial<C>.invoke(argument: Map<Symbol, C>): LabeledPolynomial<C> = this.substitute(ring, argument)
-//    @Suppress("NOTHING_TO_INLINE")
-//    @JvmName("invokePolynomial")
-//    public inline operator fun LabeledPolynomial<C>.invoke(argument: Map<Symbol, LabeledPolynomial<C>>): LabeledPolynomial<C> = this.substitute(ring, argument)
-}
\ No newline at end of file
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledRationalFunction.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledRationalFunction.kt
deleted file mode 100644
index 76c6874f5..000000000
--- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledRationalFunction.kt
+++ /dev/null
@@ -1,139 +0,0 @@
-/*
- * Copyright 2018-2021 KMath contributors.
- * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
- */
-
-package space.kscience.kmath.functions
-
-import space.kscience.kmath.expressions.Symbol
-import space.kscience.kmath.operations.Ring
-import space.kscience.kmath.operations.invoke
-
-
-public class LabeledRationalFunction<C>(
-    public override val numerator: LabeledPolynomial<C>,
-    public override val denominator: LabeledPolynomial<C>
-) : RationalFunction<C, LabeledPolynomial<C>> {
-    override fun toString(): String = "LabeledRationalFunction${numerator.coefficients}/${denominator.coefficients}"
-}
-
-public class LabeledRationalFunctionSpace<C, A: Ring<C>>(
-    public val ring: A,
-) :
-    MultivariateRationalFunctionalSpaceOverMultivariatePolynomialSpace<
-            C,
-            Symbol,
-            LabeledPolynomial<C>,
-            LabeledRationalFunction<C>,
-            LabeledPolynomialSpace<C, A>,
-            >,
-    MultivariatePolynomialSpaceOfFractions<
-            C,
-            Symbol,
-            LabeledPolynomial<C>,
-            LabeledRationalFunction<C>,
-            >() {
-
-    override val polynomialRing : LabeledPolynomialSpace<C, A> = LabeledPolynomialSpace(ring)
-    override fun constructRationalFunction(
-        numerator: LabeledPolynomial<C>,
-        denominator: LabeledPolynomial<C>
-    ): LabeledRationalFunction<C> =
-        LabeledRationalFunction<C>(numerator, denominator)
-
-    /**
-     * Instance of zero rational function (zero of the rational functions ring).
-     */
-    public override val zero: LabeledRationalFunction<C> = LabeledRationalFunction<C>(polynomialZero, polynomialOne)
-    /**
-     * Instance of unit polynomial (unit of the rational functions ring).
-     */
-    public override val one: LabeledRationalFunction<C> = LabeledRationalFunction<C>(polynomialOne, polynomialOne)
-
-    // TODO: Разобрать
-
-//    operator fun invoke(arg: Map<Symbol, C>): LabeledRationalFunction<C> =
-//        LabeledRationalFunction(
-//            numerator(arg),
-//            denominator(arg)
-//        )
-//
-//    @JvmName("invokeLabeledPolynomial")
-//    operator fun invoke(arg: Map<Symbol, LabeledPolynomial<C>>): LabeledRationalFunction<C> =
-//        LabeledRationalFunction(
-//            numerator(arg),
-//            denominator(arg)
-//        )
-//
-//    @JvmName("invokeLabeledRationalFunction")
-//    operator fun invoke(arg: Map<Symbol, LabeledRationalFunction<C>>): LabeledRationalFunction<C> {
-//        var num = numerator invokeRFTakeNumerator arg
-//        var den = denominator invokeRFTakeNumerator arg
-//        for (variable in variables) if (variable in arg) {
-//            val degreeDif = degrees[variable]!!
-//            if (degreeDif > 0)
-//                den = multiplyByPower(den, arg[variable]!!.denominator, degreeDif)
-//            else
-//                num = multiplyByPower(num, arg[variable]!!.denominator, -degreeDif)
-//        }
-//        return LabeledRationalFunction(num, den)
-//    }
-//
-//    override fun toString(): String = toString(emptyMap())
-//
-//    fun toString(names: Map<Symbol, String> = emptyMap()): String =
-//        when (true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toString(names)
-//            else -> "${numerator.toStringWithBrackets(names)}/${denominator.toStringWithBrackets(names)}"
-//        }
-//
-//    fun toString(namer: (Symbol) -> String): String =
-//        when (true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toString(namer)
-//            else -> "${numerator.toStringWithBrackets(namer)}/${denominator.toStringWithBrackets(namer)}"
-//        }
-//
-//    fun toStringWithBrackets(names: Map<Symbol, String> = emptyMap()): String =
-//        when (true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toStringWithBrackets(names)
-//            else -> "(${numerator.toStringWithBrackets(names)}/${denominator.toStringWithBrackets(names)})"
-//        }
-//
-//    fun toStringWithBrackets(namer: (Symbol) -> String): String =
-//        when (true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toStringWithBrackets(namer)
-//            else -> "(${numerator.toStringWithBrackets(namer)}/${denominator.toStringWithBrackets(namer)})"
-//        }
-//
-//    fun toReversedString(names: Map<Symbol, String> = emptyMap()): String =
-//        when (true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toReversedString(names)
-//            else -> "${numerator.toReversedStringWithBrackets(names)}/${denominator.toReversedStringWithBrackets(names)}"
-//        }
-//
-//    fun toReversedString(namer: (Symbol) -> String): String =
-//        when (true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toReversedString(namer)
-//            else -> "${numerator.toReversedStringWithBrackets(namer)}/${denominator.toReversedStringWithBrackets(namer)}"
-//        }
-//
-//    fun toReversedStringWithBrackets(names: Map<Symbol, String> = emptyMap()): String =
-//        when (true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toReversedStringWithBrackets(names)
-//            else -> "(${numerator.toReversedStringWithBrackets(names)}/${denominator.toReversedStringWithBrackets(names)})"
-//        }
-//
-//    fun toReversedStringWithBrackets(namer: (Symbol) -> String): String =
-//        when (true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toReversedStringWithBrackets(namer)
-//            else -> "(${numerator.toReversedStringWithBrackets(namer)}/${denominator.toReversedStringWithBrackets(namer)})"
-//        }
-}
\ No newline at end of file
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListPolynomial.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListPolynomial.kt
index 585da95ea..fce179fc8 100644
--- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListPolynomial.kt
+++ b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListPolynomial.kt
@@ -8,23 +8,19 @@ package space.kscience.kmath.functions
 import space.kscience.kmath.operations.Ring
 import space.kscience.kmath.operations.ScaleOperations
 import space.kscience.kmath.operations.invoke
-import kotlin.contracts.InvocationKind
-import kotlin.contracts.contract
-import kotlin.experimental.ExperimentalTypeInference
-import kotlin.jvm.JvmName
 import kotlin.math.max
 import kotlin.math.min
 
 
 /**
- * Polynomial model without fixation on specific context they are applied to.
+ * Represents univariate polynomial that stores its coefficients in a [List].
  *
  * @param coefficients constant is the leftmost coefficient.
  */
 public data class ListPolynomial<C>(
     /**
-     * List that collects coefficients of the polynomial. Every monomial `a x^d` is represented as a coefficients
-     * `a` placed into the list with index `d`. For example coefficients of polynomial `5 x^2 - 6` can be represented as
+     * List that contains coefficients of the polynomial. Every monomial `a x^d` is stored as a coefficient `a` placed
+     * into the list at index `d`. For example, coefficients of a polynomial `5 x^2 - 6` can be represented as
      * ```
      * listOf(
      *     -6, // -6 +
@@ -42,26 +38,28 @@ public data class ListPolynomial<C>(
      *     0,  // 0 x^4
      * )
      * ```
-     * It is recommended not to put extra zeros at end of the list (as for `0x^3` and `0x^4` in the example), but is not
-     * prohibited.
+     * It is not prohibited to put extra zeros at end of the list (as for `0x^3` and `0x^4` in the example). But the
+     * longer the coefficients list the worse performance of arithmetical operations performed on it. Thus, it is
+     * recommended not to put (or even to remove) extra (or useless) coefficients at the end of the coefficients list.
      */
     public val coefficients: List<C>
 ) : Polynomial<C> {
-    override fun toString(): String = "Polynomial$coefficients"
+    override fun toString(): String = "ListPolynomial$coefficients"
 }
 
 /**
- * Space of univariate polynomials constructed over ring.
+ * Arithmetic context for univariate polynomials with coefficients stored as a [List] constructed with the given [ring]
+ * of constants.
  *
- * @param C the type of constants. Polynomials have them as a coefficients in their terms.
- * @param A type of underlying ring of constants. It's [Ring] of [C].
+ * @param C the type of constants. Polynomials have them a coefficients in their terms.
+ * @param A type of provided underlying ring of constants. It's [Ring] of [C].
  * @param ring underlying ring of constants of type [A].
  */
 public open class ListPolynomialSpace<C, A : Ring<C>>(
     public override val ring: A,
 ) : PolynomialSpaceOverRing<C, ListPolynomial<C>, A> {
     /**
-     * Returns sum of the polynomial and the integer represented as polynomial.
+     * Returns sum of the polynomial and the integer represented as a polynomial.
      *
      * The operation is equivalent to adding [other] copies of unit polynomial to [this].
      */
@@ -79,7 +77,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
                     }
             )
     /**
-     * Returns difference between the polynomial and the integer represented as polynomial.
+     * Returns difference between the polynomial and the integer represented as a polynomial.
      *
      * The operation is equivalent to subtraction [other] copies of unit polynomial from [this].
      */
@@ -97,7 +95,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
                     }
             )
     /**
-     * Returns product of the polynomial and the integer represented as polynomial.
+     * Returns product of the polynomial and the integer represented as a polynomial.
      *
      * The operation is equivalent to sum of [other] copies of [this].
      */
@@ -112,7 +110,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
         )
 
     /**
-     * Returns sum of the integer represented as polynomial and the polynomial.
+     * Returns sum of the integer represented as a polynomial and the polynomial.
      *
      * The operation is equivalent to adding [this] copies of unit polynomial to [other].
      */
@@ -130,7 +128,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
                     }
             )
     /**
-     * Returns difference between the integer represented as polynomial and the polynomial.
+     * Returns difference between the integer represented as a polynomial and the polynomial.
      *
      * The operation is equivalent to subtraction [this] copies of unit polynomial from [other].
      */
@@ -150,7 +148,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
                     }
             )
     /**
-     * Returns product of the integer represented as polynomial and the polynomial.
+     * Returns product of the integer represented as a polynomial and the polynomial.
      *
      * The operation is equivalent to sum of [this] copies of [other].
      */
@@ -170,7 +168,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
     public override fun number(value: Int): ListPolynomial<C> = number(constantNumber(value))
 
     /**
-     * Returns sum of the constant represented as polynomial and the polynomial.
+     * Returns sum of the constant represented as a polynomial and the polynomial.
      */
     public override operator fun C.plus(other: ListPolynomial<C>): ListPolynomial<C> =
         with(other.coefficients) {
@@ -186,7 +184,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
             )
         }
     /**
-     * Returns difference between the constant represented as polynomial and the polynomial.
+     * Returns difference between the constant represented as a polynomial and the polynomial.
      */
     public override operator fun C.minus(other: ListPolynomial<C>): ListPolynomial<C> =
         with(other.coefficients) {
@@ -204,7 +202,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
             )
         }
     /**
-     * Returns product of the constant represented as polynomial and the polynomial.
+     * Returns product of the constant represented as a polynomial and the polynomial.
      */
     public override operator fun C.times(other: ListPolynomial<C>): ListPolynomial<C> =
         ListPolynomial(
@@ -216,7 +214,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
         )
 
     /**
-     * Returns sum of the constant represented as polynomial and the polynomial.
+     * Returns sum of the constant represented as a polynomial and the polynomial.
      */
     public override operator fun ListPolynomial<C>.plus(other: C): ListPolynomial<C> =
         with(coefficients) {
@@ -232,7 +230,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
             )
         }
     /**
-     * Returns difference between the constant represented as polynomial and the polynomial.
+     * Returns difference between the constant represented as a polynomial and the polynomial.
      */
     public override operator fun ListPolynomial<C>.minus(other: C): ListPolynomial<C> =
         with(coefficients) {
@@ -248,7 +246,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
             )
         }
     /**
-     * Returns product of the constant represented as polynomial and the polynomial.
+     * Returns product of the constant represented as a polynomial and the polynomial.
      */
     public override operator fun ListPolynomial<C>.times(other: C): ListPolynomial<C> =
         ListPolynomial(
@@ -262,7 +260,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
     /**
      * Converts the constant [value] to polynomial.
      */
-    public override fun number(value: C): ListPolynomial<C> = ListPolynomial(value)
+    public override fun number(value: C): ListPolynomial<C> = ListPolynomial(listOf(value))
 
     /**
      * Returns negation of the polynomial.
@@ -321,9 +319,9 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
      */
     override val zero: ListPolynomial<C> = ListPolynomial(emptyList())
     /**
-     * Instance of unit constant (unit of the underlying ring).
+     * Instance of unit polynomial (unit of the polynomial ring).
      */
-    override val one: ListPolynomial<C> = ListPolynomial(listOf(constantOne))
+    override val one: ListPolynomial<C> by lazy { ListPolynomial(listOf(constantOne)) }
 
     /**
      * Degree of the polynomial, [see also](https://en.wikipedia.org/wiki/Degree_of_a_polynomial). If the polynomial is
@@ -331,23 +329,43 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
      */
     public override val ListPolynomial<C>.degree: Int get() = coefficients.lastIndex
 
+    // TODO: When context receivers will be ready move all of this substitutions and invocations to utilities with
+    //  [ListPolynomialSpace] as a context receiver
+    /**
+     * Evaluates value of [this] polynomial on provided argument.
+     */
     @Suppress("NOTHING_TO_INLINE")
     public inline fun ListPolynomial<C>.substitute(argument: C): C = this.substitute(ring, argument)
+    /**
+     * Substitutes provided polynomial [argument] into [this] polynomial.
+     */
     @Suppress("NOTHING_TO_INLINE")
     public inline fun ListPolynomial<C>.substitute(argument: ListPolynomial<C>): ListPolynomial<C> = this.substitute(ring, argument)
 
+    /**
+     * Represent [this] polynomial as a regular context-less function.
+     */
     @Suppress("NOTHING_TO_INLINE")
     public inline fun ListPolynomial<C>.asFunction(): (C) -> C = { this.substitute(ring, it) }
+    /**
+     * Represent [this] polynomial as a regular context-less function.
+     */
     @Suppress("NOTHING_TO_INLINE")
-    public inline fun ListPolynomial<C>.asFunctionOnConstants(): (C) -> C = { this.substitute(ring, it) }
+    public inline fun ListPolynomial<C>.asFunctionOfConstant(): (C) -> C = { this.substitute(ring, it) }
+    /**
+     * Represent [this] polynomial as a regular context-less function.
+     */
     @Suppress("NOTHING_TO_INLINE")
-    public inline fun ListPolynomial<C>.asFunctionOnPolynomials(): (ListPolynomial<C>) -> ListPolynomial<C> = { this.substitute(ring, it) }
+    public inline fun ListPolynomial<C>.asFunctionOfPolynomial(): (ListPolynomial<C>) -> ListPolynomial<C> = { this.substitute(ring, it) }
 
     /**
-     * Evaluates the polynomial for the given value [argument].
+     * Evaluates value of [this] polynomial on provided [argument].
      */
     @Suppress("NOTHING_TO_INLINE")
     public inline operator fun ListPolynomial<C>.invoke(argument: C): C = this.substitute(ring, argument)
+    /**
+     * Evaluates value of [this] polynomial on provided [argument].
+     */
     @Suppress("NOTHING_TO_INLINE")
     public inline operator fun ListPolynomial<C>.invoke(argument: ListPolynomial<C>): ListPolynomial<C> = this.substitute(ring, argument)
 }
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListRationalFunction.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListRationalFunction.kt
index 7b6c23ac3..f3e352bcd 100644
--- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListRationalFunction.kt
+++ b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListRationalFunction.kt
@@ -8,13 +8,23 @@ package space.kscience.kmath.functions
 import space.kscience.kmath.operations.Ring
 
 
+/**
+ * Represents rational function that stores its numerator and denominator as [ListPolynomial]s.
+ */
 public data class ListRationalFunction<C>(
     public override val numerator: ListPolynomial<C>,
     public override val denominator: ListPolynomial<C>
 ) : RationalFunction<C, ListPolynomial<C>> {
-    override fun toString(): String = "RationalFunction${numerator.coefficients}/${denominator.coefficients}"
+    override fun toString(): String = "ListRationalFunction${numerator.coefficients}/${denominator.coefficients}"
 }
 
+/**
+ * Arithmetic context for univariate rational functions with numerator and denominator represented as [ListPolynomial]s.
+ *
+ * @param C the type of constants. Polynomials have them a coefficients in their terms.
+ * @param A type of provided underlying ring of constants. It's [Ring] of [C].
+ * @param ring underlying ring of constants of type [A].
+ */
 public class ListRationalFunctionSpace<C, A : Ring<C>> (
     public val ring: A,
 ) :
@@ -30,76 +40,98 @@ public class ListRationalFunctionSpace<C, A : Ring<C>> (
             ListRationalFunction<C>,
             >() {
 
+    /**
+     * Underlying polynomial ring. Its polynomial operations are inherited by local polynomial operations.
+     */
     override val polynomialRing : ListPolynomialSpace<C, A> = ListPolynomialSpace(ring)
+    /**
+     * Constructor of [ListRationalFunction] from numerator and denominator [ListPolynomial].
+     */
     override fun constructRationalFunction(numerator: ListPolynomial<C>, denominator: ListPolynomial<C>): ListRationalFunction<C> =
         ListRationalFunction(numerator, denominator)
 
+    // TODO: When context receivers will be ready move all of this substitutions and invocations to utilities with
+    //  [ListPolynomialSpace] as a context receiver
     /**
-     * Instance of zero rational function (zero of the rational functions ring).
+     * Evaluates value of [this] polynomial on provided argument.
      */
-    public override val zero: ListRationalFunction<C> = ListRationalFunction(polynomialZero, polynomialOne)
+    @Suppress("NOTHING_TO_INLINE")
+    public inline fun ListPolynomial<C>.substitute(argument: C): C = this.substitute(ring, argument)
     /**
-     * Instance of unit polynomial (unit of the rational functions ring).
+     * Substitutes provided polynomial [argument] into [this] polynomial.
      */
-    public override val one: ListRationalFunction<C> = ListRationalFunction(polynomialOne, polynomialOne)
+    @Suppress("NOTHING_TO_INLINE")
+    public inline fun ListPolynomial<C>.substitute(argument: ListPolynomial<C>): ListPolynomial<C> = this.substitute(ring, argument)
+    /**
+     * Substitutes provided rational function [argument] into [this] polynomial.
+     */
+    @Suppress("NOTHING_TO_INLINE")
+    public inline fun ListPolynomial<C>.substitute(argument: ListRationalFunction<C>): ListRationalFunction<C> = this.substitute(ring, argument)
+    /**
+     * Substitutes provided polynomial [argument] into [this] rational function.
+     */
+    @Suppress("NOTHING_TO_INLINE")
+    public inline fun ListRationalFunction<C>.substitute(argument: ListPolynomial<C>): ListRationalFunction<C> = this.substitute(ring, argument)
+    /**
+     * Substitutes provided rational function [argument] into [this] rational function.
+     */
+    @Suppress("NOTHING_TO_INLINE")
+    public inline fun ListRationalFunction<C>.substitute(argument: ListRationalFunction<C>): ListRationalFunction<C> = this.substitute(ring, argument)
 
-    // TODO: Разобрать
+    /**
+     * Represent [this] polynomial as a regular context-less function.
+     */
+    @Suppress("NOTHING_TO_INLINE")
+    public inline fun ListPolynomial<C>.asFunction(): (C) -> C = { this.substitute(ring, it) }
+    /**
+     * Represent [this] polynomial as a regular context-less function.
+     */
+    @Suppress("NOTHING_TO_INLINE")
+    public inline fun ListPolynomial<C>.asFunctionOfConstant(): (C) -> C = { this.substitute(ring, it) }
+    /**
+     * Represent [this] polynomial as a regular context-less function.
+     */
+    @Suppress("NOTHING_TO_INLINE")
+    public inline fun ListPolynomial<C>.asFunctionOfPolynomial(): (ListPolynomial<C>) -> ListPolynomial<C> = { this.substitute(ring, it) }
+    /**
+     * Represent [this] polynomial as a regular context-less function.
+     */
+    @Suppress("NOTHING_TO_INLINE")
+    public inline fun ListPolynomial<C>.asFunctionOfRationalFunction(): (ListRationalFunction<C>) -> ListRationalFunction<C> = { this.substitute(ring, it) }
+    /**
+     * Represent [this] rational function as a regular context-less function.
+     */
+    @Suppress("NOTHING_TO_INLINE")
+    public inline fun ListRationalFunction<C>.asFunctionOfPolynomial(): (ListPolynomial<C>) -> ListRationalFunction<C> = { this.substitute(ring, it) }
+    /**
+     * Represent [this] rational function as a regular context-less function.
+     */
+    @Suppress("NOTHING_TO_INLINE")
+    public inline fun ListRationalFunction<C>.asFunctionOfRationalFunction(): (ListRationalFunction<C>) -> ListRationalFunction<C> = { this.substitute(ring, it) }
 
-//    operator fun invoke(arg: UnivariatePolynomial<T>): RationalFunction<T> =
-//        RationalFunction(
-//            numerator(arg),
-//            denominator(arg)
-//        )
-//
-//    operator fun invoke(arg: RationalFunction<T>): RationalFunction<T> {
-//        val num = numerator invokeRFTakeNumerator arg
-//        val den = denominator invokeRFTakeNumerator arg
-//        val degreeDif = numeratorDegree - denominatorDegree
-//        return if (degreeDif > 0)
-//            RationalFunction(
-//                num,
-//                multiplyByPower(den, arg.denominator, degreeDif)
-//            )
-//        else
-//            RationalFunction(
-//                multiplyByPower(num, arg.denominator, -degreeDif),
-//                den
-//            )
-//    }
-//
-//    override fun toString(): String = toString(UnivariatePolynomial.variableName)
-//
-//    fun toString(withVariableName: String = UnivariatePolynomial.variableName): String =
-//        when(true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toString(withVariableName)
-//            else -> "${numerator.toStringWithBrackets(withVariableName)}/${denominator.toStringWithBrackets(withVariableName)}"
-//        }
-//
-//    fun toStringWithBrackets(withVariableName: String = UnivariatePolynomial.variableName): String =
-//        when(true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toStringWithBrackets(withVariableName)
-//            else -> "(${numerator.toStringWithBrackets(withVariableName)}/${denominator.toStringWithBrackets(withVariableName)})"
-//        }
-//
-//    fun toReversedString(withVariableName: String = UnivariatePolynomial.variableName): String =
-//        when(true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toReversedString(withVariableName)
-//            else -> "${numerator.toReversedStringWithBrackets(withVariableName)}/${denominator.toReversedStringWithBrackets(withVariableName)}"
-//        }
-//
-//    fun toReversedStringWithBrackets(withVariableName: String = UnivariatePolynomial.variableName): String =
-//        when(true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toReversedStringWithBrackets(withVariableName)
-//            else -> "(${numerator.toReversedStringWithBrackets(withVariableName)}/${denominator.toReversedStringWithBrackets(withVariableName)})"
-//        }
-//
-//    fun removeZeros() =
-//        RationalFunction(
-//            numerator.removeZeros(),
-//            denominator.removeZeros()
-//        )
+    /**
+     * Evaluates value of [this] polynomial on provided argument.
+     */
+    @Suppress("NOTHING_TO_INLINE")
+    public inline operator fun ListPolynomial<C>.invoke(argument: C): C = this.substitute(ring, argument)
+    /**
+     * Evaluates value of [this] polynomial on provided argument.
+     */
+    @Suppress("NOTHING_TO_INLINE")
+    public inline operator fun ListPolynomial<C>.invoke(argument: ListPolynomial<C>): ListPolynomial<C> = this.substitute(ring, argument)
+    /**
+     * Evaluates value of [this] polynomial on provided argument.
+     */
+    @Suppress("NOTHING_TO_INLINE")
+    public inline operator fun ListPolynomial<C>.invoke(argument: ListRationalFunction<C>): ListRationalFunction<C> = this.substitute(ring, argument)
+    /**
+     * Evaluates value of [this] rational function on provided argument.
+     */
+    @Suppress("NOTHING_TO_INLINE")
+    public inline operator fun ListRationalFunction<C>.invoke(argument: ListPolynomial<C>): ListRationalFunction<C> = this.substitute(ring, argument)
+    /**
+     * Evaluates value of [this] rational function on provided argument.
+     */
+    @Suppress("NOTHING_TO_INLINE")
+    public inline operator fun ListRationalFunction<C>.invoke(argument: ListRationalFunction<C>): ListRationalFunction<C> = this.substitute(ring, argument)
 }
\ No newline at end of file
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedPolynomial.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedPolynomial.kt
deleted file mode 100644
index e75373819..000000000
--- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedPolynomial.kt
+++ /dev/null
@@ -1,389 +0,0 @@
-/*
- * Copyright 2018-2021 KMath contributors.
- * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
- */
-
-package space.kscience.kmath.functions
-
-import space.kscience.kmath.operations.invoke
-import space.kscience.kmath.operations.Ring
-import space.kscience.kmath.operations.ScaleOperations
-import kotlin.contracts.InvocationKind
-import kotlin.contracts.contract
-import kotlin.experimental.ExperimentalTypeInference
-import kotlin.jvm.JvmName
-import kotlin.math.max
-
-
-/**
- * Polynomial model without fixation on specific context they are applied to.
- *
- * @param C the type of constants.
- */
-public data class NumberedPolynomial<C>
-internal constructor(
-    /**
-     * Map that collects coefficients of the polynomial. Every monomial `a x_1^{d_1} ... x_n^{d_n}` is represented as
-     * pair "key-value" in the map, where value is coefficients `a` and
-     * key is list that associates index of every variable in the monomial with multiplicity of the variable occurring
-     * in the monomial. For example coefficients of polynomial `5 x_1^2 x_3^3 - 6 x_2` can be represented as
-     * ```
-     * mapOf(
-     *      listOf(2, 0, 3) to 5,
-     *      listOf(0, 1) to (-6),
-     * )
-     * ```
-     * and also as
-     * ```
-     * mapOf(
-     *      listOf(2, 0, 3) to 5,
-     *      listOf(0, 1) to (-6),
-     *      listOf(0, 1, 1) to 0,
-     * )
-     * ```
-     * It is recommended not to put zero monomials into the map, but is not prohibited. Lists of degrees always do not
-     * contain any zeros on end, but can contain zeros on start or anywhere in middle.
-     */
-    public val coefficients: Map<List<UInt>, C>
-) : Polynomial<C> {
-    override fun toString(): String = "NumberedPolynomial$coefficients"
-}
-
-/**
- * Space of polynomials.
- *
- * @param C the type of operated polynomials.
- * @param A the intersection of [Ring] of [C] and [ScaleOperations] of [C].
- * @param ring the [A] instance.
- */
-public open class NumberedPolynomialSpace<C, A : Ring<C>>(
-    public final override val ring: A,
-) : PolynomialSpaceOverRing<C, NumberedPolynomial<C>, A> {
-    /**
-     * Returns sum of the polynomial and the integer represented as polynomial.
-     *
-     * The operation is equivalent to adding [other] copies of unit polynomial to [this].
-     */
-    public override operator fun NumberedPolynomial<C>.plus(other: Int): NumberedPolynomial<C> =
-        if (other == 0) this
-        else
-            NumberedPolynomial(
-                coefficients
-                    .toMutableMap()
-                    .apply {
-                        val degs = emptyList<UInt>()
-
-                        this[degs] = getOrElse(degs) { constantZero } + other
-                    }
-            )
-    /**
-     * Returns difference between the polynomial and the integer represented as polynomial.
-     *
-     * The operation is equivalent to subtraction [other] copies of unit polynomial from [this].
-     */
-    public override operator fun NumberedPolynomial<C>.minus(other: Int): NumberedPolynomial<C> =
-        if (other == 0) this
-        else
-            NumberedPolynomial(
-                coefficients
-                    .toMutableMap()
-                    .apply {
-                        val degs = emptyList<UInt>()
-
-                        this[degs] = getOrElse(degs) { constantZero } - other
-                    }
-            )
-    /**
-     * Returns product of the polynomial and the integer represented as polynomial.
-     *
-     * The operation is equivalent to sum of [other] copies of [this].
-     */
-    public override operator fun NumberedPolynomial<C>.times(other: Int): NumberedPolynomial<C> =
-        if (other == 0) zero
-        else NumberedPolynomial<C>(
-            coefficients
-                .toMutableMap()
-                .apply {
-                    for (degs in keys) this[degs] = this[degs]!! * other
-                }
-        )
-
-    /**
-     * Returns sum of the integer represented as polynomial and the polynomial.
-     *
-     * The operation is equivalent to adding [this] copies of unit polynomial to [other].
-     */
-    public override operator fun Int.plus(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
-        if (this == 0) other
-        else
-            NumberedPolynomial(
-                other.coefficients
-                    .toMutableMap()
-                    .apply {
-                        val degs = emptyList<UInt>()
-
-                        this[degs] = this@plus + getOrElse(degs) { constantZero }
-                    }
-            )
-    /**
-     * Returns difference between the integer represented as polynomial and the polynomial.
-     *
-     * The operation is equivalent to subtraction [this] copies of unit polynomial from [other].
-     */
-    public override operator fun Int.minus(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
-        if (this == 0) other
-        else
-            NumberedPolynomial(
-                other.coefficients
-                    .toMutableMap()
-                    .apply {
-                        val degs = emptyList<UInt>()
-
-                        this[degs] = this@minus - getOrElse(degs) { constantZero }
-                    }
-            )
-    /**
-     * Returns product of the integer represented as polynomial and the polynomial.
-     *
-     * The operation is equivalent to sum of [this] copies of [other].
-     */
-    public override operator fun Int.times(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
-        if (this == 0) zero
-        else NumberedPolynomial(
-            other.coefficients
-                .toMutableMap()
-                .apply {
-                    for (degs in keys) this[degs] = this@times * this[degs]!!
-                }
-        )
-
-    /**
-     * Converts the integer [value] to polynomial.
-     */
-    public override fun number(value: Int): NumberedPolynomial<C> = number(constantNumber(value))
-
-    /**
-     * Returns sum of the constant represented as polynomial and the polynomial.
-     */
-    override operator fun C.plus(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
-        with(other.coefficients) {
-            if (isEmpty()) NumberedPolynomial<C>(mapOf(emptyList<UInt>() to this@plus))
-            else NumberedPolynomial<C>(
-                toMutableMap()
-                    .apply {
-                        val degs = emptyList<UInt>()
-
-                        this[degs] = this@plus + getOrElse(degs) { constantZero }
-                    }
-            )
-        }
-    /**
-     * Returns difference between the constant represented as polynomial and the polynomial.
-     */
-    override operator fun C.minus(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
-        with(other.coefficients) {
-            if (isEmpty()) NumberedPolynomial<C>(mapOf(emptyList<UInt>() to this@minus))
-            else NumberedPolynomial<C>(
-                toMutableMap()
-                    .apply {
-                        forEach { (degs, c) -> if(degs.isNotEmpty()) this[degs] = -c }
-
-                        val degs = emptyList<UInt>()
-
-                        this[degs] = this@minus - getOrElse(degs) { constantZero }
-                    }
-            )
-        }
-    /**
-     * Returns product of the constant represented as polynomial and the polynomial.
-     */
-    override operator fun C.times(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
-        NumberedPolynomial<C>(
-            other.coefficients
-                .toMutableMap()
-                .apply {
-                    for (degs in keys) this[degs] = this@times * this[degs]!!
-                }
-        )
-
-    /**
-     * Returns sum of the constant represented as polynomial and the polynomial.
-     */
-    override operator fun NumberedPolynomial<C>.plus(other: C): NumberedPolynomial<C> =
-        with(coefficients) {
-            if (isEmpty()) NumberedPolynomial<C>(mapOf(emptyList<UInt>() to other))
-            else NumberedPolynomial<C>(
-                toMutableMap()
-                    .apply {
-                        val degs = emptyList<UInt>()
-
-                        this[degs] = getOrElse(degs) { constantZero } + other
-                    }
-            )
-        }
-    /**
-     * Returns difference between the constant represented as polynomial and the polynomial.
-     */
-    override operator fun NumberedPolynomial<C>.minus(other: C): NumberedPolynomial<C> =
-        with(coefficients) {
-            if (isEmpty()) NumberedPolynomial<C>(mapOf(emptyList<UInt>() to other))
-            else NumberedPolynomial<C>(
-                toMutableMap()
-                    .apply {
-                        val degs = emptyList<UInt>()
-
-                        this[degs] = getOrElse(degs) { constantZero } - other
-                    }
-            )
-        }
-    /**
-     * Returns product of the constant represented as polynomial and the polynomial.
-     */
-    override operator fun NumberedPolynomial<C>.times(other: C): NumberedPolynomial<C> =
-        NumberedPolynomial<C>(
-            coefficients
-                .toMutableMap()
-                .apply {
-                    for (degs in keys) this[degs] = this[degs]!! * other
-                }
-        )
-
-    /**
-     * Converts the constant [value] to polynomial.
-     */
-    public override fun number(value: C): NumberedPolynomial<C> =
-        NumberedPolynomial(mapOf(emptyList<UInt>() to value))
-
-    /**
-     * Returns negation of the polynomial.
-     */
-    override fun NumberedPolynomial<C>.unaryMinus(): NumberedPolynomial<C> =
-        NumberedPolynomial<C>(
-            coefficients.mapValues { -it.value }
-        )
-    /**
-     * Returns sum of the polynomials.
-     */
-    override operator fun NumberedPolynomial<C>.plus(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
-        NumberedPolynomial<C>(
-            buildMap(coefficients.size + other.coefficients.size) {
-                other.coefficients.mapValuesTo(this) { it.value }
-                other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! + value else value }
-            }
-        )
-    /**
-     * Returns difference of the polynomials.
-     */
-    override operator fun NumberedPolynomial<C>.minus(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
-        NumberedPolynomial<C>(
-            buildMap(coefficients.size + other.coefficients.size) {
-                other.coefficients.mapValuesTo(this) { it.value }
-                other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! - value else -value }
-            }
-        )
-    /**
-     * Returns product of the polynomials.
-     */
-    override operator fun NumberedPolynomial<C>.times(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
-        NumberedPolynomial<C>(
-            buildMap(coefficients.size * other.coefficients.size) {
-                for ((degs1, c1) in coefficients) for ((degs2, c2) in other.coefficients) {
-                    val degs =
-                        (0..max(degs1.lastIndex, degs2.lastIndex))
-                            .map { degs1.getOrElse(it) { 0U } + degs2.getOrElse(it) { 0U } }
-                    val c = c1 * c2
-                    this[degs] = if (degs in this) this[degs]!! + c else c
-                }
-            }
-        )
-
-    /**
-     * Instance of zero polynomial (zero of the polynomial ring).
-     */
-    override val zero: NumberedPolynomial<C> = NumberedPolynomial<C>(emptyMap())
-    /**
-     * Instance of unit polynomial (unit of the polynomial ring).
-     */
-    override val one: NumberedPolynomial<C> =
-        NumberedPolynomial<C>(
-            mapOf(
-                emptyList<UInt>() to constantOne // 1 * x_1^0 * x_2^0 * ...
-            )
-        )
-
-    /**
-     * Maximal index (ID) of variable occurring in the polynomial with positive power. If there is no such variable,
-     * the result is `-1`.
-     */
-    public val NumberedPolynomial<C>.lastVariable: Int
-        get() = coefficients.entries.maxOfOrNull { (degs, _) -> degs.lastIndex } ?: -1
-    /**
-     * Degree of the polynomial, [see also](https://en.wikipedia.org/wiki/Degree_of_a_polynomial). If the polynomial is
-     * zero, degree is -1.
-     */
-    override val NumberedPolynomial<C>.degree: Int
-        get() = coefficients.entries.maxOfOrNull { (degs, _) -> degs.sum().toInt() } ?: -1
-    /**
-     * List that associates indices of variables (that appear in the polynomial in positive exponents) with their most
-     * exponents in which the variables are appeared in the polynomial.
-     *
-     * As consequence all values in the list are non-negative integers. Also, if the polynomial is constant, the list is empty.
-     * And last index of the list is [lastVariable].
-     */
-    public val NumberedPolynomial<C>.degrees: List<UInt>
-        get() =
-            MutableList(lastVariable + 1) { 0u }.apply {
-                coefficients.entries.forEach { (degs, _) ->
-                    degs.forEachIndexed { index, deg ->
-                        this[index] = max(this[index], deg)
-                    }
-                }
-            }
-    /**
-     * Counts degree of the polynomial by the specified [variable].
-     */
-    public fun NumberedPolynomial<C>.degreeBy(variable: Int): UInt =
-        coefficients.entries.maxOfOrNull { (degs, _) -> degs.getOrElse(variable) { 0u } } ?: 0u
-    /**
-     * Counts degree of the polynomial by the specified [variables].
-     */
-    public fun NumberedPolynomial<C>.degreeBy(variables: Collection<Int>): UInt =
-        coefficients.entries.maxOfOrNull { (degs, _) ->
-            degs.withIndex().filter { (index, _) -> index in variables }.sumOf { it.value }
-        } ?: 0u
-    /**
-     * Count of variables occurring in the polynomial with positive power. If there is no such variable,
-     * the result is `0`.
-     */
-    public val NumberedPolynomial<C>.countOfVariables: Int
-        get() =
-            MutableList(lastVariable + 1) { false }.apply {
-                coefficients.entries.forEach { (degs, _) ->
-                    degs.forEachIndexed { index, deg ->
-                        if (deg != 0u) this[index] = true
-                    }
-                }
-            }.count { it }
-
-    @Suppress("NOTHING_TO_INLINE")
-    public inline fun NumberedPolynomial<C>.substitute(argument: Map<Int, C>): NumberedPolynomial<C> = this.substitute(ring, argument)
-    @Suppress("NOTHING_TO_INLINE")
-    @JvmName("substitutePolynomial")
-    public inline fun NumberedPolynomial<C>.substitute(argument: Map<Int, NumberedPolynomial<C>>): NumberedPolynomial<C> = this.substitute(ring, argument)
-
-    @Suppress("NOTHING_TO_INLINE")
-    public inline fun NumberedPolynomial<C>.asFunction(): (Map<Int, C>) -> NumberedPolynomial<C> = { this.substitute(ring, it) }
-    @Suppress("NOTHING_TO_INLINE")
-    public inline fun NumberedPolynomial<C>.asFunctionOnConstants(): (Map<Int, C>) -> NumberedPolynomial<C> = { this.substitute(ring, it) }
-    @Suppress("NOTHING_TO_INLINE")
-    public inline fun NumberedPolynomial<C>.asFunctionOnPolynomials(): (Map<Int, NumberedPolynomial<C>>) -> NumberedPolynomial<C> = { this.substitute(ring, it) }
-
-    @Suppress("NOTHING_TO_INLINE")
-    public inline operator fun NumberedPolynomial<C>.invoke(argument: Map<Int, C>): NumberedPolynomial<C> = this.substitute(ring, argument)
-    @Suppress("NOTHING_TO_INLINE")
-    @JvmName("invokePolynomial")
-    public inline operator fun NumberedPolynomial<C>.invoke(argument: Map<Int, NumberedPolynomial<C>>): NumberedPolynomial<C> = this.substitute(ring, argument)
-
-    // FIXME: Move to other constructors with context receiver
-    public fun C.asNumberedPolynomial() : NumberedPolynomial<C> = NumberedPolynomial<C>(mapOf(emptyList<UInt>() to this))
-}
\ No newline at end of file
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedRationalFunction.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedRationalFunction.kt
deleted file mode 100644
index 30c7f0188..000000000
--- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedRationalFunction.kt
+++ /dev/null
@@ -1,188 +0,0 @@
-/*
- * Copyright 2018-2021 KMath contributors.
- * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
- */
-
-package space.kscience.kmath.functions
-
-import space.kscience.kmath.operations.Ring
-import space.kscience.kmath.operations.invoke
-import kotlin.math.max
-
-
-public class NumberedRationalFunction<C> internal constructor(
-    public override val numerator: NumberedPolynomial<C>,
-    public override val denominator: NumberedPolynomial<C>
-) : RationalFunction<C, NumberedPolynomial<C>> {
-    override fun toString(): String = "NumberedRationalFunction${numerator.coefficients}/${denominator.coefficients}"
-}
-
-public class NumberedRationalFunctionSpace<C, A: Ring<C>> (
-    public val ring: A,
-) :
-    RationalFunctionalSpaceOverPolynomialSpace<
-            C,
-            NumberedPolynomial<C>,
-            NumberedRationalFunction<C>,
-            NumberedPolynomialSpace<C, A>,
-            >,
-    PolynomialSpaceOfFractions<
-            C,
-            NumberedPolynomial<C>,
-            NumberedRationalFunction<C>,
-            >() {
-
-    override val polynomialRing : NumberedPolynomialSpace<C, A> = NumberedPolynomialSpace(ring)
-    override fun constructRationalFunction(
-        numerator: NumberedPolynomial<C>,
-        denominator: NumberedPolynomial<C>
-    ): NumberedRationalFunction<C> =
-        NumberedRationalFunction(numerator, denominator)
-
-    /**
-     * Instance of zero rational function (zero of the rational functions ring).
-     */
-    public override val zero: NumberedRationalFunction<C> = NumberedRationalFunction(polynomialZero, polynomialOne)
-    /**
-     * Instance of unit polynomial (unit of the rational functions ring).
-     */
-    public override val one: NumberedRationalFunction<C> = NumberedRationalFunction(polynomialOne, polynomialOne)
-
-    /**
-     * Maximal index (ID) of variable occurring in the polynomial with positive power. If there is no such variable,
-     * the result is `-1`.
-     */
-    public val NumberedPolynomial<C>.lastVariable: Int get() = polynomialRing { lastVariable }
-    /**
-     * List that associates indices of variables (that appear in the polynomial in positive exponents) with their most
-     * exponents in which the variables are appeared in the polynomial.
-     *
-     * As consequence all values in the list are non-negative integers. Also, if the polynomial is constant, the list is empty.
-     * And last index of the list is [lastVariable].
-     */
-    public val NumberedPolynomial<C>.degrees: List<UInt> get() = polynomialRing { degrees }
-    /**
-     * Counts degree of the polynomial by the specified [variable].
-     */
-    public fun NumberedPolynomial<C>.degreeBy(variable: Int): UInt = polynomialRing { degreeBy(variable) }
-    /**
-     * Counts degree of the polynomial by the specified [variables].
-     */
-    public fun NumberedPolynomial<C>.degreeBy(variables: Collection<Int>): UInt = polynomialRing { degreeBy(variables) }
-    /**
-     * Count of variables occurring in the polynomial with positive power. If there is no such variable,
-     * the result is `0`.
-     */
-    public val NumberedPolynomial<C>.countOfVariables: Int get() = polynomialRing { countOfVariables }
-
-    /**
-     * Count of all variables that appear in the polynomial in positive exponents.
-     */
-    public val NumberedRationalFunction<C>.lastVariable: Int
-        get() = polynomialRing { max(numerator.lastVariable, denominator.lastVariable) }
-    /**
-     * Count of variables occurring in the rational function with positive power. If there is no such variable,
-     * the result is `0`.
-     */
-    public val NumberedRationalFunction<C>.countOfVariables: Int
-        get() =
-            MutableList(lastVariable + 1) { false }.apply {
-                numerator.coefficients.entries.forEach { (degs, _) ->
-                    degs.forEachIndexed { index, deg ->
-                        if (deg != 0u) this[index] = true
-                    }
-                }
-                denominator.coefficients.entries.forEach { (degs, _) ->
-                    degs.forEachIndexed { index, deg ->
-                        if (deg != 0u) this[index] = true
-                    }
-                }
-            }.count { it }
-
-    // TODO: Разобрать
-
-//    operator fun invoke(arg: Map<Int, C>): NumberedRationalFunction<C> =
-//        NumberedRationalFunction(
-//            numerator(arg),
-//            denominator(arg)
-//        )
-//
-//    @JvmName("invokePolynomial")
-//    operator fun invoke(arg: Map<Int, Polynomial<C>>): NumberedRationalFunction<C> =
-//        NumberedRationalFunction(
-//            numerator(arg),
-//            denominator(arg)
-//        )
-//
-//    @JvmName("invokeRationalFunction")
-//    operator fun invoke(arg: Map<Int, NumberedRationalFunction<C>>): NumberedRationalFunction<C> {
-//        var num = numerator invokeRFTakeNumerator arg
-//        var den = denominator invokeRFTakeNumerator arg
-//        for (variable in 0 until max(numerator.countOfVariables, denominator.countOfVariables)) if (variable in arg) {
-//            val degreeDif = numerator.degrees.getOrElse(variable) { 0 } - denominator.degrees.getOrElse(variable) { 0 }
-//            if (degreeDif > 0)
-//                den = multiplyByPower(den, arg[variable]!!.denominator, degreeDif)
-//            else
-//                num = multiplyByPower(num, arg[variable]!!.denominator, -degreeDif)
-//        }
-//        return NumberedRationalFunction(num, den)
-//    }
-//
-//    override fun toString(): String = toString(Polynomial.variableName)
-//
-//    fun toString(withVariableName: String = Polynomial.variableName): String =
-//        when(true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toString(withVariableName)
-//            else -> "${numerator.toStringWithBrackets(withVariableName)}/${denominator.toStringWithBrackets(withVariableName)}"
-//        }
-//
-//    fun toString(namer: (Int) -> String): String =
-//        when(true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toString(namer)
-//            else -> "${numerator.toStringWithBrackets(namer)}/${denominator.toStringWithBrackets(namer)}"
-//        }
-//
-//    fun toStringWithBrackets(withVariableName: String = Polynomial.variableName): String =
-//        when(true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toStringWithBrackets(withVariableName)
-//            else -> "(${numerator.toStringWithBrackets(withVariableName)}/${denominator.toStringWithBrackets(withVariableName)})"
-//        }
-//
-//    fun toStringWithBrackets(namer: (Int) -> String): String =
-//        when(true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toStringWithBrackets(namer)
-//            else -> "(${numerator.toStringWithBrackets(namer)}/${denominator.toStringWithBrackets(namer)})"
-//        }
-//
-//    fun toReversedString(withVariableName: String = Polynomial.variableName): String =
-//        when(true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toReversedString(withVariableName)
-//            else -> "${numerator.toReversedStringWithBrackets(withVariableName)}/${denominator.toReversedStringWithBrackets(withVariableName)}"
-//        }
-//
-//    fun toReversedString(namer: (Int) -> String): String =
-//        when(true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toReversedString(namer)
-//            else -> "${numerator.toReversedStringWithBrackets(namer)}/${denominator.toReversedStringWithBrackets(namer)}"
-//        }
-//
-//    fun toReversedStringWithBrackets(withVariableName: String = Polynomial.variableName): String =
-//        when(true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toReversedStringWithBrackets(withVariableName)
-//            else -> "(${numerator.toReversedStringWithBrackets(withVariableName)}/${denominator.toReversedStringWithBrackets(withVariableName)})"
-//        }
-//
-//    fun toReversedStringWithBrackets(namer: (Int) -> String): String =
-//        when(true) {
-//            numerator.isZero() -> "0"
-//            denominator.isOne() -> numerator.toReversedStringWithBrackets(namer)
-//            else -> "(${numerator.toReversedStringWithBrackets(namer)}/${denominator.toReversedStringWithBrackets(namer)})"
-//        }
-}
\ No newline at end of file
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/Polynomial.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/Polynomial.kt
index e201f1f6e..12490d133 100644
--- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/Polynomial.kt
+++ b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/Polynomial.kt
@@ -25,38 +25,38 @@ public interface Polynomial<C>
 @Suppress("INAPPLICABLE_JVM_NAME", "PARAMETER_NAME_CHANGED_ON_OVERRIDE") // FIXME: Waiting for KT-31420
 public interface PolynomialSpace<C, P: Polynomial<C>> : Ring<P> {
     /**
-     * Returns sum of the constant and the integer represented as constant (member of underlying ring).
+     * Returns sum of the constant and the integer represented as a constant (member of underlying ring).
      *
      * The operation is equivalent to adding [other] copies of unit of underlying ring to [this].
      */
     public operator fun C.plus(other: Int): C
     /**
-     * Returns difference between the constant and the integer represented as constant (member of underlying ring).
+     * Returns difference between the constant and the integer represented as a constant (member of underlying ring).
      *
      * The operation is equivalent to subtraction [other] copies of unit of underlying ring from [this].
      */
     public operator fun C.minus(other: Int): C
     /**
-     * Returns product of the constant and the integer represented as constant (member of underlying ring).
+     * Returns product of the constant and the integer represented as a constant (member of underlying ring).
      *
      * The operation is equivalent to sum of [other] copies of [this].
      */
     public operator fun C.times(other: Int): C
 
     /**
-     * Returns sum of the integer represented as constant (member of underlying ring) and the constant.
+     * Returns sum of the integer represented as a constant (member of underlying ring) and the constant.
      *
      * The operation is equivalent to adding [this] copies of unit of underlying ring to [other].
      */
     public operator fun Int.plus(other: C): C
     /**
-     * Returns difference between the integer represented as constant (member of underlying ring) and the constant.
+     * Returns difference between the integer represented as a constant (member of underlying ring) and the constant.
      *
      * The operation is equivalent to subtraction [this] copies of unit of underlying ring from [other].
      */
     public operator fun Int.minus(other: C): C
     /**
-     * Returns product of the integer represented as constant (member of underlying ring) and the constant.
+     * Returns product of the integer represented as a constant (member of underlying ring) and the constant.
      *
      * The operation is equivalent to sum of [this] copies of [other].
      */
@@ -72,38 +72,38 @@ public interface PolynomialSpace<C, P: Polynomial<C>> : Ring<P> {
     public fun Int.asConstant(): C = constantNumber(this)
 
     /**
-     * Returns sum of the polynomial and the integer represented as polynomial.
+     * Returns sum of the polynomial and the integer represented as a polynomial.
      *
      * The operation is equivalent to adding [other] copies of unit polynomial to [this].
      */
     public operator fun P.plus(other: Int): P = addMultipliedByDoubling(this, one, other)
     /**
-     * Returns difference between the polynomial and the integer represented as polynomial.
+     * Returns difference between the polynomial and the integer represented as a polynomial.
      *
      * The operation is equivalent to subtraction [other] copies of unit polynomial from [this].
      */
     public operator fun P.minus(other: Int): P = addMultipliedByDoubling(this, one, -other)
     /**
-     * Returns product of the polynomial and the integer represented as polynomial.
+     * Returns product of the polynomial and the integer represented as a polynomial.
      *
      * The operation is equivalent to sum of [other] copies of [this].
      */
     public operator fun P.times(other: Int): P = multiplyByDoubling(this, other)
 
     /**
-     * Returns sum of the integer represented as polynomial and the polynomial.
+     * Returns sum of the integer represented as a polynomial and the polynomial.
      *
      * The operation is equivalent to adding [this] copies of unit polynomial to [other].
      */
     public operator fun Int.plus(other: P): P = addMultipliedByDoubling(other, one, this)
     /**
-     * Returns difference between the integer represented as polynomial and the polynomial.
+     * Returns difference between the integer represented as a polynomial and the polynomial.
      *
      * The operation is equivalent to subtraction [this] copies of unit polynomial from [other].
      */
     public operator fun Int.minus(other: P): P = addMultipliedByDoubling(-other, one, this)
     /**
-     * Returns product of the integer represented as polynomial and the polynomial.
+     * Returns product of the integer represented as a polynomial and the polynomial.
      *
      * The operation is equivalent to sum of [this] copies of [other].
      */
@@ -165,28 +165,28 @@ public interface PolynomialSpace<C, P: Polynomial<C>> : Ring<P> {
     public val constantOne: C
 
     /**
-     * Returns sum of the constant represented as polynomial and the polynomial.
+     * Returns sum of the constant represented as a polynomial and the polynomial.
      */
     public operator fun C.plus(other: P): P
     /**
-     * Returns difference between the constant represented as polynomial and the polynomial.
+     * Returns difference between the constant represented as a polynomial and the polynomial.
      */
     public operator fun C.minus(other: P): P
     /**
-     * Returns product of the constant represented as polynomial and the polynomial.
+     * Returns product of the constant represented as a polynomial and the polynomial.
      */
     public operator fun C.times(other: P): P
 
     /**
-     * Returns sum of the constant represented as polynomial and the polynomial.
+     * Returns sum of the constant represented as a polynomial and the polynomial.
      */
     public operator fun P.plus(other: C): P
     /**
-     * Returns difference between the constant represented as polynomial and the polynomial.
+     * Returns difference between the constant represented as a polynomial and the polynomial.
      */
     public operator fun P.minus(other: C): P
     /**
-     * Returns product of the constant represented as polynomial and the polynomial.
+     * Returns product of the constant represented as a polynomial and the polynomial.
      */
     public operator fun P.times(other: C): P
 
@@ -254,41 +254,44 @@ public interface PolynomialSpace<C, P: Polynomial<C>> : Ring<P> {
 @Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420
 public interface PolynomialSpaceOverRing<C, P: Polynomial<C>, A: Ring<C>> : PolynomialSpace<C, P> {
 
+    /**
+     * Underlying ring of constants. Its operations on constants are inherited by local operations on constants.
+     */
     public val ring: A
 
     /**
-     * Returns sum of the constant and the integer represented as constant (member of underlying ring).
+     * Returns sum of the constant and the integer represented as a constant (member of underlying ring).
      *
      * The operation is equivalent to adding [other] copies of unit of underlying ring to [this].
      */
     public override operator fun C.plus(other: Int): C = ring { addMultipliedByDoubling(this@plus, one, other) }
     /**
-     * Returns difference between the constant and the integer represented as constant (member of underlying ring).
+     * Returns difference between the constant and the integer represented as a constant (member of underlying ring).
      *
      * The operation is equivalent to subtraction [other] copies of unit of underlying ring from [this].
      */
     public override operator fun C.minus(other: Int): C = ring { addMultipliedByDoubling(this@minus, one, -other) }
     /**
-     * Returns product of the constant and the integer represented as constant (member of underlying ring).
+     * Returns product of the constant and the integer represented as a constant (member of underlying ring).
      *
      * The operation is equivalent to sum of [other] copies of [this].
      */
     public override operator fun C.times(other: Int): C = ring { multiplyByDoubling(this@times, other) }
 
     /**
-     * Returns sum of the integer represented as constant (member of underlying ring) and the constant.
+     * Returns sum of the integer represented as a constant (member of underlying ring) and the constant.
      *
      * The operation is equivalent to adding [this] copies of unit of underlying ring to [other].
      */
     public override operator fun Int.plus(other: C): C = ring { addMultipliedByDoubling(other, one, this@plus) }
     /**
-     * Returns difference between the integer represented as constant (member of underlying ring) and the constant.
+     * Returns difference between the integer represented as a constant (member of underlying ring) and the constant.
      *
      * The operation is equivalent to subtraction [this] copies of unit of underlying ring from [other].
      */
     public override operator fun Int.minus(other: C): C = ring { addMultipliedByDoubling(-other, one, this@minus) }
     /**
-     * Returns product of the integer represented as constant (member of underlying ring) and the constant.
+     * Returns product of the integer represented as a constant (member of underlying ring) and the constant.
      *
      * The operation is equivalent to sum of [this] copies of [other].
      */
@@ -330,58 +333,145 @@ public interface PolynomialSpaceOverRing<C, P: Polynomial<C>, A: Ring<C>> : Poly
     public override val constantOne: C get() = ring.one
 }
 
+/**
+ * Abstraction of ring of polynomials of type [P] of variables of type [V] and over ring of constants of type [C].
+ *
+ * @param C the type of constants. Polynomials have them as coefficients in their terms.
+ * @param V the type of variables. Polynomials have them in representations of terms.
+ * @param P the type of polynomials.
+ */
 @Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420
 public interface MultivariatePolynomialSpace<C, V, P: Polynomial<C>>: PolynomialSpace<C, P> {
+    /**
+     * Returns sum of the variable represented as a monic monomial and the integer represented as a constant polynomial.
+     */
     @JvmName("plusVariableInt")
     public operator fun V.plus(other: Int): P
+    /**
+     * Returns difference between the variable represented as a monic monomial and the integer represented as a constant polynomial.
+     */
     @JvmName("minusVariableInt")
     public operator fun V.minus(other: Int): P
+    /**
+     * Returns product of the variable represented as a monic monomial and the integer represented as a constant polynomial.
+     */
     @JvmName("timesVariableInt")
     public operator fun V.times(other: Int): P
 
+    /**
+     * Returns sum of the integer represented as a constant polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("plusIntVariable")
     public operator fun Int.plus(other: V): P
+    /**
+     * Returns difference between the integer represented as a constant polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("minusIntVariable")
     public operator fun Int.minus(other: V): P
+    /**
+     * Returns product of the integer represented as a constant polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("timesIntVariable")
     public operator fun Int.times(other: V): P
 
-    @JvmName("plusConstantVariable")
-    public operator fun C.plus(other: V): P
-    @JvmName("minusConstantVariable")
-    public operator fun C.minus(other: V): P
-    @JvmName("timesConstantVariable")
-    public operator fun C.times(other: V): P
-
+    /**
+     * Returns sum of the variable represented as a monic monomial and the constant represented as a constant polynomial.
+     */
     @JvmName("plusVariableConstant")
     public operator fun V.plus(other: C): P
+    /**
+     * Returns difference between the variable represented as a monic monomial and the constant represented as a constant polynomial.
+     */
     @JvmName("minusVariableConstant")
     public operator fun V.minus(other: C): P
+    /**
+     * Returns product of the variable represented as a monic monomial and the constant represented as a constant polynomial.
+     */
     @JvmName("timesVariableConstant")
     public operator fun V.times(other: C): P
 
+    /**
+     * Returns sum of the constant represented as a constant polynomial and the variable represented as a monic monomial.
+     */
+    @JvmName("plusConstantVariable")
+    public operator fun C.plus(other: V): P
+    /**
+     * Returns difference between the constant represented as a constant polynomial and the variable represented as a monic monomial.
+     */
+    @JvmName("minusConstantVariable")
+    public operator fun C.minus(other: V): P
+    /**
+     * Returns product of the constant represented as a constant polynomial and the variable represented as a monic monomial.
+     */
+    @JvmName("timesConstantVariable")
+    public operator fun C.times(other: V): P
+
+    /**
+     * Represents the variable as a monic monomial.
+     */
     @JvmName("unaryPlusVariable")
     public operator fun V.unaryPlus(): P
+    /**
+     * Returns negation of representation of the variable as a monic monomial.
+     */
     @JvmName("unaryMinusVariable")
     public operator fun V.unaryMinus(): P
+    /**
+     * Returns sum of the variables represented as monic monomials.
+     */
     @JvmName("plusVariableVariable")
     public operator fun V.plus(other: V): P
+    /**
+     * Returns difference between the variables represented as monic monomials.
+     */
     @JvmName("minusVariableVariable")
     public operator fun V.minus(other: V): P
+    /**
+     * Returns product of the variables represented as monic monomials.
+     */
     @JvmName("timesVariableVariable")
     public operator fun V.times(other: V): P
 
+    /**
+     * Represents the [variable] as a monic monomial.
+     */
+    @JvmName("numberVariable")
+    public fun number(variable: V): P = +variable
+    /**
+     * Represents the variable as a monic monomial.
+     */
+    @JvmName("asPolynomialVariable")
+    public fun V.asPolynomial(): P = number(this)
+
+    /**
+     * Returns sum of the variable represented as a monic monomial and the polynomial.
+     */
     @JvmName("plusVariablePolynomial")
     public operator fun V.plus(other: P): P
+    /**
+     * Returns difference between the variable represented as a monic monomial and the polynomial.
+     */
     @JvmName("minusVariablePolynomial")
     public operator fun V.minus(other: P): P
+    /**
+     * Returns product of the variable represented as a monic monomial and the polynomial.
+     */
     @JvmName("timesVariablePolynomial")
     public operator fun V.times(other: P): P
 
+    /**
+     * Returns sum of the polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("plusPolynomialVariable")
     public operator fun P.plus(other: V): P
+    /**
+     * Returns difference between the polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("minusPolynomialVariable")
     public operator fun P.minus(other: V): P
+    /**
+     * Returns product of the polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("timesPolynomialVariable")
     public operator fun P.times(other: V): P
 
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/RationalFunction.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/RationalFunction.kt
index dfec126f3..01911f980 100644
--- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/RationalFunction.kt
+++ b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/RationalFunction.kt
@@ -25,44 +25,44 @@ public interface RationalFunction<C, P: Polynomial<C>> {
  * [C].
  *
  * @param C the type of constants. Polynomials have them as coefficients in their terms.
- * @param P the type of polynomials. Rational functions have them as numerators and denominators in them.
+ * @param P the type of polynomials. Rational functions have them as numerators and denominators.
  * @param R the type of rational functions.
  */
 @Suppress("INAPPLICABLE_JVM_NAME", "PARAMETER_NAME_CHANGED_ON_OVERRIDE") // FIXME: Waiting for KT-31420
 public interface RationalFunctionalSpace<C, P: Polynomial<C>, R: RationalFunction<C, P>> : Ring<R> {
     /**
-     * Returns sum of the constant and the integer represented as constant (member of underlying ring).
+     * Returns sum of the constant and the integer represented as a constant (member of underlying ring).
      *
      * The operation is equivalent to adding [other] copies of unit of underlying ring to [this].
      */
     public operator fun C.plus(other: Int): C
     /**
-     * Returns difference between the constant and the integer represented as constant (member of underlying ring).
+     * Returns difference between the constant and the integer represented as a constant (member of underlying ring).
      *
      * The operation is equivalent to subtraction [other] copies of unit of underlying ring from [this].
      */
     public operator fun C.minus(other: Int): C
     /**
-     * Returns product of the constant and the integer represented as constant (member of underlying ring).
+     * Returns product of the constant and the integer represented as a constant (member of underlying ring).
      *
      * The operation is equivalent to sum of [other] copies of [this].
      */
     public operator fun C.times(other: Int): C
 
     /**
-     * Returns sum of the integer represented as constant (member of underlying ring) and the constant.
+     * Returns sum of the integer represented as a constant (member of underlying ring) and the constant.
      *
      * The operation is equivalent to adding [this] copies of unit of underlying ring to [other].
      */
     public operator fun Int.plus(other: C): C
     /**
-     * Returns difference between the integer represented as constant (member of underlying ring) and the constant.
+     * Returns difference between the integer represented as a constant (member of underlying ring) and the constant.
      *
      * The operation is equivalent to subtraction [this] copies of unit of underlying ring from [other].
      */
     public operator fun Int.minus(other: C): C
     /**
-     * Returns product of the integer represented as constant (member of underlying ring) and the constant.
+     * Returns product of the integer represented as a constant (member of underlying ring) and the constant.
      *
      * The operation is equivalent to sum of [this] copies of [other].
      */
@@ -78,38 +78,38 @@ public interface RationalFunctionalSpace<C, P: Polynomial<C>, R: RationalFunctio
     public fun Int.asConstant(): C = constantNumber(this)
 
     /**
-     * Returns sum of the constant and the integer represented as polynomial.
+     * Returns sum of the constant and the integer represented as a polynomial.
      *
      * The operation is equivalent to adding [other] copies of unit polynomial to [this].
      */
     public operator fun P.plus(other: Int): P
     /**
-     * Returns difference between the constant and the integer represented as polynomial.
+     * Returns difference between the constant and the integer represented as a polynomial.
      *
      * The operation is equivalent to subtraction [other] copies of unit polynomial from [this].
      */
     public operator fun P.minus(other: Int): P
     /**
-     * Returns product of the constant and the integer represented as polynomial.
+     * Returns product of the constant and the integer represented as a polynomial.
      *
      * The operation is equivalent to sum of [other] copies of [this].
      */
     public operator fun P.times(other: Int): P
 
     /**
-     * Returns sum of the integer represented as polynomial and the constant.
+     * Returns sum of the integer represented as a polynomial and the constant.
      *
      * The operation is equivalent to adding [this] copies of unit polynomial to [other].
      */
     public operator fun Int.plus(other: P): P
     /**
-     * Returns difference between the integer represented as polynomial and the constant.
+     * Returns difference between the integer represented as a polynomial and the constant.
      *
      * The operation is equivalent to subtraction [this] copies of unit polynomial from [other].
      */
     public operator fun Int.minus(other: P): P
     /**
-     * Returns product of the integer represented as polynomial and the constant.
+     * Returns product of the integer represented as a polynomial and the constant.
      *
      * The operation is equivalent to sum of [this] copies of [other].
      */
@@ -125,25 +125,25 @@ public interface RationalFunctionalSpace<C, P: Polynomial<C>, R: RationalFunctio
     public fun Int.asPolynomial(): P = polynomialNumber(this)
 
     /**
-     * Returns sum of the rational function and the integer represented as rational function.
+     * Returns sum of the rational function and the integer represented as a rational function.
      *
      * The operation is equivalent to adding [other] copies of unit polynomial to [this].
      */
     public operator fun R.plus(other: Int): R = addMultipliedByDoubling(this, one, other)
     /**
-     * Returns difference between the rational function and the integer represented as rational function.
+     * Returns difference between the rational function and the integer represented as a rational function.
      *
      * The operation is equivalent to subtraction [other] copies of unit polynomial from [this].
      */
     public operator fun R.minus(other: Int): R = addMultipliedByDoubling(this, one, -other)
     /**
-     * Returns product of the rational function and the integer represented as rational function.
+     * Returns product of the rational function and the integer represented as a rational function.
      *
      * The operation is equivalent to sum of [other] copies of [this].
      */
     public operator fun R.times(other: Int): R = multiplyByDoubling(this, other)
     /**
-     * Returns quotient of the rational function and the integer represented as rational function.
+     * Returns quotient of the rational function and the integer represented as a rational function.
      *
      * The operation is equivalent to creating a new rational function by preserving numerator of [this] and
      * multiplication denominator of [this] to [other].
@@ -151,25 +151,25 @@ public interface RationalFunctionalSpace<C, P: Polynomial<C>, R: RationalFunctio
     public operator fun R.div(other: Int): R = this / multiplyByDoubling(one, other)
 
     /**
-     * Returns sum of the integer represented as rational function and the rational function.
+     * Returns sum of the integer represented as a rational function and the rational function.
      *
      * The operation is equivalent to adding [this] copies of unit polynomial to [other].
      */
     public operator fun Int.plus(other: R): R = addMultipliedByDoubling(other, one, this)
     /**
-     * Returns difference between the integer represented as rational function and the rational function.
+     * Returns difference between the integer represented as a rational function and the rational function.
      *
      * The operation is equivalent to subtraction [this] copies of unit polynomial from [other].
      */
     public operator fun Int.minus(other: R): R = addMultipliedByDoubling(-other, one, this)
     /**
-     * Returns product of the integer represented as rational function and the rational function.
+     * Returns product of the integer represented as a rational function and the rational function.
      *
      * The operation is equivalent to sum of [this] copies of [other].
      */
     public operator fun Int.times(other: R): R = multiplyByDoubling(other, this)
     /**
-     * Returns quotient of the integer represented as rational function and the rational function.
+     * Returns quotient of the integer represented as a rational function and the rational function.
      *
      * The operation is equivalent to creating a new rational function which numerator is [this] times denominator of
      * [other] and which denominator is [other]'s numerator.
@@ -232,28 +232,28 @@ public interface RationalFunctionalSpace<C, P: Polynomial<C>, R: RationalFunctio
     public val constantOne: C
 
     /**
-     * Returns sum of the constant represented as polynomial and the polynomial.
+     * Returns sum of the constant represented as a polynomial and the polynomial.
      */
     public operator fun C.plus(other: P): P
     /**
-     * Returns difference between the constant represented as polynomial and the polynomial.
+     * Returns difference between the constant represented as a polynomial and the polynomial.
      */
     public operator fun C.minus(other: P): P
     /**
-     * Returns product of the constant represented as polynomial and the polynomial.
+     * Returns product of the constant represented as a polynomial and the polynomial.
      */
     public operator fun C.times(other: P): P
 
     /**
-     * Returns sum of the constant represented as polynomial and the polynomial.
+     * Returns sum of the constant represented as a polynomial and the polynomial.
      */
     public operator fun P.plus(other: C): P
     /**
-     * Returns difference between the constant represented as polynomial and the polynomial.
+     * Returns difference between the constant represented as a polynomial and the polynomial.
      */
     public operator fun P.minus(other: C): P
     /**
-     * Returns product of the constant represented as polynomial and the polynomial.
+     * Returns product of the constant represented as a polynomial and the polynomial.
      */
     public operator fun P.times(other: C): P
 
@@ -305,36 +305,36 @@ public interface RationalFunctionalSpace<C, P: Polynomial<C>, R: RationalFunctio
     public val polynomialOne: P
 
     /**
-     * Returns sum of the constant represented as rational function and the rational function.
+     * Returns sum of the constant represented as a rational function and the rational function.
      */
     public operator fun C.plus(other: R): R
     /**
-     * Returns difference between the constant represented as polynomial and the rational function.
+     * Returns difference between the constant represented as a polynomial and the rational function.
      */
     public operator fun C.minus(other: R): R
     /**
-     * Returns product of the constant represented as polynomial and the rational function.
+     * Returns product of the constant represented as a polynomial and the rational function.
      */
     public operator fun C.times(other: R): R
     /**
-     * Returns quotient of the constant represented as polynomial and the rational function.
+     * Returns quotient of the constant represented as a polynomial and the rational function.
      */
     public operator fun C.div(other: R): R
 
     /**
-     * Returns sum of the rational function and the constant represented as rational function.
+     * Returns sum of the rational function and the constant represented as a rational function.
      */
     public operator fun R.plus(other: C): R
     /**
-     * Returns difference between the rational function and the constant represented as rational function.
+     * Returns difference between the rational function and the constant represented as a rational function.
      */
     public operator fun R.minus(other: C): R
     /**
-     * Returns product of the rational function and the constant represented as rational function.
+     * Returns product of the rational function and the constant represented as a rational function.
      */
     public operator fun R.times(other: C): R
     /**
-     * Returns quotient of the rational function and the constant represented as rational function.
+     * Returns quotient of the rational function and the constant represented as a rational function.
      */
     public operator fun R.div(other: C): R
 
@@ -348,36 +348,36 @@ public interface RationalFunctionalSpace<C, P: Polynomial<C>, R: RationalFunctio
     public fun C.asRationalFunction(): R = number(this)
 
     /**
-     * Returns sum of the polynomial represented as rational function and the rational function.
+     * Returns sum of the polynomial represented as a rational function and the rational function.
      */
     public operator fun P.plus(other: R): R
     /**
-     * Returns difference between the polynomial represented as polynomial and the rational function.
+     * Returns difference between the polynomial represented as a polynomial and the rational function.
      */
     public operator fun P.minus(other: R): R
     /**
-     * Returns product of the polynomial represented as polynomial and the rational function.
+     * Returns product of the polynomial represented as a polynomial and the rational function.
      */
     public operator fun P.times(other: R): R
     /**
-     * Returns quotient of the polynomial represented as polynomial and the rational function.
+     * Returns quotient of the polynomial represented as a polynomial and the rational function.
      */
     public operator fun P.div(other: R): R
 
     /**
-     * Returns sum of the rational function and the polynomial represented as rational function.
+     * Returns sum of the rational function and the polynomial represented as a rational function.
      */
     public operator fun R.plus(other: P): R
     /**
-     * Returns difference between the rational function and the polynomial represented as rational function.
+     * Returns difference between the rational function and the polynomial represented as a rational function.
      */
     public operator fun R.minus(other: P): R
     /**
-     * Returns product of the rational function and the polynomial represented as rational function.
+     * Returns product of the rational function and the polynomial represented as a rational function.
      */
     public operator fun R.times(other: P): R
     /**
-     * Returns quotient of the rational function and the polynomial represented as rational function.
+     * Returns quotient of the rational function and the polynomial represented as a rational function.
      */
     public operator fun R.div(other: P): R
 
@@ -459,43 +459,51 @@ public interface RationalFunctionalSpace<C, P: Polynomial<C>, R: RationalFunctio
  * @param A the type of algebraic structure (precisely, of ring) provided for constants.
  */
 @Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420
-public interface RationalFunctionalSpaceOverRing<C, P: Polynomial<C>, R: RationalFunction<C, P>, A: Ring<C>> : RationalFunctionalSpace<C, P, R> {
+public interface RationalFunctionalSpaceOverRing<
+        C,
+        P: Polynomial<C>,
+        R: RationalFunction<C, P>,
+        A: Ring<C>
+        > : RationalFunctionalSpace<C, P, R> {
 
+    /**
+     * Underlying ring of constants. Its operations on constants are inherited by local operations on constants.
+     */
     public val ring: A
 
     /**
-     * Returns sum of the constant and the integer represented as constant (member of underlying ring).
+     * Returns sum of the constant and the integer represented as a constant (member of underlying ring).
      *
      * The operation is equivalent to adding [other] copies of unit of underlying ring to [this].
      */
     public override operator fun C.plus(other: Int): C = ring { addMultipliedByDoubling(this@plus, one, other) }
     /**
-     * Returns difference between the constant and the integer represented as constant (member of underlying ring).
+     * Returns difference between the constant and the integer represented as a constant (member of underlying ring).
      *
      * The operation is equivalent to subtraction [other] copies of unit of underlying ring from [this].
      */
     public override operator fun C.minus(other: Int): C = ring { addMultipliedByDoubling(this@minus, one, -other) }
     /**
-     * Returns product of the constant and the integer represented as constant (member of underlying ring).
+     * Returns product of the constant and the integer represented as a constant (member of underlying ring).
      *
      * The operation is equivalent to sum of [other] copies of [this].
      */
     public override operator fun C.times(other: Int): C = ring { multiplyByDoubling(this@times, other) }
 
     /**
-     * Returns sum of the integer represented as constant (member of underlying ring) and the constant.
+     * Returns sum of the integer represented as a constant (member of underlying ring) and the constant.
      *
      * The operation is equivalent to adding [this] copies of unit of underlying ring to [other].
      */
     public override operator fun Int.plus(other: C): C = ring { addMultipliedByDoubling(other, one, this@plus) }
     /**
-     * Returns difference between the integer represented as constant (member of underlying ring) and the constant.
+     * Returns difference between the integer represented as a constant (member of underlying ring) and the constant.
      *
      * The operation is equivalent to subtraction [this] copies of unit of underlying ring from [other].
      */
     public override operator fun Int.minus(other: C): C = ring { addMultipliedByDoubling(-other, one, this@minus) }
     /**
-     * Returns product of the integer represented as constant (member of underlying ring) and the constant.
+     * Returns product of the integer represented as a constant (member of underlying ring) and the constant.
      *
      * The operation is equivalent to sum of [this] copies of [other].
      */
@@ -560,41 +568,44 @@ public interface RationalFunctionalSpaceOverPolynomialSpace<
         AP: PolynomialSpace<C, P>,
         > : RationalFunctionalSpace<C, P, R> {
 
+    /**
+     * Underlying polynomial ring. Its polynomial operations are inherited by local polynomial operations.
+     */
     public val polynomialRing: AP
 
     /**
-     * Returns sum of the constant and the integer represented as constant (member of underlying ring).
+     * Returns sum of the constant and the integer represented as a constant (member of underlying ring).
      *
      * The operation is equivalent to adding [other] copies of unit of underlying ring to [this].
      */
     public override operator fun C.plus(other: Int): C = polynomialRing { this@plus + other }
     /**
-     * Returns difference between the constant and the integer represented as constant (member of underlying ring).
+     * Returns difference between the constant and the integer represented as a constant (member of underlying ring).
      *
      * The operation is equivalent to subtraction [other] copies of unit of underlying ring from [this].
      */
     public override operator fun C.minus(other: Int): C = polynomialRing { this@minus - other }
     /**
-     * Returns product of the constant and the integer represented as constant (member of underlying ring).
+     * Returns product of the constant and the integer represented as a constant (member of underlying ring).
      *
      * The operation is equivalent to sum of [other] copies of [this].
      */
     public override operator fun C.times(other: Int): C = polynomialRing { this@times * other }
 
     /**
-     * Returns sum of the integer represented as constant (member of underlying ring) and the constant.
+     * Returns sum of the integer represented as a constant (member of underlying ring) and the constant.
      *
      * The operation is equivalent to adding [this] copies of unit of underlying ring to [other].
      */
     public override operator fun Int.plus(other: C): C = polynomialRing { this@plus + other }
     /**
-     * Returns difference between the integer represented as constant (member of underlying ring) and the constant.
+     * Returns difference between the integer represented as a constant (member of underlying ring) and the constant.
      *
      * The operation is equivalent to subtraction [this] copies of unit of underlying ring from [other].
      */
     public override operator fun Int.minus(other: C): C = polynomialRing { this@minus - other }
     /**
-     * Returns product of the integer represented as constant (member of underlying ring) and the constant.
+     * Returns product of the integer represented as a constant (member of underlying ring) and the constant.
      *
      * The operation is equivalent to sum of [this] copies of [other].
      */
@@ -610,38 +621,38 @@ public interface RationalFunctionalSpaceOverPolynomialSpace<
     override fun Int.asConstant(): C = polynomialRing { asConstant() }
 
     /**
-     * Returns sum of the constant and the integer represented as polynomial.
+     * Returns sum of the constant and the integer represented as a polynomial.
      *
      * The operation is equivalent to adding [other] copies of unit polynomial to [this].
      */
     public override operator fun P.plus(other: Int): P = polynomialRing { this@plus + other }
     /**
-     * Returns difference between the constant and the integer represented as polynomial.
+     * Returns difference between the constant and the integer represented as a polynomial.
      *
      * The operation is equivalent to subtraction [other] copies of unit polynomial from [this].
      */
     public override operator fun P.minus(other: Int): P = polynomialRing { this@minus - other }
     /**
-     * Returns product of the constant and the integer represented as polynomial.
+     * Returns product of the constant and the integer represented as a polynomial.
      *
      * The operation is equivalent to sum of [other] copies of [this].
      */
     public override operator fun P.times(other: Int): P = polynomialRing { this@times * other }
 
     /**
-     * Returns sum of the integer represented as polynomial and the constant.
+     * Returns sum of the integer represented as a polynomial and the constant.
      *
      * The operation is equivalent to adding [this] copies of unit polynomial to [other].
      */
     public override operator fun Int.plus(other: P): P = polynomialRing { this@plus + other }
     /**
-     * Returns difference between the integer represented as polynomial and the constant.
+     * Returns difference between the integer represented as a polynomial and the constant.
      *
      * The operation is equivalent to subtraction [this] copies of unit polynomial from [other].
      */
     public override operator fun Int.minus(other: P): P = polynomialRing { this@minus - other }
     /**
-     * Returns product of the integer represented as polynomial and the constant.
+     * Returns product of the integer represented as a polynomial and the constant.
      *
      * The operation is equivalent to sum of [this] copies of [other].
      */
@@ -697,28 +708,28 @@ public interface RationalFunctionalSpaceOverPolynomialSpace<
     public override val constantOne: C get() = polynomialRing.constantOne
 
     /**
-     * Returns sum of the constant represented as polynomial and the polynomial.
+     * Returns sum of the constant represented as a polynomial and the polynomial.
      */
     public override operator fun C.plus(other: P): P = polynomialRing { this@plus + other }
     /**
-     * Returns difference between the constant represented as polynomial and the polynomial.
+     * Returns difference between the constant represented as a polynomial and the polynomial.
      */
     public override operator fun C.minus(other: P): P = polynomialRing { this@minus - other }
     /**
-     * Returns product of the constant represented as polynomial and the polynomial.
+     * Returns product of the constant represented as a polynomial and the polynomial.
      */
     public override operator fun C.times(other: P): P = polynomialRing { this@times * other }
 
     /**
-     * Returns sum of the constant represented as polynomial and the polynomial.
+     * Returns sum of the constant represented as a polynomial and the polynomial.
      */
     public override operator fun P.plus(other: C): P = polynomialRing { this@plus + other }
     /**
-     * Returns difference between the constant represented as polynomial and the polynomial.
+     * Returns difference between the constant represented as a polynomial and the polynomial.
      */
     public override operator fun P.minus(other: C): P = polynomialRing { this@minus - other }
     /**
-     * Returns product of the constant represented as polynomial and the polynomial.
+     * Returns product of the constant represented as a polynomial and the polynomial.
      */
     public override operator fun P.times(other: C): P = polynomialRing { this@times * other }
 
@@ -774,7 +785,8 @@ public interface RationalFunctionalSpaceOverPolynomialSpace<
 
 /**
  * Abstraction of field of rational functions of type [R] with respect to polynomials of type [P] and constants of type
- * [C]. It also assumes that there is provided constructor
+ * [C]. It also assumes that there is provided constructor [constructRationalFunction] of rational functions from
+ * polynomial numerator and denominator.
  *
  * @param C the type of constants. Polynomials have them as coefficients in their terms.
  * @param P the type of polynomials. Rational functions have them as numerators and denominators in them.
@@ -786,10 +798,14 @@ public abstract class PolynomialSpaceOfFractions<
         P: Polynomial<C>,
         R: RationalFunction<C, P>,
         > : RationalFunctionalSpace<C, P, R> {
+
+    /**
+     * Constructor of rational functions (of type [R]) from numerator and denominator (of type [P]).
+     */
     protected abstract fun constructRationalFunction(numerator: P, denominator: P = polynomialOne) : R
 
     /**
-     * Returns sum of the rational function and the integer represented as rational function.
+     * Returns sum of the rational function and the integer represented as a rational function.
      *
      * The operation is equivalent to adding [other] copies of unit polynomial to [this].
      */
@@ -799,7 +815,7 @@ public abstract class PolynomialSpaceOfFractions<
             denominator
         )
     /**
-     * Returns difference between the rational function and the integer represented as rational function.
+     * Returns difference between the rational function and the integer represented as a rational function.
      *
      * The operation is equivalent to subtraction [other] copies of unit polynomial from [this].
      */
@@ -809,7 +825,7 @@ public abstract class PolynomialSpaceOfFractions<
             denominator
         )
     /**
-     * Returns product of the rational function and the integer represented as rational function.
+     * Returns product of the rational function and the integer represented as a rational function.
      *
      * The operation is equivalent to sum of [other] copies of [this].
      */
@@ -818,7 +834,12 @@ public abstract class PolynomialSpaceOfFractions<
             numerator * other,
             denominator
         )
-
+    /**
+     * Returns quotient of the rational function and the integer represented as a rational function.
+     *
+     * The operation is equivalent to creating a new rational function by preserving numerator of [this] and
+     * multiplication denominator of [this] to [other].
+     */
     public override operator fun R.div(other: Int): R =
         constructRationalFunction(
             numerator,
@@ -826,7 +847,7 @@ public abstract class PolynomialSpaceOfFractions<
         )
 
     /**
-     * Returns sum of the integer represented as rational function and the rational function.
+     * Returns sum of the integer represented as a rational function and the rational function.
      *
      * The operation is equivalent to adding [this] copies of unit polynomial to [other].
      */
@@ -836,7 +857,7 @@ public abstract class PolynomialSpaceOfFractions<
             other.denominator
         )
     /**
-     * Returns difference between the integer represented as rational function and the rational function.
+     * Returns difference between the integer represented as a rational function and the rational function.
      *
      * The operation is equivalent to subtraction [this] copies of unit polynomial from [other].
      */
@@ -846,7 +867,7 @@ public abstract class PolynomialSpaceOfFractions<
             other.denominator
         )
     /**
-     * Returns product of the integer represented as rational function and the rational function.
+     * Returns product of the integer represented as a rational function and the rational function.
      *
      * The operation is equivalent to sum of [this] copies of [other].
      */
@@ -855,7 +876,12 @@ public abstract class PolynomialSpaceOfFractions<
             this * other.numerator,
             other.denominator
         )
-
+    /**
+     * Returns quotient of the integer represented as a rational function and the rational function.
+     *
+     * The operation is equivalent to creating a new rational function which numerator is [this] times denominator of
+     * [other] and which denominator is [other]'s numerator.
+     */
     public override operator fun Int.div(other: R): R =
         constructRationalFunction(
             this * other.denominator,
@@ -873,7 +899,7 @@ public abstract class PolynomialSpaceOfFractions<
     public override operator fun P.div(other: P): R = constructRationalFunction(this, other)
 
     /**
-     * Returns sum of the constant represented as rational function and the rational function.
+     * Returns sum of the constant represented as a rational function and the rational function.
      */
     public override operator fun C.plus(other: R): R =
         constructRationalFunction(
@@ -881,7 +907,7 @@ public abstract class PolynomialSpaceOfFractions<
             other.denominator
         )
     /**
-     * Returns difference between the constant represented as polynomial and the rational function.
+     * Returns difference between the constant represented as a polynomial and the rational function.
      */
     public override operator fun C.minus(other: R): R =
         constructRationalFunction(
@@ -889,14 +915,16 @@ public abstract class PolynomialSpaceOfFractions<
             other.denominator
         )
     /**
-     * Returns product of the constant represented as polynomial and the rational function.
+     * Returns product of the constant represented as a polynomial and the rational function.
      */
     public override operator fun C.times(other: R): R =
         constructRationalFunction(
             this * other.numerator,
             other.denominator
         )
-
+    /**
+     * Returns quotient of the constant represented as a polynomial and the rational function.
+     */
     public override operator fun C.div(other: R): R =
         constructRationalFunction(
             this * other.denominator,
@@ -904,7 +932,7 @@ public abstract class PolynomialSpaceOfFractions<
         )
 
     /**
-     * Returns sum of the constant represented as rational function and the rational function.
+     * Returns sum of the constant represented as a rational function and the rational function.
      */
     public override operator fun R.plus(other: C): R =
         constructRationalFunction(
@@ -912,7 +940,7 @@ public abstract class PolynomialSpaceOfFractions<
             denominator
         )
     /**
-     * Returns difference between the constant represented as rational function and the rational function.
+     * Returns difference between the constant represented as a rational function and the rational function.
      */
     public override operator fun R.minus(other: C): R =
         constructRationalFunction(
@@ -920,14 +948,16 @@ public abstract class PolynomialSpaceOfFractions<
             denominator
         )
     /**
-     * Returns product of the constant represented as rational function and the rational function.
+     * Returns product of the constant represented as a rational function and the rational function.
      */
     public override operator fun R.times(other: C): R =
         constructRationalFunction(
             numerator * other,
             denominator
         )
-
+    /**
+     * Returns quotient of the rational function and the constant represented as a rational function.
+     */
     public override operator fun R.div(other: C): R =
         constructRationalFunction(
             numerator,
@@ -940,7 +970,7 @@ public abstract class PolynomialSpaceOfFractions<
     public override fun number(value: C): R = constructRationalFunction(polynomialNumber(value))
 
     /**
-     * Returns sum of the polynomial represented as rational function and the rational function.
+     * Returns sum of the polynomial represented as a rational function and the rational function.
      */
     public override operator fun P.plus(other: R): R =
         constructRationalFunction(
@@ -948,7 +978,7 @@ public abstract class PolynomialSpaceOfFractions<
             other.denominator
         )
     /**
-     * Returns difference between the polynomial represented as polynomial and the rational function.
+     * Returns difference between the polynomial represented as a polynomial and the rational function.
      */
     public override operator fun P.minus(other: R): R =
         constructRationalFunction(
@@ -956,14 +986,16 @@ public abstract class PolynomialSpaceOfFractions<
             other.denominator
         )
     /**
-     * Returns product of the polynomial represented as polynomial and the rational function.
+     * Returns product of the polynomial represented as a polynomial and the rational function.
      */
     public override operator fun P.times(other: R): R =
         constructRationalFunction(
             this * other.numerator,
             other.denominator
         )
-
+    /**
+     * Returns quotient of the polynomial represented as a polynomial and the rational function.
+     */
     public override operator fun P.div(other: R): R =
         constructRationalFunction(
             this * other.denominator,
@@ -971,7 +1003,7 @@ public abstract class PolynomialSpaceOfFractions<
         )
 
     /**
-     * Returns sum of the polynomial represented as rational function and the rational function.
+     * Returns sum of the polynomial represented as a rational function and the rational function.
      */
     public override operator fun R.plus(other: P): R =
         constructRationalFunction(
@@ -979,7 +1011,7 @@ public abstract class PolynomialSpaceOfFractions<
             denominator
         )
     /**
-     * Returns difference between the polynomial represented as rational function and the rational function.
+     * Returns difference between the polynomial represented as a rational function and the rational function.
      */
     public override operator fun R.minus(other: P): R =
         constructRationalFunction(
@@ -987,14 +1019,16 @@ public abstract class PolynomialSpaceOfFractions<
             denominator
         )
     /**
-     * Returns product of the polynomial represented as rational function and the rational function.
+     * Returns product of the polynomial represented as a rational function and the rational function.
      */
     public override operator fun R.times(other: P): R =
         constructRationalFunction(
             numerator * other,
             denominator
         )
-
+    /**
+     * Returns quotient of the rational function and the polynomial represented as a rational function.
+     */
     public override operator fun R.div(other: P): R =
         constructRationalFunction(
             numerator,
@@ -1034,7 +1068,9 @@ public abstract class PolynomialSpaceOfFractions<
             numerator * other.numerator,
             denominator * other.denominator
         )
-
+    /**
+     * Returns quotient of the rational functions.
+     */
     public override operator fun R.div(other: R): R =
         constructRationalFunction(
             numerator * other.denominator,
@@ -1044,14 +1080,23 @@ public abstract class PolynomialSpaceOfFractions<
     /**
      * Instance of zero rational function (zero of the rational functions ring).
      */
-    public override val zero: R get() = constructRationalFunction(polynomialZero)
+    public override val zero: R by lazy { constructRationalFunction(polynomialZero) }
 
     /**
      * Instance of unit polynomial (unit of the rational functions ring).
      */
-    public override val one: R get() = constructRationalFunction(polynomialOne)
+    public override val one: R by lazy { constructRationalFunction(polynomialOne) }
 }
 
+/**
+ * Abstraction of field of rational functions of type [R] with respect to polynomials of type [P] of variables of type
+ * [V] and over ring of constants of type [C].
+ *
+ * @param C the type of constants. Polynomials have them as coefficients in their terms.
+ * @param V the type of variables. Polynomials have them in representations of terms.
+ * @param P the type of polynomials. Rational functions have them as numerators and denominators in them.
+ * @param R the type of rational functions.
+ */
 @Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420
 public interface MultivariateRationalFunctionalSpace<
         C,
@@ -1059,70 +1104,179 @@ public interface MultivariateRationalFunctionalSpace<
         P: Polynomial<C>,
         R: RationalFunction<C, P>
         >: RationalFunctionalSpace<C, P, R> {
+    /**
+     * Returns sum of the variable represented as a monic monomial and the integer represented as a constant polynomial.
+     */
     @JvmName("plusVariableInt")
     public operator fun V.plus(other: Int): P
+    /**
+     * Returns difference between the variable represented as a monic monomial and the integer represented as a constant polynomial.
+     */
     @JvmName("minusVariableInt")
     public operator fun V.minus(other: Int): P
+    /**
+     * Returns product of the variable represented as a monic monomial and the integer represented as a constant polynomial.
+     */
     @JvmName("timesVariableInt")
     public operator fun V.times(other: Int): P
 
+    /**
+     * Returns sum of the integer represented as a constant polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("plusIntVariable")
     public operator fun Int.plus(other: V): P
+    /**
+     * Returns difference between the integer represented as a constant polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("minusIntVariable")
     public operator fun Int.minus(other: V): P
+    /**
+     * Returns product of the integer represented as a constant polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("timesIntVariable")
     public operator fun Int.times(other: V): P
 
-    @JvmName("plusConstantVariable")
-    public operator fun C.plus(other: V): P
-    @JvmName("minusConstantVariable")
-    public operator fun C.minus(other: V): P
-    @JvmName("timesConstantVariable")
-    public operator fun C.times(other: V): P
-
+    /**
+     * Returns sum of the variable represented as a monic monomial and the constant represented as a constant polynomial.
+     */
     @JvmName("plusVariableConstant")
     public operator fun V.plus(other: C): P
+    /**
+     * Returns difference between the variable represented as a monic monomial and the constant represented as a constant polynomial.
+     */
     @JvmName("minusVariableConstant")
     public operator fun V.minus(other: C): P
+    /**
+     * Returns product of the variable represented as a monic monomial and the constant represented as a constant polynomial.
+     */
     @JvmName("timesVariableConstant")
     public operator fun V.times(other: C): P
 
+    /**
+     * Returns sum of the constant represented as a constant polynomial and the variable represented as a monic monomial.
+     */
+    @JvmName("plusConstantVariable")
+    public operator fun C.plus(other: V): P
+    /**
+     * Returns difference between the constant represented as a constant polynomial and the variable represented as a monic monomial.
+     */
+    @JvmName("minusConstantVariable")
+    public operator fun C.minus(other: V): P
+    /**
+     * Returns product of the constant represented as a constant polynomial and the variable represented as a monic monomial.
+     */
+    @JvmName("timesConstantVariable")
+    public operator fun C.times(other: V): P
+
+    /**
+     * Represents the variable as a monic monomial.
+     */
     @JvmName("unaryPlusVariable")
     public operator fun V.unaryPlus(): P
+    /**
+     * Returns negation of representation of the variable as a monic monomial.
+     */
     @JvmName("unaryMinusVariable")
     public operator fun V.unaryMinus(): P
+    /**
+     * Returns sum of the variables represented as monic monomials.
+     */
     @JvmName("plusVariableVariable")
     public operator fun V.plus(other: V): P
+    /**
+     * Returns difference between the variables represented as monic monomials.
+     */
     @JvmName("minusVariableVariable")
     public operator fun V.minus(other: V): P
+    /**
+     * Returns product of the variables represented as monic monomials.
+     */
     @JvmName("timesVariableVariable")
     public operator fun V.times(other: V): P
 
+    /**
+     * Represents the [variable] as a monic monomial.
+     */
+    @JvmName("polynomialNumberVariable")
+    public fun polynomialNumber(variable: V): P = +variable
+    /**
+     * Represents the variable as a monic monomial.
+     */
+    @JvmName("asPolynomialVariable")
+    public fun V.asPolynomial(): P = polynomialNumber(this)
+
+    /**
+     * Represents the [variable] as a rational function.
+     */
+    @JvmName("numberVariable")
+    public fun number(variable: V): R = number(polynomialNumber(variable))
+    /**
+     * Represents the variable as a rational function.
+     */
+    @JvmName("asRationalFunctionVariable")
+    public fun V.asRationalFunction(): R = number(this)
+
+    /**
+     * Returns sum of the variable represented as a monic monomial and the polynomial.
+     */
     @JvmName("plusVariablePolynomial")
     public operator fun V.plus(other: P): P
+    /**
+     * Returns difference between the variable represented as a monic monomial and the polynomial.
+     */
     @JvmName("minusVariablePolynomial")
     public operator fun V.minus(other: P): P
+    /**
+     * Returns product of the variable represented as a monic monomial and the polynomial.
+     */
     @JvmName("timesVariablePolynomial")
     public operator fun V.times(other: P): P
 
+    /**
+     * Returns sum of the polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("plusPolynomialVariable")
     public operator fun P.plus(other: V): P
+    /**
+     * Returns difference between the polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("minusPolynomialVariable")
     public operator fun P.minus(other: V): P
+    /**
+     * Returns product of the polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("timesPolynomialVariable")
     public operator fun P.times(other: V): P
 
+    /**
+     * Returns sum of the variable represented as a rational function and the rational function.
+     */
     @JvmName("plusVariableRational")
     public operator fun V.plus(other: R): R
+    /**
+     * Returns difference between the variable represented as a rational function and the rational function.
+     */
     @JvmName("minusVariableRational")
     public operator fun V.minus(other: R): R
+    /**
+     * Returns product of the variable represented as a rational function and the rational function.
+     */
     @JvmName("timesVariableRational")
     public operator fun V.times(other: R): R
 
+    /**
+     * Returns sum of the rational function and the variable represented as a rational function.
+     */
     @JvmName("plusRationalVariable")
     public operator fun R.plus(other: V): R
+    /**
+     * Returns difference between the rational function and the variable represented as a rational function.
+     */
     @JvmName("minusRationalVariable")
     public operator fun R.minus(other: V): R
+    /**
+     * Returns product of the rational function and the variable represented as a rational function.
+     */
     @JvmName("timesRationalVariable")
     public operator fun R.times(other: V): R
 
@@ -1161,22 +1315,17 @@ public interface MultivariateRationalFunctionalSpace<
     public val R.countOfVariables: Int get() = variables.size
 }
 
-public interface MultivariateRationalFunctionalSpaceOverRing<
-        C,
-        V,
-        P: Polynomial<C>,
-        R: RationalFunction<C, P>,
-        A: Ring<C>
-        > : RationalFunctionalSpaceOverRing<C, P, R, A>, MultivariateRationalFunctionalSpace<C, V, P, R>
-
-public interface MultivariateRationalFunctionalSpaceOverPolynomialSpace<
-        C,
-        V,
-        P: Polynomial<C>,
-        R: RationalFunction<C, P>,
-        AP: PolynomialSpace<C, P>,
-        > : RationalFunctionalSpaceOverPolynomialSpace<C, P, R, AP>, MultivariateRationalFunctionalSpace<C, V, P, R>
-
+/**
+ * Abstraction of field of rational functions of type [R] with respect to polynomials of type [P] of variables of type
+ * [V] and over ring of constants of type [C]. It also assumes that there is provided [polynomialRing] (of type [AP]),
+ * that provides constant-, variable- and polynomial-wise operations.
+ *
+ * @param C the type of constants. Polynomials have them as coefficients in their terms.
+ * @param V the type of variables. Polynomials have them in representations of terms.
+ * @param P the type of polynomials. Rational functions have them as numerators and denominators in them.
+ * @param R the type of rational functions.
+ * @param AP the type of algebraic structure (precisely, of ring) provided for polynomials.
+ */
 @Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420
 public interface MultivariateRationalFunctionalSpaceOverMultivariatePolynomialSpace<
         C,
@@ -1184,57 +1333,137 @@ public interface MultivariateRationalFunctionalSpaceOverMultivariatePolynomialSp
         P: Polynomial<C>,
         R: RationalFunction<C, P>,
         AP: MultivariatePolynomialSpace<C, V, P>,
-        > : MultivariateRationalFunctionalSpaceOverPolynomialSpace<C, V, P, R, AP> {
+        > : RationalFunctionalSpaceOverPolynomialSpace<C, P, R, AP>, MultivariateRationalFunctionalSpace<C, V, P, R> {
+    /**
+     * Returns sum of the variable represented as a monic monomial and the integer represented as a constant polynomial.
+     */
     @JvmName("plusVariableInt")
     public override operator fun V.plus(other: Int): P = polynomialRing { this@plus + other }
+    /**
+     * Returns difference between the variable represented as a monic monomial and the integer represented as a constant polynomial.
+     */
     @JvmName("minusVariableInt")
     public override operator fun V.minus(other: Int): P = polynomialRing { this@minus - other }
+    /**
+     * Returns product of the variable represented as a monic monomial and the integer represented as a constant polynomial.
+     */
     @JvmName("timesVariableInt")
     public override operator fun V.times(other: Int): P = polynomialRing { this@times * other }
 
+    /**
+     * Returns sum of the integer represented as a constant polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("plusIntVariable")
     public override operator fun Int.plus(other: V): P = polynomialRing { this@plus + other }
+    /**
+     * Returns difference between the integer represented as a constant polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("minusIntVariable")
     public override operator fun Int.minus(other: V): P = polynomialRing { this@minus - other }
+    /**
+     * Returns product of the integer represented as a constant polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("timesIntVariable")
     public override operator fun Int.times(other: V): P = polynomialRing { this@times * other }
 
-    @JvmName("plusConstantVariable")
-    public override operator fun C.plus(other: V): P = polynomialRing { this@plus + other }
-    @JvmName("minusConstantVariable")
-    public override operator fun C.minus(other: V): P = polynomialRing { this@minus - other }
-    @JvmName("timesConstantVariable")
-    public override operator fun C.times(other: V): P = polynomialRing { this@times * other }
-
+    /**
+     * Returns sum of the variable represented as a monic monomial and the constant represented as a constant polynomial.
+     */
     @JvmName("plusVariableConstant")
     public override operator fun V.plus(other: C): P = polynomialRing { this@plus + other }
+    /**
+     * Returns difference between the variable represented as a monic monomial and the constant represented as a constant polynomial.
+     */
     @JvmName("minusVariableConstant")
     public override operator fun V.minus(other: C): P = polynomialRing { this@minus - other }
+    /**
+     * Returns product of the variable represented as a monic monomial and the constant represented as a constant polynomial.
+     */
     @JvmName("timesVariableConstant")
     public override operator fun V.times(other: C): P = polynomialRing { this@times * other }
 
+    /**
+     * Returns sum of the constant represented as a constant polynomial and the variable represented as a monic monomial.
+     */
+    @JvmName("plusConstantVariable")
+    public override operator fun C.plus(other: V): P = polynomialRing { this@plus + other }
+    /**
+     * Returns difference between the constant represented as a constant polynomial and the variable represented as a monic monomial.
+     */
+    @JvmName("minusConstantVariable")
+    public override operator fun C.minus(other: V): P = polynomialRing { this@minus - other }
+    /**
+     * Returns product of the constant represented as a constant polynomial and the variable represented as a monic monomial.
+     */
+    @JvmName("timesConstantVariable")
+    public override operator fun C.times(other: V): P = polynomialRing { this@times * other }
+
+    /**
+     * Represents the variable as a monic monomial.
+     */
     @JvmName("unaryPlusVariable")
     public override operator fun V.unaryPlus(): P = polynomialRing { +this@unaryPlus }
+    /**
+     * Returns negation of representation of the variable as a monic monomial.
+     */
     @JvmName("unaryMinusVariable")
     public override operator fun V.unaryMinus(): P = polynomialRing { -this@unaryMinus }
+    /**
+     * Returns sum of the variables represented as monic monomials.
+     */
     @JvmName("plusVariableVariable")
     public override operator fun V.plus(other: V): P = polynomialRing { this@plus + other }
+    /**
+     * Returns difference between the variables represented as monic monomials.
+     */
     @JvmName("minusVariableVariable")
     public override operator fun V.minus(other: V): P = polynomialRing { this@minus - other }
+    /**
+     * Returns product of the variables represented as monic monomials.
+     */
     @JvmName("timesVariableVariable")
     public override operator fun V.times(other: V): P = polynomialRing { this@times * other }
 
+    /**
+     * Represents the [variable] as a monic monomial.
+     */
+    @JvmName("polynomialNumberVariable")
+    public override fun polynomialNumber(variable: V): P = polynomialRing { number(variable) }
+    /**
+     * Represents the variable as a monic monomial.
+     */
+    @JvmName("asPolynomialVariable")
+    public override fun V.asPolynomial(): P = polynomialRing { this@asPolynomial.asPolynomial() }
+
+    /**
+     * Returns sum of the variable represented as a monic monomial and the polynomial.
+     */
     @JvmName("plusVariablePolynomial")
     public override operator fun V.plus(other: P): P = polynomialRing { this@plus + other }
+    /**
+     * Returns difference between the variable represented as a monic monomial and the polynomial.
+     */
     @JvmName("minusVariablePolynomial")
     public override operator fun V.minus(other: P): P = polynomialRing { this@minus - other }
+    /**
+     * Returns product of the variable represented as a monic monomial and the polynomial.
+     */
     @JvmName("timesVariablePolynomial")
     public override operator fun V.times(other: P): P = polynomialRing { this@times * other }
 
+    /**
+     * Returns sum of the polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("plusPolynomialVariable")
     public override operator fun P.plus(other: V): P = polynomialRing { this@plus + other }
+    /**
+     * Returns difference between the polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("minusPolynomialVariable")
     public override operator fun P.minus(other: V): P = polynomialRing { this@minus - other }
+    /**
+     * Returns product of the polynomial and the variable represented as a monic monomial.
+     */
     @JvmName("timesPolynomialVariable")
     public override operator fun P.times(other: V): P = polynomialRing { this@times * other }
 
@@ -1264,6 +1493,16 @@ public interface MultivariateRationalFunctionalSpaceOverMultivariatePolynomialSp
     public override val P.countOfVariables: Int get() = polynomialRing { countOfVariables }
 }
 
+/**
+ * Abstraction of field of rational functions of type [R] with respect to polynomials of type [P] of variables of type
+ * [V] and over ring of constants of type [C]. It also assumes that there is provided constructor
+ * [constructRationalFunction] of rational functions from polynomial numerator and denominator.
+ *
+ * @param C the type of constants. Polynomials have them as coefficients in their terms.
+ * @param V the type of variables. Polynomials have them in representations of terms.
+ * @param P the type of polynomials. Rational functions have them as numerators and denominators in them.
+ * @param R the type of rational functions.
+ */
 @Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420
 public abstract class MultivariatePolynomialSpaceOfFractions<
         C,
@@ -1271,18 +1510,27 @@ public abstract class MultivariatePolynomialSpaceOfFractions<
         P: Polynomial<C>,
         R: RationalFunction<C, P>,
         > : MultivariateRationalFunctionalSpace<C, V, P, R>,  PolynomialSpaceOfFractions<C, P, R>() {
+    /**
+     * Returns sum of the variable represented as a rational function and the rational function.
+     */
     @JvmName("plusVariableRational")
     public override operator fun V.plus(other: R): R =
         constructRationalFunction(
             this * other.denominator + other.numerator,
             other.denominator
         )
+    /**
+     * Returns difference between the variable represented as a rational function and the rational function.
+     */
     @JvmName("minusVariableRational")
     public override operator fun V.minus(other: R): R =
         constructRationalFunction(
             this * other.denominator - other.numerator,
             other.denominator
         )
+    /**
+     * Returns product of the variable represented as a rational function and the rational function.
+     */
     @JvmName("timesVariableRational")
     public override operator fun V.times(other: R): R =
         constructRationalFunction(
@@ -1290,18 +1538,27 @@ public abstract class MultivariatePolynomialSpaceOfFractions<
             other.denominator
         )
 
+    /**
+     * Returns sum of the rational function and the variable represented as a rational function.
+     */
     @JvmName("plusRationalVariable")
     public override operator fun R.plus(other: V): R =
         constructRationalFunction(
             numerator + denominator * other,
             denominator
         )
+    /**
+     * Returns difference between the rational function and the variable represented as a rational function.
+     */
     @JvmName("minusRationalVariable")
     public override operator fun R.minus(other: V): R =
         constructRationalFunction(
             numerator - denominator * other,
             denominator
         )
+    /**
+     * Returns product of the rational function and the variable represented as a rational function.
+     */
     @JvmName("timesRationalVariable")
     public override operator fun R.times(other: V): R =
         constructRationalFunction(
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledConstructors.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledConstructors.kt
deleted file mode 100644
index e81a9388e..000000000
--- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledConstructors.kt
+++ /dev/null
@@ -1,203 +0,0 @@
-/*
- * Copyright 2018-2021 KMath contributors.
- * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
- */
-
-package space.kscience.kmath.functions
-
-import space.kscience.kmath.expressions.Symbol
-import space.kscience.kmath.misc.UnstableKMathAPI
-import space.kscience.kmath.operations.Ring
-
-
-/**
- * Returns the same degrees' description of the monomial, but without zero degrees.
- */
-internal fun Map<Symbol, UInt>.cleanUp() = filterValues { it > 0U }
-
-// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available
-
-@Suppress("FunctionName", "NOTHING_TO_INLINE")
-internal inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>, toCheckInput: Boolean = true) : LabeledPolynomial<C> = ring.LabeledPolynomial(coefs, toCheckInput)
-@Suppress("FunctionName", "NOTHING_TO_INLINE")
-internal inline fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>, toCheckInput: Boolean = true) : LabeledPolynomial<C> = ring.LabeledPolynomial(coefs, toCheckInput)
-@Suppress("FunctionName")
-internal fun <C, A: Ring<C>> A.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>, toCheckInput: Boolean = true) : LabeledPolynomial<C> {
-    if (!toCheckInput) return LabeledPolynomial<C>(coefs)
-
-    val fixedCoefs = LinkedHashMap<Map<Symbol, UInt>, C>(coefs.size)
-
-    for (entry in coefs) {
-        val key = entry.key.cleanUp()
-        val value = entry.value
-        fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value
-    }
-
-    return LabeledPolynomial<C>(fixedCoefs)
-}
-
-@Suppress("FunctionName", "NOTHING_TO_INLINE")
-internal inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>, toCheckInput: Boolean = true) : LabeledPolynomial<C> = ring.LabeledPolynomial(pairs, toCheckInput)
-@Suppress("FunctionName", "NOTHING_TO_INLINE")
-internal inline fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>, toCheckInput: Boolean = true) : LabeledPolynomial<C> = ring.LabeledPolynomial(pairs, toCheckInput)
-@Suppress("FunctionName")
-internal fun <C, A: Ring<C>> A.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>, toCheckInput: Boolean = true) : LabeledPolynomial<C> {
-    if (!toCheckInput) return LabeledPolynomial<C>(pairs.toMap())
-
-    val fixedCoefs = LinkedHashMap<Map<Symbol, UInt>, C>(pairs.size)
-
-    for (entry in pairs) {
-        val key = entry.first.cleanUp()
-        val value = entry.second
-        fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value
-    }
-
-    return LabeledPolynomial<C>(fixedCoefs)
-}
-
-@Suppress("FunctionName", "NOTHING_TO_INLINE")
-internal inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>, toCheckInput: Boolean = true) : LabeledPolynomial<C> = ring.LabeledPolynomial(pairs = pairs, toCheckInput = toCheckInput)
-@Suppress("FunctionName", "NOTHING_TO_INLINE")
-internal inline fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>, toCheckInput: Boolean = true) : LabeledPolynomial<C> = ring.LabeledPolynomial(pairs = pairs, toCheckInput = toCheckInput)
-@Suppress("FunctionName")
-internal fun <C, A: Ring<C>> A.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>, toCheckInput: Boolean = true) : LabeledPolynomial<C> {
-    if (!toCheckInput) return LabeledPolynomial<C>(pairs.toMap())
-
-    val fixedCoefs = LinkedHashMap<Map<Symbol, UInt>, C>(pairs.size)
-
-    for (entry in pairs) {
-        val key = entry.first.cleanUp()
-        val value = entry.second
-        fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value
-    }
-
-    return LabeledPolynomial<C>(fixedCoefs)
-}
-
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> A.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(coefs, toCheckInput = true)
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(coefs, toCheckInput = true)
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(coefs, toCheckInput = true)
-
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> A.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>) : LabeledPolynomial<C> = LabeledPolynomial(pairs, toCheckInput = true)
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>) : LabeledPolynomial<C> = LabeledPolynomial(pairs, toCheckInput = true)
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>) : LabeledPolynomial<C> = LabeledPolynomial(pairs, toCheckInput = true)
-
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> A.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(*pairs, toCheckInput = true)
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(*pairs, toCheckInput = true)
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(*pairs, toCheckInput = true)
-
-//context(A)
-//public fun <C, A: Ring<C>> Symbol.asLabeledPolynomial() : LabeledPolynomial<C> = LabeledPolynomial<C>(mapOf(mapOf(this to 1u) to one))
-//context(LabeledPolynomialSpace<C, A>)
-//public fun <C, A: Ring<C>> Symbol.asLabeledPolynomial() : LabeledPolynomial<C> = LabeledPolynomial<C>(mapOf(mapOf(this to 1u) to constantOne))
-//context(LabeledRationalFunctionSpace<C, A>)
-//public fun <C, A: Ring<C>> Symbol.asLabeledPolynomial() : LabeledPolynomial<C> = LabeledPolynomial<C>(mapOf(mapOf(this to 1u) to constantOne))
-
-public fun <C> C.asLabeledPolynomial() : LabeledPolynomial<C> = LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to this))
-
-@DslMarker
-@UnstableKMathAPI
-internal annotation class LabeledPolynomialConstructorDSL
-
-@UnstableKMathAPI
-@LabeledPolynomialConstructorDSL
-public class LabeledPolynomialTermSignatureBuilder {
-    private val signature: MutableMap<Symbol, UInt> = LinkedHashMap()
-    public fun build(): Map<Symbol, UInt> = signature
-    public infix fun Symbol.inPowerOf(deg: UInt) {
-        signature[this] = deg
-    }
-    @Suppress("NOTHING_TO_INLINE")
-    public inline infix fun Symbol.pow(deg: UInt): Unit = this inPowerOf deg
-    @Suppress("NOTHING_TO_INLINE")
-    public inline infix fun Symbol.`in`(deg: UInt): Unit = this inPowerOf deg
-    @Suppress("NOTHING_TO_INLINE")
-    public inline infix fun Symbol.of(deg: UInt): Unit = this inPowerOf deg
-}
-
-@UnstableKMathAPI
-public class LabeledPolynomialBuilder<C>(private val zero: C, private val add: (C, C) -> C, capacity: Int = 0) {
-    private val coefficients: MutableMap<Map<Symbol, UInt>, C> = LinkedHashMap(capacity)
-    public fun build(): LabeledPolynomial<C> = LabeledPolynomial<C>(coefficients)
-    public operator fun C.invoke(block: LabeledPolynomialTermSignatureBuilder.() -> Unit) {
-        val signature = LabeledPolynomialTermSignatureBuilder().apply(block).build()
-        coefficients[signature] = add(coefficients.getOrElse(signature) { zero }, this@invoke)
-    }
-    @Suppress("NOTHING_TO_INLINE")
-    public inline infix fun C.with(noinline block: LabeledPolynomialTermSignatureBuilder.() -> Unit): Unit = this.invoke(block)
-    @Suppress("NOTHING_TO_INLINE")
-    public inline infix fun (LabeledPolynomialTermSignatureBuilder.() -> Unit).with(coef: C): Unit = coef.invoke(this)
-    @Suppress("NOTHING_TO_INLINE")
-    public infix fun sig(block: LabeledPolynomialTermSignatureBuilder.() -> Unit): LabeledPolynomialTermSignatureBuilder.() -> Unit = block
-}
-
-// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available
-
-@UnstableKMathAPI
-@LabeledPolynomialConstructorDSL
-@Suppress("FunctionName")
-public inline fun <C, A: Ring<C>> A.LabeledPolynomial(block: LabeledPolynomialBuilder<C>.() -> Unit) : LabeledPolynomial<C> = LabeledPolynomialBuilder(zero, ::add).apply(block).build()
-@UnstableKMathAPI
-@LabeledPolynomialConstructorDSL
-@Suppress("FunctionName")
-public inline fun <C, A: Ring<C>> A.LabeledPolynomial(capacity: Int, block: LabeledPolynomialBuilder<C>.() -> Unit) : LabeledPolynomial<C> = LabeledPolynomialBuilder(zero, ::add, capacity).apply(block).build()
-@UnstableKMathAPI
-@LabeledPolynomialConstructorDSL
-@Suppress("FunctionName")
-public inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(block: LabeledPolynomialBuilder<C>.() -> Unit) : LabeledPolynomial<C> = LabeledPolynomialBuilder(constantZero, { left: C, right: C -> left + right}).apply(block).build()
-@UnstableKMathAPI
-@LabeledPolynomialConstructorDSL
-@Suppress("FunctionName")
-public inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(capacity: Int, block: LabeledPolynomialBuilder<C>.() -> Unit) : LabeledPolynomial<C> = LabeledPolynomialBuilder(constantZero, { left: C, right: C -> left + right}, capacity).apply(block).build()
-
-// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available
-
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledRationalFunction(numeratorCoefficients: Map<Map<Symbol, UInt>, C>, denominatorCoefficients: Map<Map<Symbol, UInt>, C>): LabeledRationalFunction<C> =
-    LabeledRationalFunction<C>(
-        LabeledPolynomial(numeratorCoefficients, toCheckInput = true),
-        LabeledPolynomial(denominatorCoefficients, toCheckInput = true)
-    )
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> A.LabeledRationalFunction(numeratorCoefficients: Map<Map<Symbol, UInt>, C>, denominatorCoefficients: Map<Map<Symbol, UInt>, C>): LabeledRationalFunction<C> =
-    LabeledRationalFunction<C>(
-        LabeledPolynomial(numeratorCoefficients, toCheckInput = true),
-        LabeledPolynomial(denominatorCoefficients, toCheckInput = true)
-    )
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledRationalFunction(numerator: LabeledPolynomial<C>): LabeledRationalFunction<C> =
-    LabeledRationalFunction<C>(numerator, polynomialOne)
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> A.LabeledRationalFunction(numerator: LabeledPolynomial<C>): LabeledRationalFunction<C> =
-    LabeledRationalFunction<C>(numerator, LabeledPolynomial(mapOf(emptyMap<Symbol, UInt>() to one), toCheckInput = false))
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledRationalFunction(numeratorCoefficients: Map<Map<Symbol, UInt>, C>): LabeledRationalFunction<C> =
-    LabeledRationalFunction<C>(
-        LabeledPolynomial(numeratorCoefficients, toCheckInput = true),
-        polynomialOne
-    )
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> A.LabeledRationalFunction(numeratorCoefficients: Map<Map<Symbol, UInt>, C>): LabeledRationalFunction<C> =
-    LabeledRationalFunction<C>(
-        LabeledPolynomial(numeratorCoefficients, toCheckInput = true),
-        LabeledPolynomial(mapOf(emptyMap<Symbol, UInt>() to one), toCheckInput = false)
-    )
-
-//context(A)
-//public fun <C, A: Ring<C>> Symbol.asLabeledRationalFunction() : LabeledRationalFunction<C> = LabeledRationalFunction(asLabeledPolynomial())
-//context(LabeledRationalFunctionSpace<C, A>)
-//public fun <C, A: Ring<C>> Symbol.asLabeledRationalFunction() : LabeledRationalFunction<C> = LabeledRationalFunction(asLabeledPolynomial())
-
-//context(A)
-//public fun <C, A: Ring<C>> C.asLabeledRationalFunction() : LabeledRationalFunction<C> = LabeledRationalFunction(asLabeledPolynomial())
-//context(LabeledRationalFunctionSpace<C, A>)
-//public fun <C, A: Ring<C>> C.asLabeledRationalFunction() : LabeledRationalFunction<C> = LabeledRationalFunction(asLabeledPolynomial())
\ No newline at end of file
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledPolynomialUtil.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledPolynomialUtil.kt
deleted file mode 100644
index af918b9ae..000000000
--- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledPolynomialUtil.kt
+++ /dev/null
@@ -1,495 +0,0 @@
-/*
- * Copyright 2018-2021 KMath contributors.
- * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
- */
-
-package space.kscience.kmath.functions
-
-import space.kscience.kmath.expressions.Symbol
-import space.kscience.kmath.misc.UnstableKMathAPI
-import space.kscience.kmath.operations.Field
-import space.kscience.kmath.operations.Ring
-import space.kscience.kmath.operations.invoke
-import kotlin.contracts.ExperimentalContracts
-import kotlin.contracts.InvocationKind
-import kotlin.contracts.contract
-
-
-// TODO: Docs
-
-/**
- * Creates a [LabeledPolynomialSpace] over a received ring.
- */
-public fun <C, A : Ring<C>> A.labeledPolynomial(): LabeledPolynomialSpace<C, A> =
-    LabeledPolynomialSpace(this)
-
-/**
- * Creates a [LabeledPolynomialSpace]'s scope over a received ring.
- */
-@OptIn(ExperimentalContracts::class)
-public inline fun <C, A : Ring<C>, R> A.labeledPolynomial(block: LabeledPolynomialSpace<C, A>.() -> R): R {
-    contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
-    return LabeledPolynomialSpace(this).block()
-}
-
-///**
-// * Represents the polynomial as a [String] with names of variables substituted with names from [names].
-// * Consider that monomials are sorted in lexicographic order.
-// */
-//context(LabeledPolynomialSpace<C, A>)
-//fun <C, A: Ring<C>> LabeledPolynomial<C>.represent(names: Map<Symbol, String> = emptyMap()): String =
-//    coefficients.entries
-//        .sortedWith { o1, o2 -> LabeledPolynomial.monomialComparator.compare(o1.key, o2.key) }
-//        .asSequence()
-//        .map { (degs, t) ->
-//            if (degs.isEmpty()) "$t"
-//            else {
-//                when {
-//                    t.isOne() -> ""
-//                    t.isMinusOne() -> "-"
-//                    else -> "$t "
-//                } +
-//                        degs
-//                            .toSortedMap()
-//                            .filter { it.value > 0U }
-//                            .map { (variable, deg) ->
-//                                val variableName = names.getOrDefault(variable, variable.toString())
-//                                when (deg) {
-//                                    1U -> variableName
-//                                    else -> "$variableName^$deg"
-//                                }
-//                            }
-//                            .joinToString(separator = " ") { it }
-//            }
-//        }
-//        .joinToString(separator = " + ") { it }
-//        .ifEmpty { "0" }
-//
-///**
-// * Represents the polynomial as a [String] naming variables by [namer].
-// * Consider that monomials are sorted in lexicographic order.
-// */
-//context(LabeledPolynomialSpace<C, A>)
-//fun <C, A: Ring<C>> LabeledPolynomial<C>.represent(namer: (Symbol) -> String): String =
-//    coefficients.entries
-//        .sortedWith { o1, o2 -> LabeledPolynomial.monomialComparator.compare(o1.key, o2.key) }
-//        .asSequence()
-//        .map { (degs, t) ->
-//            if (degs.isEmpty()) "$t"
-//            else {
-//                when {
-//                    t.isOne() -> ""
-//                    t.isMinusOne() -> "-"
-//                    else -> "$t "
-//                } +
-//                        degs
-//                            .toSortedMap()
-//                            .filter { it.value > 0U }
-//                            .map { (variable, deg) ->
-//                                when (deg) {
-//                                    1U -> namer(variable)
-//                                    else -> "${namer(variable)}^$deg"
-//                                }
-//                            }
-//                            .joinToString(separator = " ") { it }
-//            }
-//        }
-//        .joinToString(separator = " + ") { it }
-//        .ifEmpty { "0" }
-//
-///**
-// * Represents the polynomial as a [String] with names of variables substituted with names from [names] and with
-// * brackets around the string if needed (i.e. when there are at least two addends in the representation).
-// * Consider that monomials are sorted in lexicographic order.
-// */
-//context(LabeledPolynomialSpace<C, A>)
-//fun <C, A: Ring<C>> LabeledPolynomial<C>.representWithBrackets(names: Map<Symbol, String> = emptyMap()): String =
-//    with(represent(names)) { if (coefficients.count() == 1) this else "($this)" }
-//
-///**
-// * Represents the polynomial as a [String] naming variables by [namer] and with brackets around the string if needed
-// * (i.e. when there are at least two addends in the representation).
-// * Consider that monomials are sorted in lexicographic order.
-// */
-//context(LabeledPolynomialSpace<C, A>)
-//fun <C, A: Ring<C>> LabeledPolynomial<C>.representWithBrackets(namer: (Symbol) -> String): String =
-//    with(represent(namer)) { if (coefficients.count() == 1) this else "($this)" }
-//
-///**
-// * Represents the polynomial as a [String] with names of variables substituted with names from [names].
-// * Consider that monomials are sorted in **reversed** lexicographic order.
-// */
-//context(LabeledPolynomialSpace<C, A>)
-//fun <C, A: Ring<C>> LabeledPolynomial<C>.representReversed(names: Map<Symbol, String> = emptyMap()): String =
-//    coefficients.entries
-//        .sortedWith { o1, o2 -> -LabeledPolynomial.monomialComparator.compare(o1.key, o2.key) }
-//        .asSequence()
-//        .map { (degs, t) ->
-//            if (degs.isEmpty()) "$t"
-//            else {
-//                when {
-//                    t.isOne() -> ""
-//                    t.isMinusOne() -> "-"
-//                    else -> "$t "
-//                } +
-//                        degs
-//                            .toSortedMap()
-//                            .filter { it.value > 0U }
-//                            .map { (variable, deg) ->
-//                                val variableName = names.getOrDefault(variable, variable.toString())
-//                                when (deg) {
-//                                    1U -> variableName
-//                                    else -> "$variableName^$deg"
-//                                }
-//                            }
-//                            .joinToString(separator = " ") { it }
-//            }
-//        }
-//        .joinToString(separator = " + ") { it }
-//        .ifEmpty { "0" }
-//
-///**
-// * Represents the polynomial as a [String] naming variables by [namer].
-// * Consider that monomials are sorted in **reversed** lexicographic order.
-// */
-//context(LabeledPolynomialSpace<C, A>)
-//fun <C, A: Ring<C>> LabeledPolynomial<C>.representReversed(namer: (Symbol) -> String): String =
-//    coefficients.entries
-//        .sortedWith { o1, o2 -> -LabeledPolynomial.monomialComparator.compare(o1.key, o2.key) }
-//        .asSequence()
-//        .map { (degs, t) ->
-//            if (degs.isEmpty()) "$t"
-//            else {
-//                when {
-//                    t.isOne() -> ""
-//                    t.isMinusOne() -> "-"
-//                    else -> "$t "
-//                } +
-//                        degs
-//                            .toSortedMap()
-//                            .filter { it.value > 0U }
-//                            .map { (variable, deg) ->
-//                                when (deg) {
-//                                    1U -> namer(variable)
-//                                    else -> "${namer(variable)}^$deg"
-//                                }
-//                            }
-//                            .joinToString(separator = " ") { it }
-//            }
-//        }
-//        .joinToString(separator = " + ") { it }
-//        .ifEmpty { "0" }
-//
-///**
-// * Represents the polynomial as a [String] with names of variables substituted with names from [names] and with
-// * brackets around the string if needed (i.e. when there are at least two addends in the representation).
-// * Consider that monomials are sorted in **reversed** lexicographic order.
-// */
-//context(LabeledPolynomialSpace<C, A>)
-//fun <C, A: Ring<C>> LabeledPolynomial<C>.representReversedWithBrackets(names: Map<Symbol, String> = emptyMap()): String =
-//    with(representReversed(names)) { if (coefficients.count() == 1) this else "($this)" }
-//
-///**
-// * Represents the polynomial as a [String] naming variables by [namer] and with brackets around the string if needed
-// * (i.e. when there are at least two addends in the representation).
-// * Consider that monomials are sorted in **reversed** lexicographic order.
-// */
-//context(LabeledPolynomialSpace<C, A>)
-//fun <C, A: Ring<C>> LabeledPolynomial<C>.representReversedWithBrackets(namer: (Symbol) -> String): String =
-//    with(representReversed(namer)) { if (coefficients.count() == 1) this else "($this)" }
-
-//operator fun <T: Field<T>> Polynomial<T>.div(other: T): Polynomial<T> =
-//    if (other.isZero()) throw ArithmeticException("/ by zero")
-//    else
-//        Polynomial(
-//            coefficients
-//                .mapValues { it.value / other },
-//            toCheckInput = false
-//        )
-
-//public fun <C> LabeledPolynomial<C>.substitute(ring: Ring<C>, args: Map<Symbol, C>): LabeledPolynomial<C> = ring {
-//    if (coefficients.isEmpty()) return this@substitute
-//    LabeledPolynomial<C>(
-//        buildMap {
-//            coefficients.forEach { (degs, c) ->
-//                val newDegs = degs.filterKeys { it !in args }
-//                val newC = degs.entries.asSequence().filter { it.key in args }.fold(c) { acc, (variable, deg) ->
-//                    multiplyWithPower(acc, args[variable]!!, deg)
-//                }
-//                this[newDegs] = if (newDegs in this) this[newDegs]!! + newC else newC
-//            }
-//        }
-//    )
-//}
-//
-//// TODO: Replace with optimisation: the [result] may be unboxed, and all operations may be performed as soon as
-////  possible on it
-//@JvmName("substitutePolynomial")
-//fun <C> LabeledPolynomial<C>.substitute(ring: Ring<C>, arg: Map<Symbol, LabeledPolynomial<C>>) : LabeledPolynomial<C> =
-//    ring.labeledPolynomial {
-//        if (coefficients.isEmpty()) return zero
-//        coefficients
-//            .asSequence()
-//            .map { (degs, c) ->
-//                degs.entries
-//                    .asSequence()
-//                    .filter { it.key in arg }
-//                    .fold(LabeledPolynomial(mapOf(degs.filterKeys { it !in arg } to c))) { acc, (index, deg) ->
-//                        multiplyWithPower(acc, arg[index]!!, deg)
-//                    }
-//            }
-//            .reduce { acc, polynomial -> acc + polynomial } // TODO: Rewrite. Might be slow.
-//    }
-//
-//// TODO: Substitute rational function
-//
-//fun <C, A : Ring<C>> LabeledPolynomial<C>.asFunctionOver(ring: A): (Map<Symbol, C>) -> LabeledPolynomial<C> =
-//    { substitute(ring, it) }
-//
-//fun <C, A : Ring<C>> LabeledPolynomial<C>.asPolynomialFunctionOver(ring: A): (Map<Symbol, LabeledPolynomial<C>>) -> LabeledPolynomial<C> =
-//    { substitute(ring, it) }
-
-/**
- * Returns algebraic derivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A : Ring<C>> LabeledPolynomial<C>.derivativeWithRespectTo(
-    algebra: A,
-    variable: Symbol,
-): LabeledPolynomial<C> = algebra {
-    LabeledPolynomial<C>(
-        buildMap(coefficients.size) {
-            coefficients
-                .forEach { (degs, c) ->
-                    if (variable !in degs) return@forEach
-                    put(
-                        buildMap {
-                            degs.forEach { (vari, deg) ->
-                                when {
-                                    vari != variable -> put(vari, deg)
-                                    deg > 1u -> put(vari, deg - 1u)
-                                }
-                            }
-                        },
-                        multiplyByDoubling(c, degs[variable]!!)
-                    )
-                }
-        }
-    )
-}
-
-/**
- * Returns algebraic derivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A : Ring<C>> LabeledPolynomial<C>.derivativeWithRespectTo(
-    algebra: A,
-    variables: Collection<Symbol>,
-): LabeledPolynomial<C> = algebra {
-    val cleanedVariables = variables.toSet()
-    if (cleanedVariables.isEmpty()) return this@derivativeWithRespectTo
-    LabeledPolynomial<C>(
-        buildMap(coefficients.size) {
-            coefficients
-                .forEach { (degs, c) ->
-                    if (!degs.keys.containsAll(cleanedVariables)) return@forEach
-                    put(
-                        buildMap {
-                            degs.forEach { (vari, deg) ->
-                                when {
-                                    vari !in cleanedVariables -> put(vari, deg)
-                                    deg > 1u -> put(vari, deg - 1u)
-                                }
-                            }
-                        },
-                        cleanedVariables.fold(c) { acc, variable -> multiplyByDoubling(acc, degs[variable]!!) }
-                    )
-                }
-        }
-    )
-}
-
-/**
- * Returns algebraic derivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A : Ring<C>> LabeledPolynomial<C>.nthDerivativeWithRespectTo(
-    algebra: A,
-    variable: Symbol,
-    order: UInt
-): LabeledPolynomial<C> = algebra {
-    if (order == 0u) return this@nthDerivativeWithRespectTo
-    LabeledPolynomial<C>(
-        buildMap(coefficients.size) {
-            coefficients
-                .forEach { (degs, c) ->
-                    if (degs.getOrElse(variable) { 0u } < order) return@forEach
-                    put(
-                        buildMap {
-                            degs.forEach { (vari, deg) ->
-                                when {
-                                    vari != variable -> put(vari, deg)
-                                    deg > order -> put(vari, deg - order)
-                                }
-                            }
-                        },
-                        degs[variable]!!.let { deg ->
-                            (deg downTo deg - order + 1u)
-                                .fold(c) { acc, ord -> multiplyByDoubling(acc, ord) }
-                        }
-                    )
-                }
-        }
-    )
-}
-
-/**
- * Returns algebraic derivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A : Ring<C>> LabeledPolynomial<C>.nthDerivativeWithRespectTo(
-    algebra: A,
-    variablesAndOrders: Map<Symbol, UInt>,
-): LabeledPolynomial<C> = algebra {
-    val filteredVariablesAndOrders = variablesAndOrders.filterValues { it != 0u }
-    if (filteredVariablesAndOrders.isEmpty()) return this@nthDerivativeWithRespectTo
-    LabeledPolynomial<C>(
-        buildMap(coefficients.size) {
-            coefficients
-                .forEach { (degs, c) ->
-                    if (filteredVariablesAndOrders.any { (variable, order) -> degs.getOrElse(variable) { 0u } < order }) return@forEach
-                    put(
-                        buildMap {
-                            degs.forEach { (vari, deg) ->
-                                if (vari !in filteredVariablesAndOrders) put(vari, deg)
-                                else {
-                                    val order = filteredVariablesAndOrders[vari]!!
-                                    if (deg > order) put(vari, deg - order)
-                                }
-                            }
-                        },
-                        filteredVariablesAndOrders.entries.fold(c) { acc1, (index, order) ->
-                            degs[index]!!.let { deg ->
-                                (deg downTo deg - order + 1u)
-                                    .fold(acc1) { acc2, ord -> multiplyByDoubling(acc2, ord) }
-                            }
-                        }
-                    )
-                }
-        }
-    )
-}
-
-/**
- * Returns algebraic antiderivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A : Field<C>> LabeledPolynomial<C>.antiderivativeWithRespectTo(
-    algebra: A,
-    variable: Symbol,
-): LabeledPolynomial<C> = algebra {
-    LabeledPolynomial<C>(
-        buildMap(coefficients.size) {
-            coefficients
-                .forEach { (degs, c) ->
-                    val newDegs = buildMap<Symbol, UInt>(degs.size + 1) {
-                        put(variable, 1u)
-                        for ((vari, deg) in degs) put(vari, deg + getOrElse(vari) { 0u })
-                    }
-                    put(
-                        newDegs,
-                        c / multiplyByDoubling(one, newDegs[variable]!!)
-                    )
-                }
-        }
-    )
-}
-
-/**
- * Returns algebraic antiderivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A : Field<C>> LabeledPolynomial<C>.antiderivativeWithRespectTo(
-    algebra: A,
-    variables: Collection<Symbol>,
-): LabeledPolynomial<C> = algebra {
-    val cleanedVariables = variables.toSet()
-    if (cleanedVariables.isEmpty()) return this@antiderivativeWithRespectTo
-    LabeledPolynomial<C>(
-        buildMap(coefficients.size) {
-            coefficients
-                .forEach { (degs, c) ->
-                    val newDegs = buildMap<Symbol, UInt>(degs.size + 1) {
-                        for (variable in cleanedVariables) put(variable, 1u)
-                        for ((vari, deg) in degs) put(vari, deg + getOrElse(vari) { 0u })
-                    }
-                    put(
-                        newDegs,
-                        cleanedVariables.fold(c) { acc, variable -> acc / multiplyByDoubling(one, newDegs[variable]!!) }
-                    )
-                }
-        }
-    )
-}
-
-/**
- * Returns algebraic derivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A : Field<C>> LabeledPolynomial<C>.nthAntiderivativeWithRespectTo(
-    algebra: A,
-    variable: Symbol,
-    order: UInt
-): LabeledPolynomial<C> = algebra {
-    if (order == 0u) return this@nthAntiderivativeWithRespectTo
-    LabeledPolynomial<C>(
-        buildMap(coefficients.size) {
-            coefficients
-                .forEach { (degs, c) ->
-                    val newDegs = buildMap<Symbol, UInt>(degs.size + 1) {
-                        put(variable, order)
-                        for ((vari, deg) in degs) put(vari, deg + getOrElse(vari) { 0u })
-                    }
-                    put(
-                        newDegs,
-                        newDegs[variable]!!.let { deg ->
-                            (deg downTo  deg - order + 1u)
-                                .fold(c) { acc, ord -> acc / multiplyByDoubling(one, ord) }
-                        }
-                    )
-                }
-        }
-    )
-}
-
-/**
- * Returns algebraic derivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A : Field<C>> LabeledPolynomial<C>.nthAntiderivativeWithRespectTo(
-    algebra: A,
-    variablesAndOrders: Map<Symbol, UInt>,
-): LabeledPolynomial<C> = algebra {
-    val filteredVariablesAndOrders = variablesAndOrders.filterValues { it != 0u }
-    if (filteredVariablesAndOrders.isEmpty()) return this@nthAntiderivativeWithRespectTo
-    LabeledPolynomial<C>(
-        buildMap(coefficients.size) {
-            coefficients
-                .forEach { (degs, c) ->
-                    val newDegs = buildMap<Symbol, UInt>(degs.size + 1) {
-                        for ((variable, order) in filteredVariablesAndOrders) put(variable, order)
-                        for ((vari, deg) in degs) put(vari, deg + getOrElse(vari) { 0u })
-                    }
-                    put(
-                        newDegs,
-                        filteredVariablesAndOrders.entries.fold(c) { acc1, (index, order) ->
-                            newDegs[index]!!.let { deg ->
-                                (deg downTo deg - order + 1u)
-                                    .fold(acc1) { acc2, ord -> acc2 / multiplyByDoubling(one, ord) }
-                            }
-                        }
-                    )
-                }
-        }
-    )
-}
\ No newline at end of file
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledRationalFunctionUtil.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledRationalFunctionUtil.kt
deleted file mode 100644
index 583160cf4..000000000
--- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledRationalFunctionUtil.kt
+++ /dev/null
@@ -1,33 +0,0 @@
-/*
- * Copyright 2018-2021 KMath contributors.
- * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
- */
-
-package space.kscience.kmath.functions
-
-import space.kscience.kmath.operations.Ring
-import kotlin.contracts.InvocationKind
-import kotlin.contracts.contract
-
-
-/**
- * Creates a [LabeledRationalFunctionSpace] over a received ring.
- */
-public fun <C, A : Ring<C>> A.labeledRationalFunction(): LabeledRationalFunctionSpace<C, A> =
-    LabeledRationalFunctionSpace(this)
-
-/**
- * Creates a [LabeledRationalFunctionSpace]'s scope over a received ring.
- */
-public inline fun <C, A : Ring<C>, R> A.labeledRationalFunction(block: LabeledRationalFunctionSpace<C, A>.() -> R): R {
-    contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
-    return LabeledRationalFunctionSpace(this).block()
-}
-
-//fun <T: Field<T>> LabeledRationalFunction<T>.reduced(): LabeledRationalFunction<T> {
-//    val greatestCommonDivider = polynomialGCD(numerator, denominator)
-//    return LabeledRationalFunction(
-//        numerator / greatestCommonDivider,
-//        denominator / greatestCommonDivider
-//    )
-//}
\ No newline at end of file
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listConstructors.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listConstructors.kt
index 9498c77ca..35c736914 100644
--- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listConstructors.kt
+++ b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listConstructors.kt
@@ -3,58 +3,95 @@
  * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
  */
 
+/*
+ * Copyright 2018-2021 KMath contributors.
+ * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
+ */
+
 package space.kscience.kmath.functions
 
 import space.kscience.kmath.operations.Ring
 
 
 /**
- * Returns a [ListPolynomial] instance with given [coefficients]. The collection of coefficients will be reversed if
- * [reverse] parameter is true.
+ * Constructs a [ListPolynomial] instance with provided [coefficients]. The collection of coefficients will be reversed
+ * if [reverse] parameter is true.
  */
 @Suppress("FunctionName")
 public fun <C> ListPolynomial(coefficients: List<C>, reverse: Boolean = false): ListPolynomial<C> =
     ListPolynomial(with(coefficients) { if (reverse) reversed() else this })
 
 /**
- * Returns a [ListPolynomial] instance with given [coefficients]. The collection of coefficients will be reversed if
- * [reverse] parameter is true.
+ * Constructs a [ListPolynomial] instance with provided [coefficients]. The collection of coefficients will be reversed
+ * if [reverse] parameter is true.
  */
 @Suppress("FunctionName")
 public fun <C> ListPolynomial(vararg coefficients: C, reverse: Boolean = false): ListPolynomial<C> =
     ListPolynomial(with(coefficients) { if (reverse) reversed() else toList() })
 
+/**
+ * Represents [this] constant as a [ListPolynomial].
+ */
 public fun <C> C.asListPolynomial() : ListPolynomial<C> = ListPolynomial(listOf(this))
 
 
 // Waiting for context receivers :( FIXME: Replace with context receivers when they will be available
 
+/**
+ * Constructs [ListRationalFunction] instance with numerator and denominator constructed with provided
+ * [numeratorCoefficients] and [denominatorCoefficients]. The both collections of coefficients will be reversed if
+ * [reverse] parameter is true.
+ */
 @Suppress("FunctionName")
 public fun <C> ListRationalFunction(numeratorCoefficients: List<C>, denominatorCoefficients: List<C>, reverse: Boolean = false): ListRationalFunction<C> =
     ListRationalFunction<C>(
         ListPolynomial( with(numeratorCoefficients) { if (reverse) reversed() else this } ),
         ListPolynomial( with(denominatorCoefficients) { if (reverse) reversed() else this } )
     )
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> ListRationalFunctionSpace<C, A>.ListRationalFunction(numerator: ListPolynomial<C>): ListRationalFunction<C> =
-    ListRationalFunction<C>(numerator, polynomialOne)
+/**
+ * Constructs [ListRationalFunction] instance with provided [numerator] and unit denominator.
+ */
 @Suppress("FunctionName")
 public fun <C, A: Ring<C>> A.ListRationalFunction(numerator: ListPolynomial<C>): ListRationalFunction<C> =
     ListRationalFunction<C>(numerator, ListPolynomial(listOf(one)))
+/**
+ * Constructs [ListRationalFunction] instance with provided [numerator] and unit denominator.
+ */
 @Suppress("FunctionName")
-public fun <C, A: Ring<C>> ListRationalFunctionSpace<C, A>.ListRationalFunction(numeratorCoefficients: List<C>, reverse: Boolean = false): ListRationalFunction<C> =
-    ListRationalFunction<C>(
-        ListPolynomial( with(numeratorCoefficients) { if (reverse) reversed() else this } ),
-        polynomialOne
-    )
+public fun <C, A: Ring<C>> ListRationalFunctionSpace<C, A>.ListRationalFunction(numerator: ListPolynomial<C>): ListRationalFunction<C> =
+    ListRationalFunction<C>(numerator, polynomialOne)
+/**
+ * Constructs [ListRationalFunction] instance with numerator constructed with provided [numeratorCoefficients] and unit
+ * denominator. The collection of numerator coefficients will be reversed if [reverse] parameter is true.
+ */
 @Suppress("FunctionName")
 public fun <C, A: Ring<C>> A.ListRationalFunction(numeratorCoefficients: List<C>, reverse: Boolean = false): ListRationalFunction<C> =
     ListRationalFunction<C>(
         ListPolynomial( with(numeratorCoefficients) { if (reverse) reversed() else this } ),
         ListPolynomial(listOf(one))
     )
+/**
+ * Constructs [ListRationalFunction] instance with numerator constructed with provided [numeratorCoefficients] and unit
+ * denominator. The collection of numerator coefficients will be reversed if [reverse] parameter is true.
+ */
+@Suppress("FunctionName")
+public fun <C, A: Ring<C>> ListRationalFunctionSpace<C, A>.ListRationalFunction(numeratorCoefficients: List<C>, reverse: Boolean = false): ListRationalFunction<C> =
+    ListRationalFunction<C>(
+        ListPolynomial( with(numeratorCoefficients) { if (reverse) reversed() else this } ),
+        polynomialOne
+    )
 
+/**
+ * Represents [this] constant as a rational function.
+ */ // FIXME: When context receivers will be ready, delete this function and uncomment the following two
+public fun <C, A: Ring<C>> C.asListRationalFunction(ring: A) : ListRationalFunction<C> = ring.ListRationalFunction(asListPolynomial())
+///**
+// * Represents [this] constant as a rational function.
+// */
 //context(A)
 //public fun <C, A: Ring<C>> C.asListRationalFunction() : ListRationalFunction<C> = ListRationalFunction(asListPolynomial())
+///**
+// * Represents [this] constant as a rational function.
+// */
 //context(ListRationalFunctionSpace<C, A>)
 //public fun <C, A: Ring<C>> C.asListRationalFunction() : ListRationalFunction<C> = ListRationalFunction(asListPolynomial())
\ No newline at end of file
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listPolynomialUtil.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listPolynomialUtil.kt
deleted file mode 100644
index 50313cab9..000000000
--- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listPolynomialUtil.kt
+++ /dev/null
@@ -1,233 +0,0 @@
-/*
- * Copyright 2018-2021 KMath contributors.
- * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
- */
-
-package space.kscience.kmath.functions
-
-import space.kscience.kmath.misc.UnstableKMathAPI
-import space.kscience.kmath.operations.*
-import kotlin.contracts.InvocationKind
-import kotlin.contracts.contract
-import kotlin.math.max
-import kotlin.math.min
-import kotlin.math.pow
-
-
-/**
- * Removes zeros on the end of the coefficient list of polynomial.
- */
-//context(PolynomialSpace<C, A>)
-//fun <C, A: Ring<C>> Polynomial<C>.removeZeros() : Polynomial<C> =
-//    if (degree > -1) Polynomial(coefficients.subList(0, degree + 1)) else zero
-
-/**
- * Creates a [ListPolynomialSpace] over a received ring.
- */
-public fun <C, A : Ring<C>> A.listPolynomial(): ListPolynomialSpace<C, A> =
-    ListPolynomialSpace(this)
-
-/**
- * Creates a [ListPolynomialSpace]'s scope over a received ring.
- */
-public inline fun <C, A : Ring<C>, R> A.listPolynomial(block: ListPolynomialSpace<C, A>.() -> R): R {
-    contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
-    return ListPolynomialSpace(this).block()
-}
-
-/**
- * Creates a [ScalableListPolynomialSpace] over a received scalable ring.
- */
-public fun <C, A> A.scalableListPolynomial(): ScalableListPolynomialSpace<C, A> where A : Ring<C>, A : ScaleOperations<C> =
-    ScalableListPolynomialSpace(this)
-
-/**
- * Creates a [ScalableListPolynomialSpace]'s scope over a received scalable ring.
- */
-public inline fun <C, A, R> A.scalableListPolynomial(block: ScalableListPolynomialSpace<C, A>.() -> R): R where A : Ring<C>, A : ScaleOperations<C> {
-    contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
-    return ScalableListPolynomialSpace(this).block()
-}
-
-@Suppress("NOTHING_TO_INLINE")
-internal inline fun <C> copyTo(
-    origin: List<C>,
-    originDegree: Int,
-    target: MutableList<C>,
-) {
-    for (deg in 0 .. originDegree) target[deg] = origin[deg]
-}
-
-@Suppress("NOTHING_TO_INLINE")
-internal inline fun <C> multiplyAddingToUpdater(
-    ring: Ring<C>,
-    multiplicand: MutableList<C>,
-    multiplicandDegree: Int,
-    multiplier: List<C>,
-    multiplierDegree: Int,
-    updater: MutableList<C>,
-    zero: C,
-) {
-    multiplyAddingTo(
-        ring = ring,
-        multiplicand = multiplicand,
-        multiplicandDegree = multiplicandDegree,
-        multiplier = multiplier,
-        multiplierDegree = multiplierDegree,
-        target = updater
-    )
-    for (updateDeg in 0 .. multiplicandDegree + multiplierDegree) {
-        multiplicand[updateDeg] = updater[updateDeg]
-        updater[updateDeg] = zero
-    }
-}
-
-@Suppress("NOTHING_TO_INLINE")
-internal inline fun <C> multiplyAddingTo(
-    ring: Ring<C>,
-    multiplicand: List<C>,
-    multiplicandDegree: Int,
-    multiplier: List<C>,
-    multiplierDegree: Int,
-    target: MutableList<C>
-) = ring {
-    for (d in 0 .. multiplicandDegree + multiplierDegree)
-        for (k in max(0, d - multiplierDegree)..min(multiplicandDegree, d))
-            target[d] += multiplicand[k] * multiplier[d - k]
-}
-
-/**
- * Evaluates the value of the given double polynomial for given double argument.
- */
-public fun ListPolynomial<Double>.substitute(arg: Double): Double =
-    coefficients.reduceIndexedOrNull { index, acc, c ->
-        acc + c * arg.pow(index)
-    } ?: .0
-
-/**
- * Evaluates the value of the given polynomial for given argument.
- *
- * It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
- */
-public fun <C> ListPolynomial<C>.substitute(ring: Ring<C>, arg: C): C = ring {
-    if (coefficients.isEmpty()) return@ring zero
-    var result: C = coefficients.last()
-    for (j in coefficients.size - 2 downTo 0) {
-        result = (arg * result) + coefficients[j]
-    }
-    return result
-}
-
-public fun <C> ListPolynomial<C>.substitute(ring: Ring<C>, arg: ListPolynomial<C>) : ListPolynomial<C> = ring {
-    if (coefficients.isEmpty()) return ListPolynomial(emptyList())
-
-    val thisDegree = coefficients.lastIndex
-    if (thisDegree == -1) return ListPolynomial(emptyList())
-    val argDegree = arg.coefficients.lastIndex
-    if (argDegree == -1) return coefficients[0].asListPolynomial()
-    val constantZero = zero
-    val resultCoefs: MutableList<C> = MutableList(thisDegree * argDegree + 1) { constantZero }
-    resultCoefs[0] = coefficients[thisDegree]
-    val resultCoefsUpdate: MutableList<C> = MutableList(thisDegree * argDegree + 1) { constantZero }
-    var resultDegree = 0
-    for (deg in thisDegree - 1 downTo 0) {
-        resultCoefsUpdate[0] = coefficients[deg]
-        multiplyAddingToUpdater(
-            ring = ring,
-            multiplicand = resultCoefs,
-            multiplicandDegree = resultDegree,
-            multiplier = arg.coefficients,
-            multiplierDegree = argDegree,
-            updater = resultCoefsUpdate,
-            zero = constantZero
-        )
-        resultDegree += argDegree
-    }
-
-    return ListPolynomial<C>(resultCoefs)
-}
-
-/**
- * Represent the polynomial as a regular context-less function.
- */
-public fun <C, A : Ring<C>> ListPolynomial<C>.asFunction(ring: A): (C) -> C = { substitute(ring, it) }
-
-/**
- * Represent the polynomial as a regular context-less function.
- */
-public fun <C, A : Ring<C>> ListPolynomial<C>.asPolynomialFunctionOver(ring: A): (ListPolynomial<C>) -> ListPolynomial<C> = { substitute(ring, it) }
-
-/**
- * Returns algebraic derivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A> ListPolynomial<C>.derivative(
-    algebra: A,
-): ListPolynomial<C> where  A : Ring<C>, A : NumericAlgebra<C> = algebra {
-    ListPolynomial(
-        buildList(max(0, coefficients.size - 1)) {
-            for (deg in 1 .. coefficients.lastIndex) add(number(deg) * coefficients[deg])
-        }
-    )
-}
-
-/**
- * Returns algebraic derivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A> ListPolynomial<C>.nthDerivative(
-    algebra: A,
-    order: Int,
-): ListPolynomial<C> where A : Ring<C>, A : NumericAlgebra<C> = algebra {
-    require(order >= 0) { "Order of derivative must be non-negative" }
-    ListPolynomial(
-        buildList(max(0, coefficients.size - order)) {
-            for (deg in order.. coefficients.lastIndex)
-                add((deg - order + 1 .. deg).fold(coefficients[deg]) { acc, d -> acc * number(d) })
-        }
-    )
-}
-
-/**
- * Returns algebraic antiderivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A> ListPolynomial<C>.antiderivative(
-    algebra: A,
-): ListPolynomial<C> where  A : Field<C>, A : NumericAlgebra<C> = algebra {
-    ListPolynomial(
-        buildList(coefficients.size + 1) {
-            add(zero)
-            coefficients.mapIndexedTo(this) { index, t -> t / number(index + 1) }
-        }
-    )
-}
-
-/**
- * Returns algebraic antiderivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A> ListPolynomial<C>.nthAntiderivative(
-    algebra: A,
-    order: Int,
-): ListPolynomial<C> where  A : Field<C>, A : NumericAlgebra<C> = algebra {
-    require(order >= 0) { "Order of antiderivative must be non-negative" }
-    ListPolynomial(
-        buildList(coefficients.size + order) {
-            repeat(order) { add(zero) }
-            coefficients.mapIndexedTo(this) { index, c -> (1..order).fold(c) { acc, i -> acc / number(index + i) } }
-        }
-    )
-}
-
-/**
- * Compute a definite integral of a given polynomial in a [range]
- */
-@UnstableKMathAPI
-public fun <C : Comparable<C>> ListPolynomial<C>.integrate(
-    algebra: Field<C>,
-    range: ClosedRange<C>,
-): C = algebra {
-    val integral = antiderivative(algebra)
-    integral.substitute(algebra, range.endInclusive) - integral.substitute(algebra, range.start)
-}
\ No newline at end of file
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listUtil.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listUtil.kt
new file mode 100644
index 000000000..127dd8c7a
--- /dev/null
+++ b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listUtil.kt
@@ -0,0 +1,268 @@
+/*
+ * Copyright 2018-2021 KMath contributors.
+ * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
+ */
+
+package space.kscience.kmath.functions
+
+import space.kscience.kmath.misc.UnstableKMathAPI
+import space.kscience.kmath.operations.*
+import kotlin.contracts.InvocationKind
+import kotlin.contracts.contract
+import kotlin.math.max
+import kotlin.math.pow
+
+
+/**
+ * Creates a [ListPolynomialSpace] over a received ring.
+ */
+public fun <C, A : Ring<C>> A.listPolynomialSpace(): ListPolynomialSpace<C, A> =
+    ListPolynomialSpace(this)
+
+/**
+ * Creates a [ListPolynomialSpace]'s scope over a received ring.
+ */ // TODO: When context will be ready move [ListPolynomialSpace] and add [A] to context receivers of [block]
+public inline fun <C, A : Ring<C>, R> A.listPolynomialSpace(block: ListPolynomialSpace<C, A>.() -> R): R {
+    contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
+    return ListPolynomialSpace(this).block()
+}
+
+/**
+ * Creates a [ScalableListPolynomialSpace] over a received scalable ring.
+ */
+public fun <C, A> A.scalableListPolynomialSpace(): ScalableListPolynomialSpace<C, A> where A : Ring<C>, A : ScaleOperations<C> =
+    ScalableListPolynomialSpace(this)
+
+/**
+ * Creates a [ScalableListPolynomialSpace]'s scope over a received scalable ring.
+ */ // TODO: When context will be ready move [ListPolynomialSpace] and add [A] to context receivers of [block]
+public inline fun <C, A, R> A.scalableListPolynomialSpace(block: ScalableListPolynomialSpace<C, A>.() -> R): R where A : Ring<C>, A : ScaleOperations<C> {
+    contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
+    return ScalableListPolynomialSpace(this).block()
+}
+
+/**
+ * Creates a [ListRationalFunctionSpace] over a received ring.
+ */
+public fun <C, A : Ring<C>> A.listRationalFunctionSpace(): ListRationalFunctionSpace<C, A> =
+    ListRationalFunctionSpace(this)
+
+/**
+ * Creates a [ListRationalFunctionSpace]'s scope over a received ring.
+ */ // TODO: When context will be ready move [ListRationalFunctionSpace] and add [A] to context receivers of [block]
+public inline fun <C, A : Ring<C>, R> A.listRationalFunctionSpace(block: ListRationalFunctionSpace<C, A>.() -> R): R {
+    contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
+    return ListRationalFunctionSpace(this).block()
+}
+
+
+/**
+ * Evaluates value of [this] Double polynomial on provided Double argument.
+ */
+public fun ListPolynomial<Double>.substitute(arg: Double): Double =
+    coefficients.reduceIndexedOrNull { index, acc, c ->
+        acc + c * arg.pow(index)
+    } ?: .0
+
+/**
+ * Evaluates value of [this] polynomial on provided argument.
+ *
+ * It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
+ */
+public fun <C> ListPolynomial<C>.substitute(ring: Ring<C>, arg: C): C = ring {
+    if (coefficients.isEmpty()) return zero
+    var result: C = coefficients.last()
+    for (j in coefficients.size - 2 downTo 0) {
+        result = (arg * result) + coefficients[j]
+    }
+    return result
+}
+
+/**
+ * Substitutes provided polynomial [arg] into [this] polynomial.
+ *
+ * It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
+ */ // TODO: To optimize boxing
+public fun <C> ListPolynomial<C>.substitute(ring: Ring<C>, arg: ListPolynomial<C>) : ListPolynomial<C> =
+    ring.listPolynomialSpace {
+        if (coefficients.isEmpty()) return zero
+        var result: ListPolynomial<C> = coefficients.last().asPolynomial()
+        for (j in coefficients.size - 2 downTo 0) {
+            result = (arg * result) + coefficients[j]
+        }
+        return result
+    }
+
+/**
+ * Substitutes provided rational function [arg] into [this] polynomial.
+ *
+ * It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
+ */ // TODO: To optimize boxing
+public fun <C> ListPolynomial<C>.substitute(ring: Ring<C>, arg: ListRationalFunction<C>) : ListRationalFunction<C> =
+    ring.listRationalFunctionSpace {
+        if (coefficients.isEmpty()) return zero
+        var result: ListRationalFunction<C> = coefficients.last().asRationalFunction()
+        for (j in coefficients.size - 2 downTo 0) {
+            result = (arg * result) + coefficients[j]
+        }
+        return result
+    }
+
+/**
+ * Evaluates value of [this] Double rational function in provided Double argument.
+ */
+public fun ListRationalFunction<Double>.substitute(arg: Double): Double =
+    numerator.substitute(arg) / denominator.substitute(arg)
+
+/**
+ * Evaluates value of [this] polynomial for provided argument.
+ *
+ * It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
+ */
+public fun <C> ListRationalFunction<C>.substitute(ring: Field<C>, arg: C): C = ring {
+    numerator.substitute(ring, arg) / denominator.substitute(ring, arg)
+}
+
+/**
+ * Substitutes provided polynomial [arg] into [this] rational function.
+ */ // TODO: To optimize boxing
+public fun <C> ListRationalFunction<C>.substitute(ring: Ring<C>, arg: ListPolynomial<C>) : ListRationalFunction<C> =
+    ring.listRationalFunctionSpace {
+        numerator.substitute(ring, arg) / denominator.substitute(ring, arg)
+    }
+
+/**
+ * Substitutes provided rational function [arg] into [this] rational function.
+ */ // TODO: To optimize boxing
+public fun <C> ListRationalFunction<C>.substitute(ring: Ring<C>, arg: ListRationalFunction<C>) : ListRationalFunction<C> =
+    ring.listRationalFunctionSpace {
+        numerator.substitute(ring, arg) / denominator.substitute(ring, arg)
+    }
+
+/**
+ * Represent [this] polynomial as a regular context-less function.
+ */
+public fun <C, A : Ring<C>> ListPolynomial<C>.asFunctionOver(ring: A): (C) -> C = { substitute(ring, it) }
+
+/**
+ * Represent [this] polynomial as a regular context-less function.
+ */
+public fun <C, A : Ring<C>> ListPolynomial<C>.asPolynomialFunctionOver(ring: A): (ListPolynomial<C>) -> ListPolynomial<C> = { substitute(ring, it) }
+
+/**
+ * Represent [this] polynomial as a regular context-less function.
+ */
+public fun <C, A : Ring<C>> ListPolynomial<C>.asFunctionOfRationalFunctionOver(ring: A): (ListPolynomial<C>) -> ListPolynomial<C> = { substitute(ring, it) }
+
+/**
+ * Represent [this] rational function as a regular context-less function.
+ */
+public fun <C, A : Field<C>> ListRationalFunction<C>.asFunctionOver(ring: A): (C) -> C = { substitute(ring, it) }
+
+/**
+ * Represent [this] rational function as a regular context-less function.
+ */
+public fun <C, A : Ring<C>> ListRationalFunction<C>.asPolynomialFunctionOver(ring: A): (ListPolynomial<C>) -> ListRationalFunction<C> = { substitute(ring, it) }
+
+/**
+ * Represent [this] rational function as a regular context-less function.
+ */
+public fun <C, A : Ring<C>> ListRationalFunction<C>.asFunctionOfRationalFunctionOver(ring: A): (ListPolynomial<C>) -> ListRationalFunction<C> = { substitute(ring, it) }
+
+/**
+ * Returns algebraic derivative of received polynomial.
+ */
+@UnstableKMathAPI
+public fun <C, A> ListPolynomial<C>.derivative(
+    ring: A,
+): ListPolynomial<C> where  A : Ring<C>, A : NumericAlgebra<C> = ring {
+    ListPolynomial(
+        buildList(max(0, coefficients.size - 1)) {
+            for (deg in 1 .. coefficients.lastIndex) add(number(deg) * coefficients[deg])
+        }
+    )
+}
+
+/**
+ * Returns algebraic derivative of received polynomial of specified [order]. The [order] should be non-negative integer.
+ */
+@UnstableKMathAPI
+public fun <C, A> ListPolynomial<C>.nthDerivative(
+    ring: A,
+    order: Int,
+): ListPolynomial<C> where A : Ring<C>, A : NumericAlgebra<C> = ring {
+    require(order >= 0) { "Order of derivative must be non-negative" }
+    ListPolynomial(
+        buildList(max(0, coefficients.size - order)) {
+            for (deg in order.. coefficients.lastIndex)
+                add((deg - order + 1 .. deg).fold(coefficients[deg]) { acc, d -> acc * number(d) })
+        }
+    )
+}
+
+/**
+ * Returns algebraic antiderivative of received polynomial.
+ */
+@UnstableKMathAPI
+public fun <C, A> ListPolynomial<C>.antiderivative(
+    ring: A,
+): ListPolynomial<C> where  A : Field<C>, A : NumericAlgebra<C> = ring {
+    ListPolynomial(
+        buildList(coefficients.size + 1) {
+            add(zero)
+            coefficients.mapIndexedTo(this) { index, t -> t / number(index + 1) }
+        }
+    )
+}
+
+/**
+ * Returns algebraic antiderivative of received polynomial of specified [order]. The [order] should be non-negative integer.
+ */
+@UnstableKMathAPI
+public fun <C, A> ListPolynomial<C>.nthAntiderivative(
+    ring: A,
+    order: Int,
+): ListPolynomial<C> where  A : Field<C>, A : NumericAlgebra<C> = ring {
+    require(order >= 0) { "Order of antiderivative must be non-negative" }
+    ListPolynomial(
+        buildList(coefficients.size + order) {
+            repeat(order) { add(zero) }
+            coefficients.mapIndexedTo(this) { index, c -> (1..order).fold(c) { acc, i -> acc / number(index + i) } }
+        }
+    )
+}
+
+/**
+ * Computes a definite integral of [this] polynomial in the specified [range].
+ */
+@UnstableKMathAPI
+public fun <C : Comparable<C>> ListPolynomial<C>.integrate(
+    ring: Field<C>,
+    range: ClosedRange<C>,
+): C = ring {
+    val antiderivative = antiderivative(ring)
+    antiderivative.substitute(ring, range.endInclusive) - antiderivative.substitute(ring, range.start)
+}
+
+/**
+ * Returns algebraic derivative of received rational function.
+ */
+@UnstableKMathAPI
+public fun <C, A> ListRationalFunction<C>.derivative(
+    ring: A,
+): ListRationalFunction<C> where  A : Ring<C>, A : NumericAlgebra<C> = ring.listRationalFunctionSpace {
+    ListRationalFunction(
+        numerator.derivative(ring) * denominator - numerator * denominator.derivative(ring),
+        denominator * denominator
+    )
+}
+
+/**
+ * Returns algebraic derivative of received rational function of specified [order]. The [order] should be non-negative integer.
+ */
+@UnstableKMathAPI
+public tailrec fun <C, A> ListRationalFunction<C>.nthDerivative(
+    ring: A,
+    order: Int,
+): ListRationalFunction<C> where A : Ring<C>, A : NumericAlgebra<C> =
+    if (order == 0) this else derivative(ring).nthDerivative(ring, order - 1)
\ No newline at end of file
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listRationalFunctionUtil.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listUtilOptimized.kt
similarity index 72%
rename from kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listRationalFunctionUtil.kt
rename to kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listUtilOptimized.kt
index 367212588..6eb3a1dc7 100644
--- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listRationalFunctionUtil.kt
+++ b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listUtilOptimized.kt
@@ -5,41 +5,91 @@
 
 package space.kscience.kmath.functions
 
-import space.kscience.kmath.operations.Field
 import space.kscience.kmath.operations.Ring
 import space.kscience.kmath.operations.invoke
-import kotlin.contracts.InvocationKind
-import kotlin.contracts.contract
 import kotlin.math.max
+import kotlin.math.min
 
 
-/**
- * Creates a [ListRationalFunctionSpace] over a received ring.
- */
-public fun <C, A : Ring<C>> A.listRationalFunction(): ListRationalFunctionSpace<C, A> =
-    ListRationalFunctionSpace(this)
-
-/**
- * Creates a [ListRationalFunctionSpace]'s scope over a received ring.
- */
-public inline fun <C, A : Ring<C>, R> A.listRationalFunction(block: ListRationalFunctionSpace<C, A>.() -> R): R {
-    contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
-    return ListRationalFunctionSpace(this).block()
+// TODO: Optimized copies of substitution and invocation
+@UnstablePolynomialBoxingOptimization
+@Suppress("NOTHING_TO_INLINE")
+internal inline fun <C> copyTo(
+    origin: List<C>,
+    originDegree: Int,
+    target: MutableList<C>,
+) {
+    for (deg in 0 .. originDegree) target[deg] = origin[deg]
 }
 
-/**
- * Evaluates the value of the given double polynomial for given double argument.
- */
-public fun ListRationalFunction<Double>.substitute(arg: Double): Double =
-    numerator.substitute(arg) / denominator.substitute(arg)
+@UnstablePolynomialBoxingOptimization
+@Suppress("NOTHING_TO_INLINE")
+internal inline fun <C> multiplyAddingToUpdater(
+    ring: Ring<C>,
+    multiplicand: MutableList<C>,
+    multiplicandDegree: Int,
+    multiplier: List<C>,
+    multiplierDegree: Int,
+    updater: MutableList<C>,
+    zero: C,
+) {
+    multiplyAddingTo(
+        ring = ring,
+        multiplicand = multiplicand,
+        multiplicandDegree = multiplicandDegree,
+        multiplier = multiplier,
+        multiplierDegree = multiplierDegree,
+        target = updater
+    )
+    for (updateDeg in 0 .. multiplicandDegree + multiplierDegree) {
+        multiplicand[updateDeg] = updater[updateDeg]
+        updater[updateDeg] = zero
+    }
+}
 
-/**
- * Evaluates the value of the given polynomial for given argument.
- *
- * It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
- */
-public fun <C> ListRationalFunction<C>.substitute(ring: Field<C>, arg: C): C = ring {
-    numerator.substitute(ring, arg) / denominator.substitute(ring, arg)
+@UnstablePolynomialBoxingOptimization
+@Suppress("NOTHING_TO_INLINE")
+internal inline fun <C> multiplyAddingTo(
+    ring: Ring<C>,
+    multiplicand: List<C>,
+    multiplicandDegree: Int,
+    multiplier: List<C>,
+    multiplierDegree: Int,
+    target: MutableList<C>
+) = ring {
+    for (d in 0 .. multiplicandDegree + multiplierDegree)
+        for (k in max(0, d - multiplierDegree)..min(multiplicandDegree, d))
+            target[d] += multiplicand[k] * multiplier[d - k]
+}
+
+@UnstablePolynomialBoxingOptimization
+public fun <C> ListPolynomial<C>.substitute2(ring: Ring<C>, arg: ListPolynomial<C>) : ListPolynomial<C> = ring {
+    if (coefficients.isEmpty()) return ListPolynomial(emptyList())
+
+    val thisDegree = coefficients.lastIndex
+    if (thisDegree == -1) return ListPolynomial(emptyList())
+    val argDegree = arg.coefficients.lastIndex
+    if (argDegree == -1) return coefficients[0].asListPolynomial()
+    val constantZero = zero
+    val resultCoefs: MutableList<C> = MutableList(thisDegree * argDegree + 1) { constantZero }
+    resultCoefs[0] = coefficients[thisDegree]
+    val resultCoefsUpdate: MutableList<C> = MutableList(thisDegree * argDegree + 1) { constantZero }
+    var resultDegree = 0
+    for (deg in thisDegree - 1 downTo 0) {
+        resultCoefsUpdate[0] = coefficients[deg]
+        multiplyAddingToUpdater(
+            ring = ring,
+            multiplicand = resultCoefs,
+            multiplicandDegree = resultDegree,
+            multiplier = arg.coefficients,
+            multiplierDegree = argDegree,
+            updater = resultCoefsUpdate,
+            zero = constantZero
+        )
+        resultDegree += argDegree
+    }
+
+    return ListPolynomial<C>(resultCoefs)
 }
 
 /**
@@ -52,6 +102,7 @@ public fun <C> ListRationalFunction<C>.substitute(ring: Field<C>, arg: C): C = r
  *
  * Used in [ListPolynomial.substitute] and [ListRationalFunction.substitute] for performance optimisation.
  */ // TODO: Дописать
+@UnstablePolynomialBoxingOptimization
 internal fun <C> ListPolynomial<C>.substituteRationalFunctionTakeNumerator(ring: Ring<C>, arg: ListRationalFunction<C>): ListPolynomial<C> = ring {
     if (coefficients.isEmpty()) return ListPolynomial(emptyList())
 
@@ -196,26 +247,4 @@ internal fun <C> ListPolynomial<C>.substituteRationalFunctionTakeNumerator(ring:
             end = thisDegree + 1
         )
     )
-}
-
-//operator fun <T: Field<T>> RationalFunction<T>.invoke(arg: T): T = numerator(arg) / denominator(arg)
-//
-//fun <T: Field<T>> RationalFunction<T>.reduced(): RationalFunction<T> =
-//    polynomialGCD(numerator, denominator).let {
-//        RationalFunction(
-//            numerator / it,
-//            denominator / it
-//        )
-//    }
-
-///**
-// * Returns result of applying formal derivative to the polynomial.
-// *
-// * @param T Field where we are working now.
-// * @return Result of the operator.
-// */
-//fun <T: Ring<T>> RationalFunction<T>.derivative() =
-//    RationalFunction(
-//        numerator.derivative() * denominator - denominator.derivative() * numerator,
-//        denominator * denominator
-//    )
\ No newline at end of file
+}
\ No newline at end of file
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/misc.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/misc.kt
new file mode 100644
index 000000000..8b6fac39e
--- /dev/null
+++ b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/misc.kt
@@ -0,0 +1,13 @@
+/*
+ * Copyright 2018-2021 KMath contributors.
+ * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
+ */
+
+package space.kscience.kmath.functions
+
+
+@RequiresOptIn(
+    message = "It's copy of operation with optimized boxing. It's currently unstable.",
+    level = RequiresOptIn.Level.ERROR
+)
+internal annotation class UnstablePolynomialBoxingOptimization
\ No newline at end of file
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedConstructors.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedConstructors.kt
deleted file mode 100644
index dca8a0cff..000000000
--- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedConstructors.kt
+++ /dev/null
@@ -1,195 +0,0 @@
-/*
- * Copyright 2018-2021 KMath contributors.
- * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
- */
-
-package space.kscience.kmath.functions
-
-import space.kscience.kmath.misc.UnstableKMathAPI
-import space.kscience.kmath.operations.Ring
-
-
-/**
- * Returns the same degrees' description of the monomial, but without extra zero degrees on the end.
- */
-internal fun List<UInt>.cleanUp() = subList(0, indexOfLast { it != 0U } + 1)
-
-// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available
-
-@Suppress("FunctionName", "NOTHING_TO_INLINE")
-internal inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(coefs: Map<List<UInt>, C>, toCheckInput: Boolean = true) : NumberedPolynomial<C> = ring.NumberedPolynomial(coefs, toCheckInput)
-@Suppress("FunctionName", "NOTHING_TO_INLINE")
-internal inline fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(coefs: Map<List<UInt>, C>, toCheckInput: Boolean = true) : NumberedPolynomial<C> = ring.NumberedPolynomial(coefs, toCheckInput)
-@Suppress("FunctionName")
-internal fun <C, A: Ring<C>> A.NumberedPolynomial(coefs: Map<List<UInt>, C>, toCheckInput: Boolean = true) : NumberedPolynomial<C> {
-    if (!toCheckInput) return NumberedPolynomial<C>(coefs)
-
-    val fixedCoefs = mutableMapOf<List<UInt>, C>()
-
-    for (entry in coefs) {
-        val key = entry.key.cleanUp()
-        val value = entry.value
-        fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value
-    }
-
-    return NumberedPolynomial<C>(fixedCoefs)
-}
-
-@Suppress("FunctionName", "NOTHING_TO_INLINE")
-internal inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>, toCheckInput: Boolean = true) : NumberedPolynomial<C> = ring.NumberedPolynomial(pairs, toCheckInput)
-@Suppress("FunctionName", "NOTHING_TO_INLINE")
-internal inline fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>, toCheckInput: Boolean = true) : NumberedPolynomial<C> = ring.NumberedPolynomial(pairs, toCheckInput)
-@Suppress("FunctionName")
-internal fun <C, A: Ring<C>> A.NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>, toCheckInput: Boolean = true) : NumberedPolynomial<C> {
-    if (!toCheckInput) return NumberedPolynomial<C>(pairs.toMap())
-
-    val fixedCoefs = mutableMapOf<List<UInt>, C>()
-
-    for (entry in pairs) {
-        val key = entry.first.cleanUp()
-        val value = entry.second
-        fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value
-    }
-
-    return NumberedPolynomial<C>(fixedCoefs)
-}
-
-@Suppress("FunctionName", "NOTHING_TO_INLINE")
-internal inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>, toCheckInput: Boolean = true) : NumberedPolynomial<C> = ring.NumberedPolynomial(pairs = pairs, toCheckInput = toCheckInput)
-@Suppress("FunctionName", "NOTHING_TO_INLINE")
-internal inline fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>, toCheckInput: Boolean = true) : NumberedPolynomial<C> = ring.NumberedPolynomial(pairs = pairs, toCheckInput = toCheckInput)
-@Suppress("FunctionName")
-internal fun <C, A: Ring<C>> A.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>, toCheckInput: Boolean = true) : NumberedPolynomial<C> {
-    if (!toCheckInput) return NumberedPolynomial<C>(pairs.toMap())
-
-    val fixedCoefs = mutableMapOf<List<UInt>, C>()
-
-    for (entry in pairs) {
-        val key = entry.first.cleanUp()
-        val value = entry.second
-        fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value
-    }
-
-    return NumberedPolynomial<C>(fixedCoefs)
-}
-
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> A.NumberedPolynomial(coefs: Map<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(coefs, toCheckInput = true)
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(coefs: Map<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(coefs, toCheckInput = true)
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(coefs: Map<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(coefs, toCheckInput = true)
-
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> A.NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>) : NumberedPolynomial<C> = NumberedPolynomial(pairs, toCheckInput = true)
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>) : NumberedPolynomial<C> = NumberedPolynomial(pairs, toCheckInput = true)
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>) : NumberedPolynomial<C> = NumberedPolynomial(pairs, toCheckInput = true)
-
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> A.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(*pairs, toCheckInput = true)
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(*pairs, toCheckInput = true)
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(*pairs, toCheckInput = true)
-
-public fun <C> C.asNumberedPolynomial() : NumberedPolynomial<C> = NumberedPolynomial<C>(mapOf(emptyList<UInt>() to this))
-
-@DslMarker
-@UnstableKMathAPI
-internal annotation class NumberedPolynomialConstructorDSL
-
-@UnstableKMathAPI
-@NumberedPolynomialConstructorDSL
-public class NumberedPolynomialTermSignatureBuilder {
-    private val signature: MutableList<UInt> = ArrayList()
-    public fun build(): List<UInt> = signature
-    public infix fun Int.inPowerOf(deg: UInt) {
-        if (this > signature.lastIndex) {
-            signature.addAll(List(this - signature.lastIndex - 1) { 0u })
-            signature.add(deg)
-        } else {
-            signature[this] = deg
-        }
-    }
-    @Suppress("NOTHING_TO_INLINE")
-    public inline infix fun Int.pow(deg: UInt): Unit = this inPowerOf deg
-    @Suppress("NOTHING_TO_INLINE")
-    public inline infix fun Int.`in`(deg: UInt): Unit = this inPowerOf deg
-    @Suppress("NOTHING_TO_INLINE")
-    public inline infix fun Int.of(deg: UInt): Unit = this inPowerOf deg
-}
-
-@UnstableKMathAPI
-public class NumberedPolynomialBuilder<C>(private val zero: C, private val add: (C, C) -> C, capacity: Int = 0) {
-    private val coefficients: MutableMap<List<UInt>, C> = LinkedHashMap(capacity)
-    public fun build(): NumberedPolynomial<C> = NumberedPolynomial<C>(coefficients)
-    public operator fun C.invoke(block: NumberedPolynomialTermSignatureBuilder.() -> Unit) {
-        val signature = NumberedPolynomialTermSignatureBuilder().apply(block).build()
-        coefficients[signature] = add(coefficients.getOrElse(signature) { zero }, this@invoke)
-    }
-    @Suppress("NOTHING_TO_INLINE")
-    public inline infix fun C.with(noinline block: NumberedPolynomialTermSignatureBuilder.() -> Unit): Unit = this.invoke(block)
-    @Suppress("NOTHING_TO_INLINE")
-    public inline infix fun (NumberedPolynomialTermSignatureBuilder.() -> Unit).with(coef: C): Unit = coef.invoke(this)
-    @Suppress("NOTHING_TO_INLINE")
-    public infix fun sig(block: NumberedPolynomialTermSignatureBuilder.() -> Unit): NumberedPolynomialTermSignatureBuilder.() -> Unit = block
-}
-
-// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available
-
-@UnstableKMathAPI
-@NumberedPolynomialConstructorDSL
-@Suppress("FunctionName")
-public inline fun <C, A: Ring<C>> A.NumberedPolynomial(block: NumberedPolynomialBuilder<C>.() -> Unit) : NumberedPolynomial<C> = NumberedPolynomialBuilder(zero, ::add).apply(block).build()
-@UnstableKMathAPI
-@NumberedPolynomialConstructorDSL
-@Suppress("FunctionName")
-public inline fun <C, A: Ring<C>> A.NumberedPolynomial(capacity: Int, block: NumberedPolynomialBuilder<C>.() -> Unit) : NumberedPolynomial<C> = NumberedPolynomialBuilder(zero, ::add, capacity).apply(block).build()
-@UnstableKMathAPI
-@NumberedPolynomialConstructorDSL
-@Suppress("FunctionName")
-public inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(block: NumberedPolynomialBuilder<C>.() -> Unit) : NumberedPolynomial<C> = NumberedPolynomialBuilder(constantZero, { left: C, right: C -> left + right}).apply(block).build()
-@UnstableKMathAPI
-@NumberedPolynomialConstructorDSL
-@Suppress("FunctionName")
-public inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(capacity: Int, block: NumberedPolynomialBuilder<C>.() -> Unit) : NumberedPolynomial<C> = NumberedPolynomialBuilder(constantZero, { left: C, right: C -> left + right}, capacity).apply(block).build()
-
-// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available
-
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedRationalFunction(numeratorCoefficients: Map<List<UInt>, C>, denominatorCoefficients: Map<List<UInt>, C>): NumberedRationalFunction<C> =
-    NumberedRationalFunction<C>(
-        NumberedPolynomial(numeratorCoefficients, toCheckInput = true),
-        NumberedPolynomial(denominatorCoefficients, toCheckInput = true)
-    )
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> A.NumberedRationalFunction(numeratorCoefficients: Map<List<UInt>, C>, denominatorCoefficients: Map<List<UInt>, C>): NumberedRationalFunction<C> =
-    NumberedRationalFunction<C>(
-        NumberedPolynomial(numeratorCoefficients, toCheckInput = true),
-        NumberedPolynomial(denominatorCoefficients, toCheckInput = true)
-    )
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedRationalFunction(numerator: NumberedPolynomial<C>): NumberedRationalFunction<C> =
-    NumberedRationalFunction<C>(numerator, polynomialOne)
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> A.NumberedRationalFunction(numerator: NumberedPolynomial<C>): NumberedRationalFunction<C> =
-    NumberedRationalFunction<C>(numerator, NumberedPolynomial(mapOf(emptyList<UInt>() to one), toCheckInput = false))
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedRationalFunction(numeratorCoefficients: Map<List<UInt>, C>): NumberedRationalFunction<C> =
-    NumberedRationalFunction<C>(
-        NumberedPolynomial(numeratorCoefficients, toCheckInput = true),
-        polynomialOne
-    )
-@Suppress("FunctionName")
-public fun <C, A: Ring<C>> A.NumberedRationalFunction(numeratorCoefficients: Map<List<UInt>, C>): NumberedRationalFunction<C> =
-    NumberedRationalFunction<C>(
-        NumberedPolynomial(numeratorCoefficients, toCheckInput = true),
-        NumberedPolynomial(mapOf(emptyList<UInt>() to one), toCheckInput = false)
-    )
-
-//context(A)
-//public fun <C, A: Ring<C>> C.asNumberedRationalFunction() : NumberedRationalFunction<C> = NumberedRationalFunction(asLabeledPolynomial())
-//context(NumberedRationalFunctionSpace<C, A>)
-//public fun <C, A: Ring<C>> C.asNumberedRationalFunction() : NumberedRationalFunction<C> = NumberedRationalFunction(asLabeledPolynomial())
\ No newline at end of file
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedPolynomialUtil.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedPolynomialUtil.kt
deleted file mode 100644
index ad817c7ba..000000000
--- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedPolynomialUtil.kt
+++ /dev/null
@@ -1,528 +0,0 @@
-package space.kscience.kmath.functions
-
-import space.kscience.kmath.misc.UnstableKMathAPI
-import space.kscience.kmath.operations.*
-import kotlin.contracts.*
-import kotlin.jvm.JvmName
-import kotlin.math.max
-
-
-// TODO: Docs
-
-/**
- * Creates a [NumberedPolynomialSpace] over a received ring.
- */
-public fun <C, A : Ring<C>> A.numberedPolynomial(): NumberedPolynomialSpace<C, A> =
-    NumberedPolynomialSpace(this)
-
-/**
- * Creates a [NumberedPolynomialSpace]'s scope over a received ring.
- */
-@OptIn(ExperimentalContracts::class)
-public inline fun <C, A : Ring<C>, R> A.numberedPolynomial(block: NumberedPolynomialSpace<C, A>.() -> R): R {
-    contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
-    return NumberedPolynomialSpace(this).block()
-}
-
-///**
-// * Represents the polynomial as a [String] where name of variable with index `i` is [withVariableName] + `"_${i+1}"`.
-// * Consider that monomials are sorted in lexicographic order.
-// */
-//context(NumberedPolynomialSpace<C, A>)
-//public fun <C, A: Ring<C>> NumberedPolynomial<C>.represent(withVariableName: String = NumberedPolynomial.defaultVariableName): String =
-//    coefficients.entries
-//        .sortedWith { o1, o2 -> NumberedPolynomial.monomialComparator.compare(o1.key, o2.key) }
-//        .asSequence()
-//        .map { (degs, t) ->
-//            if (degs.isEmpty()) "$t"
-//            else {
-//                when {
-//                    t.isOne() -> ""
-//                    t.isMinusOne() -> "-"
-//                    else -> "$t "
-//                } +
-//                        degs
-//                            .mapIndexed { index, deg ->
-//                                when (deg) {
-//                                    0U -> ""
-//                                    1U -> "${withVariableName}_${index+1}"
-//                                    else -> "${withVariableName}_${index+1}^$deg"
-//                                }
-//                            }
-//                            .filter { it.isNotEmpty() }
-//                            .joinToString(separator = " ") { it }
-//            }
-//        }
-//        .joinToString(separator = " + ") { it }
-//        .ifEmpty { "0" }
-//
-///**
-// * Represents the polynomial as a [String] naming variables by [namer].
-// * Consider that monomials are sorted in lexicographic order.
-// */
-//context(NumberedPolynomialSpace<C, A>)
-//public fun <C, A: Ring<C>> NumberedPolynomial<C>.represent(namer: (Int) -> String): String =
-//    coefficients.entries
-//        .sortedWith { o1, o2 -> NumberedPolynomial.monomialComparator.compare(o1.key, o2.key) }
-//        .asSequence()
-//        .map { (degs, t) ->
-//            if (degs.isEmpty()) "$t"
-//            else {
-//                when {
-//                    t.isOne() -> ""
-//                    t.isMinusOne() -> "-"
-//                    else -> "$t "
-//                } +
-//                        degs
-//                            .mapIndexed { index, deg ->
-//                                when (deg) {
-//                                    0U -> ""
-//                                    1U -> namer(index)
-//                                    else -> "${namer(index)}^$deg"
-//                                }
-//                            }
-//                            .filter { it.isNotEmpty() }
-//                            .joinToString(separator = " ") { it }
-//            }
-//        }
-//        .joinToString(separator = " + ") { it }
-//        .ifEmpty { "0" }
-//
-///**
-// * Represents the polynomial as a [String] where name of variable with index `i` is [withVariableName] + `"_${i+1}"`
-// * and with brackets around the string if needed (i.e. when there are at least two addends in the representation).
-// * Consider that monomials are sorted in lexicographic order.
-// */
-//context(NumberedPolynomialSpace<C, A>)
-//public fun <C, A: Ring<C>> NumberedPolynomial<C>.representWithBrackets(withVariableName: String = NumberedPolynomial.defaultVariableName): String =
-//    with(represent(withVariableName)) { if (coefficients.count() == 1) this else "($this)" }
-//
-///**
-// * Represents the polynomial as a [String] naming variables by [namer] and with brackets around the string if needed
-// * (i.e. when there are at least two addends in the representation).
-// * Consider that monomials are sorted in lexicographic order.
-// */
-//context(NumberedPolynomialSpace<C, A>)
-//public fun <C, A: Ring<C>> NumberedPolynomial<C>.representWithBrackets(namer: (Int) -> String): String =
-//    with(represent(namer)) { if (coefficients.count() == 1) this else "($this)" }
-//
-///**
-// * Represents the polynomial as a [String] where name of variable with index `i` is [withVariableName] + `"_${i+1}"`.
-// * Consider that monomials are sorted in **reversed** lexicographic order.
-// */
-//context(NumberedPolynomialSpace<C, A>)
-//public fun <C, A: Ring<C>> NumberedPolynomial<C>.representReversed(withVariableName: String = NumberedPolynomial.defaultVariableName): String =
-//    coefficients.entries
-//        .sortedWith { o1, o2 -> -NumberedPolynomial.monomialComparator.compare(o1.key, o2.key) }
-//        .asSequence()
-//        .map { (degs, t) ->
-//            if (degs.isEmpty()) "$t"
-//            else {
-//                when {
-//                    t.isOne() -> ""
-//                    t.isMinusOne() -> "-"
-//                    else -> "$t "
-//                } +
-//                        degs
-//                            .mapIndexed { index, deg ->
-//                                when (deg) {
-//                                    0U -> ""
-//                                    1U -> "${withVariableName}_${index+1}"
-//                                    else -> "${withVariableName}_${index+1}^$deg"
-//                                }
-//                            }
-//                            .filter { it.isNotEmpty() }
-//                            .joinToString(separator = " ") { it }
-//            }
-//        }
-//        .joinToString(separator = " + ") { it }
-//        .ifEmpty { "0" }
-//
-///**
-// * Represents the polynomial as a [String] naming variables by [namer].
-// * Consider that monomials are sorted in **reversed** lexicographic order.
-// */
-//context(NumberedPolynomialSpace<C, A>)
-//public fun <C, A: Ring<C>> NumberedPolynomial<C>.representReversed(namer: (Int) -> String): String =
-//    coefficients.entries
-//        .sortedWith { o1, o2 -> -NumberedPolynomial.monomialComparator.compare(o1.key, o2.key) }
-//        .asSequence()
-//        .map { (degs, t) ->
-//            if (degs.isEmpty()) "$t"
-//            else {
-//                when {
-//                    t.isOne() -> ""
-//                    t.isMinusOne() -> "-"
-//                    else -> "$t "
-//                } +
-//                        degs
-//                            .mapIndexed { index, deg ->
-//                                when (deg) {
-//                                    0U -> ""
-//                                    1U -> namer(index)
-//                                    else -> "${namer(index)}^$deg"
-//                                }
-//                            }
-//                            .filter { it.isNotEmpty() }
-//                            .joinToString(separator = " ") { it }
-//            }
-//        }
-//        .joinToString(separator = " + ") { it }
-//        .ifEmpty { "0" }
-//
-///**
-// * Represents the polynomial as a [String] where name of variable with index `i` is [withVariableName] + `"_${i+1}"`
-// * and with brackets around the string if needed (i.e. when there are at least two addends in the representation).
-// * Consider that monomials are sorted in **reversed** lexicographic order.
-// */
-//context(NumberedPolynomialSpace<C, A>)
-//public fun <C, A: Ring<C>> NumberedPolynomial<C>.representReversedWithBrackets(withVariableName: String = NumberedPolynomial.defaultVariableName): String =
-//    with(representReversed(withVariableName)) { if (coefficients.count() == 1) this else "($this)" }
-//
-///**
-// * Represents the polynomial as a [String] naming variables by [namer] and with brackets around the string if needed
-// * (i.e. when there are at least two addends in the representation).
-// * Consider that monomials are sorted in **reversed** lexicographic order.
-// */
-//context(NumberedPolynomialSpace<C, A>)
-//public fun <C, A: Ring<C>> NumberedPolynomial<C>.representReversedWithBrackets(namer: (Int) -> String): String =
-//    with(representReversed(namer)) { if (coefficients.count() == 1) this else "($this)" }
-
-//public fun <C> NumberedPolynomial<C>.substitute(ring: Ring<C>, args: Map<Int, C>): NumberedPolynomial<C> = ring {
-//    if (coefficients.isEmpty()) return this@substitute
-//    NumberedPolynomial<C>(
-//        buildMap {
-//            coefficients.forEach { (degs, c) ->
-//                val newDegs = degs.mapIndexed { index, deg -> if (index in args) 0U else deg }.cleanUp()
-//                val newC = degs.foldIndexed(c) { index, acc, deg ->
-//                    if (index in args) multiplyWithPower(acc, args[index]!!, deg)
-//                    else acc
-//                }
-//                this[newDegs] = if (newDegs in this) this[newDegs]!! + newC else newC
-//            }
-//        }
-//    )
-//}
-//
-//// TODO: Replace with optimisation: the [result] may be unboxed, and all operations may be performed as soon as
-////  possible on it
-//@JvmName("substitutePolynomial")
-//public fun <C> NumberedPolynomial<C>.substitute(ring: Ring<C>, arg: Map<Int, NumberedPolynomial<C>>) : NumberedPolynomial<C> =
-//    ring.numberedPolynomialSpace {
-//        if (coefficients.isEmpty()) return zero
-//        coefficients
-//            .asSequence()
-//            .map { (degs, c) ->
-//                degs.foldIndexed(
-//                    NumberedPolynomial(
-//                        degs.mapIndexed { index, deg -> if (index in arg) 0U else deg } to c
-//                    )
-//                ) { index, acc, deg -> if (index in arg) multiplyWithPower(acc, arg[index]!!, deg) else acc }
-//            }
-//            .reduce { acc, polynomial -> acc + polynomial } // TODO: Rewrite. Might be slow.
-//    }
-//
-//// TODO: Substitute rational function
-//
-//public fun <C, A : Ring<C>> NumberedPolynomial<C>.asFunctionOver(ring: A): (Map<Int, C>) -> NumberedPolynomial<C> =
-//    { substitute(ring, it) }
-//
-//public fun <C, A : Ring<C>> NumberedPolynomial<C>.asPolynomialFunctionOver(ring: A): (Map<Int, NumberedPolynomial<C>>) -> NumberedPolynomial<C> =
-//    { substitute(ring, it) }
-
-//operator fun <T: Field<T>> Polynomial<T>.div(other: T): Polynomial<T> =
-//    if (other.isZero()) throw ArithmeticException("/ by zero")
-//    else
-//        Polynomial(
-//            coefficients
-//                .mapValues { it.value / other },
-//            toCheckInput = false
-//        )
-
-/**
- * Evaluates the value of the given double polynomial for given double argument.
- */
-public fun NumberedPolynomial<Double>.substitute(args: Map<Int, Double>): NumberedPolynomial<Double> = Double.algebra {
-    val acc = LinkedHashMap<List<UInt>, Double>(coefficients.size)
-    for ((degs, c) in coefficients) {
-        val newDegs = degs.mapIndexed { index, deg -> if (index !in args) deg else 0u }.cleanUp()
-        val newC = args.entries.fold(c) { product, (variable, substitution) ->
-            val deg = degs.getOrElse(variable) { 0u }
-            if (deg == 0u) product else product * substitution.pow(deg.toInt())
-        }
-        if (newDegs !in acc) acc[newDegs] = newC
-        else acc[newDegs] = acc[newDegs]!! + newC
-    }
-    return NumberedPolynomial<Double>(acc)
-}
-
-/**
- * Evaluates the value of the given polynomial for given argument.
- *
- * It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
- */
-public fun <C> NumberedPolynomial<C>.substitute(ring: Ring<C>, args: Map<Int, C>): NumberedPolynomial<C> = ring {
-    val acc = LinkedHashMap<List<UInt>, C>(coefficients.size)
-    for ((degs, c) in coefficients) {
-        val newDegs = degs.mapIndexed { index, deg -> if (index !in args) deg else 0u }.cleanUp()
-        val newC = args.entries.fold(c) { product, (variable, substitution) ->
-            val deg = degs.getOrElse(variable) { 0u }
-            if (deg == 0u) product else product * power(substitution, deg)
-        }
-        if (newDegs !in acc) acc[newDegs] = newC
-        else acc[newDegs] = acc[newDegs]!! + newC
-    }
-    return NumberedPolynomial<C>(acc)
-}
-
-// TODO: (Waiting for hero) Replace with optimisation: the [result] may be unboxed, and all operations may be performed
-//  as soon as possible on it
-@JvmName("substitutePolynomial")
-public fun <C> NumberedPolynomial<C>.substitute(ring: Ring<C>, args: Map<Int, NumberedPolynomial<C>>) : NumberedPolynomial<C> = TODO() /*ring.numberedPolynomial {
-    val acc = LinkedHashMap<List<UInt>, NumberedPolynomial<C>>(coefficients.size)
-    for ((degs, c) in coefficients) {
-        val newDegs = degs.mapIndexed { index, deg -> if (index !in args) deg else 0u }.cleanUp()
-        val newC = args.entries.fold(c.asNumberedPolynomial()) { product, (variable, substitution) ->
-            val deg = degs.getOrElse(variable) { 0u }
-            if (deg == 0u) product else product * power(substitution, deg)
-        }
-        if (newDegs !in acc) acc[newDegs] = c.asNumberedPolynomial()
-        else acc[newDegs] = acc[newDegs]!! + c
-    }
-}*/
-
-/**
- * Represent the polynomial as a regular context-less function.
- */
-public fun <C, A : Ring<C>> NumberedPolynomial<C>.asFunction(ring: A): (Map<Int, C>) -> NumberedPolynomial<C> = { substitute(ring, it) }
-
-/**
- * Represent the polynomial as a regular context-less function.
- */
-public fun <C, A : Ring<C>> NumberedPolynomial<C>.asPolynomialFunctionOver(ring: A): (Map<Int, NumberedPolynomial<C>>) -> NumberedPolynomial<C> = { substitute(ring, it) }
-
-/**
- * Returns algebraic derivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A : Ring<C>> NumberedPolynomial<C>.derivativeWithRespectTo(
-    algebra: A,
-    variable: Int,
-): NumberedPolynomial<C> = algebra {
-    NumberedPolynomial<C>(
-        buildMap(coefficients.size) {
-            coefficients
-                .forEach { (degs, c) ->
-                    if (degs.size > variable) return@forEach
-                    put(
-                        degs.mapIndexed { index, deg ->
-                            when {
-                                index != variable -> deg
-                                deg > 0u -> deg - 1u
-                                else -> return@forEach
-                            }
-                        }.cleanUp(),
-                        multiplyByDoubling(c, degs[variable])
-                    )
-                }
-        }
-    )
-}
-
-/**
- * Returns algebraic derivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A : Ring<C>> NumberedPolynomial<C>.derivativeWithRespectTo(
-    algebra: A,
-    variables: Collection<Int>,
-): NumberedPolynomial<C> = algebra {
-    val cleanedVariables = variables.toSet()
-    if (cleanedVariables.isEmpty()) return this@derivativeWithRespectTo
-    val maxRespectedVariable = cleanedVariables.maxOrNull()!!
-    NumberedPolynomial<C>(
-        buildMap(coefficients.size) {
-            coefficients
-                .forEach { (degs, c) ->
-                    if (degs.size > maxRespectedVariable) return@forEach
-                    put(
-                        degs.mapIndexed { index, deg ->
-                            when {
-                                index !in cleanedVariables -> deg
-                                deg > 0u -> deg - 1u
-                                else -> return@forEach
-                            }
-                        }.cleanUp(),
-                        cleanedVariables.fold(c) { acc, variable -> multiplyByDoubling(acc, degs[variable]) }
-                    )
-                }
-        }
-    )
-}
-
-/**
- * Returns algebraic derivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A : Ring<C>> NumberedPolynomial<C>.nthDerivativeWithRespectTo(
-    algebra: A,
-    variable: Int,
-    order: UInt
-): NumberedPolynomial<C> = algebra {
-    if (order == 0u) return this@nthDerivativeWithRespectTo
-    NumberedPolynomial<C>(
-        buildMap(coefficients.size) {
-            coefficients
-                .forEach { (degs, c) ->
-                    if (degs.size > variable) return@forEach
-                    put(
-                        degs.mapIndexed { index, deg ->
-                            when {
-                                index != variable -> deg
-                                deg >= order -> deg - order
-                                else -> return@forEach
-                            }
-                        }.cleanUp(),
-                        degs[variable].let { deg ->
-                            (deg downTo deg - order + 1u)
-                                .fold(c) { acc, ord -> multiplyByDoubling(acc, ord) }
-                        }
-                    )
-                }
-        }
-    )
-}
-
-/**
- * Returns algebraic derivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A : Ring<C>> NumberedPolynomial<C>.nthDerivativeWithRespectTo(
-    algebra: A,
-    variablesAndOrders: Map<Int, UInt>,
-): NumberedPolynomial<C> = algebra {
-    val filteredVariablesAndOrders = variablesAndOrders.filterValues { it != 0u }
-    if (filteredVariablesAndOrders.isEmpty()) return this@nthDerivativeWithRespectTo
-    val maxRespectedVariable = filteredVariablesAndOrders.keys.maxOrNull()!!
-    NumberedPolynomial<C>(
-        buildMap(coefficients.size) {
-            coefficients
-                .forEach { (degs, c) ->
-                    if (degs.size > maxRespectedVariable) return@forEach
-                    put(
-                        degs.mapIndexed { index, deg ->
-                            if (index !in filteredVariablesAndOrders) return@mapIndexed deg
-                            val order = filteredVariablesAndOrders[index]!!
-                            if (deg >= order) deg - order else return@forEach
-                        }.cleanUp(),
-                        filteredVariablesAndOrders.entries.fold(c) { acc1, (index, order) ->
-                            degs[index].let { deg ->
-                                (deg downTo deg - order + 1u)
-                                    .fold(acc1) { acc2, ord -> multiplyByDoubling(acc2, ord) }
-                            }
-                        }
-                    )
-                }
-        }
-    )
-}
-
-/**
- * Returns algebraic antiderivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A : Field<C>> NumberedPolynomial<C>.antiderivativeWithRespectTo(
-    algebra: A,
-    variable: Int,
-): NumberedPolynomial<C> = algebra {
-    NumberedPolynomial<C>(
-        buildMap(coefficients.size) {
-            coefficients
-                .forEach { (degs, c) ->
-                    put(
-                        List(max(variable + 1, degs.size)) { if (it != variable) degs[it] else degs[it] + 1u },
-                        c / multiplyByDoubling(one, degs[variable])
-                    )
-                }
-        }
-    )
-}
-
-/**
- * Returns algebraic antiderivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A : Field<C>> NumberedPolynomial<C>.antiderivativeWithRespectTo(
-    algebra: A,
-    variables: Collection<Int>,
-): NumberedPolynomial<C> = algebra {
-    val cleanedVariables = variables.toSet()
-    if (cleanedVariables.isEmpty()) return this@antiderivativeWithRespectTo
-    val maxRespectedVariable = cleanedVariables.maxOrNull()!!
-    NumberedPolynomial<C>(
-        buildMap(coefficients.size) {
-            coefficients
-                .forEach { (degs, c) ->
-                    put(
-                        List(max(maxRespectedVariable + 1, degs.size)) { if (it !in variables) degs[it] else degs[it] + 1u },
-                        cleanedVariables.fold(c) { acc, variable -> acc / multiplyByDoubling(one, degs[variable]) }
-                    )
-                }
-        }
-    )
-}
-
-/**
- * Returns algebraic derivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A : Field<C>> NumberedPolynomial<C>.nthAntiderivativeWithRespectTo(
-    algebra: A,
-    variable: Int,
-    order: UInt
-): NumberedPolynomial<C> = algebra {
-    if (order == 0u) return this@nthAntiderivativeWithRespectTo
-    NumberedPolynomial<C>(
-        buildMap(coefficients.size) {
-            coefficients
-                .forEach { (degs, c) ->
-                    put(
-                        List(max(variable + 1, degs.size)) { if (it != variable) degs[it] else degs[it] + order },
-                        degs[variable].let { deg ->
-                            (deg downTo deg - order + 1u)
-                                .fold(c) { acc, ord -> acc / multiplyByDoubling(one, ord) }
-                        }
-                    )
-                }
-        }
-    )
-}
-
-/**
- * Returns algebraic derivative of received polynomial.
- */
-@UnstableKMathAPI
-public fun <C, A : Field<C>> NumberedPolynomial<C>.nthAntiderivativeWithRespectTo(
-    algebra: A,
-    variablesAndOrders: Map<Int, UInt>,
-): NumberedPolynomial<C> = algebra {
-    val filteredVariablesAndOrders = variablesAndOrders.filterValues { it != 0u }
-    if (filteredVariablesAndOrders.isEmpty()) return this@nthAntiderivativeWithRespectTo
-    val maxRespectedVariable = filteredVariablesAndOrders.keys.maxOrNull()!!
-    NumberedPolynomial<C>(
-        buildMap(coefficients.size) {
-            coefficients
-                .forEach { (degs, c) ->
-                    put(
-                        List(max(maxRespectedVariable + 1, degs.size)) { degs[it] + filteredVariablesAndOrders.getOrElse(it) { 0u } },
-                        filteredVariablesAndOrders.entries.fold(c) { acc1, (index, order) ->
-                            degs[index].let { deg ->
-                                (deg downTo deg - order + 1u)
-                                    .fold(acc1) { acc2, ord -> acc2 / multiplyByDoubling(one, ord) }
-                            }
-                        }
-                    )
-                }
-        }
-    )
-}
\ No newline at end of file
diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedRationalFunctionUtil.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedRationalFunctionUtil.kt
deleted file mode 100644
index 5cd0679ab..000000000
--- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedRationalFunctionUtil.kt
+++ /dev/null
@@ -1,33 +0,0 @@
-/*
- * Copyright 2018-2021 KMath contributors.
- * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
- */
-
-package space.kscience.kmath.functions
-
-import space.kscience.kmath.operations.Ring
-import kotlin.contracts.InvocationKind
-import kotlin.contracts.contract
-
-
-/**
- * Creates a [NumberedRationalFunctionSpace] over a received ring.
- */
-public fun <C, A : Ring<C>> A.numberedRationalFunction(): NumberedRationalFunctionSpace<C, A> =
-    NumberedRationalFunctionSpace(this)
-
-/**
- * Creates a [NumberedRationalFunctionSpace]'s scope over a received ring.
- */
-public inline fun <C, A : Ring<C>, R> A.numberedRationalFunction(block: NumberedRationalFunctionSpace<C, A>.() -> R): R {
-    contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
-    return NumberedRationalFunctionSpace(this).block()
-}
-
-//fun <T: Field<T>> NumberedRationalFunction<T>.reduced(): NumberedRationalFunction<T> {
-//    val greatestCommonDivider = polynomialGCD(numerator, denominator)
-//    return NumberedRationalFunction(
-//        numerator / greatestCommonDivider,
-//        denominator / greatestCommonDivider
-//    )
-//}
\ No newline at end of file
diff --git a/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialTest.kt b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialTest.kt
index 5401be707..c9950fac5 100644
--- a/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialTest.kt
+++ b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialTest.kt
@@ -12,7 +12,7 @@ import kotlin.test.*
 class ListPolynomialTest {
     @Test
     fun test_Polynomial_Int_plus() {
-        RationalField.listPolynomial {
+        RationalField.listPolynomialSpace {
             assertEquals(
                 ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7)),
                 ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)) + -3,
@@ -52,7 +52,7 @@ class ListPolynomialTest {
     }
     @Test
     fun test_Polynomial_Int_minus() {
-        RationalField.listPolynomial {
+        RationalField.listPolynomialSpace {
             assertEquals(
                 ListPolynomial(Rational(32, 9), Rational(-8, 9), Rational(-8, 7)),
                 ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)) - -3,
@@ -92,7 +92,7 @@ class ListPolynomialTest {
     }
     @Test
     fun test_Polynomial_Int_times() {
-        IntModuloRing(35).listPolynomial {
+        IntModuloRing(35).listPolynomialSpace {
             assertEquals(
                 ListPolynomial(34, 2, 1, 20, 2),
                 ListPolynomial(22, 26, 13, 15, 26) * 27,
@@ -107,7 +107,7 @@ class ListPolynomialTest {
     }
     @Test
     fun test_Int_Polynomial_plus() {
-        RationalField.listPolynomial {
+        RationalField.listPolynomialSpace {
             assertEquals(
                 ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7)),
                 -3 + ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)),
@@ -147,7 +147,7 @@ class ListPolynomialTest {
     }
     @Test
     fun test_Int_Polynomial_minus() {
-        RationalField.listPolynomial {
+        RationalField.listPolynomialSpace {
             assertEquals(
                 ListPolynomial(Rational(32, 9), Rational(-8, 9), Rational(-8, 7)),
                 3 - ListPolynomial(Rational(-5, 9), Rational(8, 9), Rational(8, 7)),
@@ -187,7 +187,7 @@ class ListPolynomialTest {
     }
     @Test
     fun test_Int_Polynomial_times() {
-        IntModuloRing(35).listPolynomial {
+        IntModuloRing(35).listPolynomialSpace {
             assertEquals(
                 ListPolynomial(34, 2, 1, 20, 2),
                 27 * ListPolynomial(22, 26, 13, 15, 26),
@@ -202,7 +202,7 @@ class ListPolynomialTest {
     }
     @Test
     fun test_Polynomial_Constant_plus() {
-        RationalField.listPolynomial {
+        RationalField.listPolynomialSpace {
             assertEquals(
                 ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7)),
                 ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)) + Rational(-3),
@@ -242,7 +242,7 @@ class ListPolynomialTest {
     }
     @Test
     fun test_Polynomial_Constant_minus() {
-        RationalField.listPolynomial {
+        RationalField.listPolynomialSpace {
             assertEquals(
                 ListPolynomial(Rational(32, 9), Rational(-8, 9), Rational(-8, 7)),
                 ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)) - Rational(-3),
@@ -282,7 +282,7 @@ class ListPolynomialTest {
     }
     @Test
     fun test_Polynomial_Constant_times() {
-        IntModuloRing(35).listPolynomial {
+        IntModuloRing(35).listPolynomialSpace {
             assertEquals(
                 ListPolynomial(34, 2, 1, 20, 2),
                 ListPolynomial(22, 26, 13, 15, 26) * 27.asConstant(),
@@ -297,7 +297,7 @@ class ListPolynomialTest {
     }
     @Test
     fun test_Constant_Polynomial_plus() {
-        RationalField.listPolynomial {
+        RationalField.listPolynomialSpace {
             assertEquals(
                 ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7)),
                 Rational(-3) + ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)),
@@ -337,7 +337,7 @@ class ListPolynomialTest {
     }
     @Test
     fun test_Constant_Polynomial_minus() {
-        RationalField.listPolynomial {
+        RationalField.listPolynomialSpace {
             assertEquals(
                 ListPolynomial(Rational(32, 9), Rational(-8, 9), Rational(-8, 7)),
                 Rational(3) - ListPolynomial(Rational(-5, 9), Rational(8, 9), Rational(8, 7)),
@@ -377,7 +377,7 @@ class ListPolynomialTest {
     }
     @Test
     fun test_Constant_Polynomial_times() {
-        IntModuloRing(35).listPolynomial {
+        IntModuloRing(35).listPolynomialSpace {
             assertEquals(
                 ListPolynomial(34, 2, 1, 20, 2),
                 27 * ListPolynomial(22, 26, 13, 15, 26),
@@ -392,7 +392,7 @@ class ListPolynomialTest {
     }
     @Test
     fun test_Polynomial_unaryMinus() {
-        RationalField.listPolynomial {
+        RationalField.listPolynomialSpace {
             assertEquals(
                 ListPolynomial(Rational(-5, 9), Rational(8, 9), Rational(8, 7)),
                 -ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)),
@@ -407,7 +407,7 @@ class ListPolynomialTest {
     }
     @Test
     fun test_Polynomial_Polynomial_plus() {
-        RationalField.listPolynomial {
+        RationalField.listPolynomialSpace {
             // (5/9 - 8/9 x - 8/7 x^2) + (-5/7 + 5/1 x + 5/8 x^2) ?= -10/63 + 37/9 x - 29/56 x^2
             assertEquals(
                 ListPolynomial(Rational(-10, 63), Rational(37, 9), Rational(-29, 56)),
@@ -440,7 +440,7 @@ class ListPolynomialTest {
     }
     @Test
     fun test_Polynomial_Polynomial_minus() {
-        RationalField.listPolynomial {
+        RationalField.listPolynomialSpace {
             // (5/9 - 8/9 x - 8/7 x^2) - (-5/7 + 5/1 x + 5/8 x^2) ?= 80/63 - 53/9 x - 99/56 x^2
             assertEquals(
                 ListPolynomial(Rational(80, 63), Rational(-53, 9), Rational(-99, 56)),
@@ -473,7 +473,7 @@ class ListPolynomialTest {
     }
     @Test
     fun test_Polynomial_Polynomial_times() {
-        IntModuloRing(35).listPolynomial {
+        IntModuloRing(35).listPolynomialSpace {
             // (1 + x + x^2) * (1 - x + x^2) ?= 1 + x^2 + x^4
             assertEquals(
                 ListPolynomial(1, 0, 1, 0, 1),
diff --git a/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialUtilTest.kt b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialUtilTest.kt
index c5eb8fb81..69c1611f3 100644
--- a/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialUtilTest.kt
+++ b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialUtilTest.kt
@@ -5,6 +5,7 @@
 
 package space.kscience.kmath.functions
 
+import space.kscience.kmath.misc.UnstableKMathAPI
 import space.kscience.kmath.test.misc.Rational
 import space.kscience.kmath.test.misc.RationalField
 import kotlin.test.Test
@@ -12,6 +13,7 @@ import kotlin.test.assertEquals
 import kotlin.test.assertFailsWith
 
 
+@OptIn(UnstableKMathAPI::class)
 class ListPolynomialUtilTest {
     @Test
     fun test_substitute_Double() {
diff --git a/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/IntModulo.kt b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/IntModulo.kt
new file mode 100644
index 000000000..89764db46
--- /dev/null
+++ b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/IntModulo.kt
@@ -0,0 +1,138 @@
+/*
+ * Copyright 2018-2021 KMath contributors.
+ * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
+ */
+
+package space.kscience.kmath.test.misc
+
+import space.kscience.kmath.functions.ListPolynomial
+import space.kscience.kmath.functions.ListPolynomialSpace
+import space.kscience.kmath.operations.Ring
+
+
+class IntModulo {
+    val residue: Int
+    val modulus: Int
+
+    @PublishedApi
+    internal constructor(residue: Int, modulus: Int, toCheckInput: Boolean = true) {
+        if (toCheckInput) {
+            require(modulus != 0) { "modulus can not be zero" }
+            this.modulus = if (modulus < 0) -modulus else modulus
+            this.residue = residue.mod(modulus)
+        } else {
+            this.residue = residue
+            this.modulus = modulus
+        }
+    }
+
+    constructor(residue: Int, modulus: Int) : this(residue, modulus, true)
+
+    operator fun unaryPlus(): IntModulo = this
+    operator fun unaryMinus(): IntModulo =
+        IntModulo(
+            if (residue == 0) 0 else modulus - residue,
+            modulus,
+            toCheckInput = false
+        )
+    operator fun plus(other: IntModulo): IntModulo {
+        require(modulus == other.modulus) { "can not add two residue different modulo" }
+        return IntModulo(
+            (residue + other.residue) % modulus,
+            modulus,
+            toCheckInput = false
+        )
+    }
+    operator fun plus(other: Int): IntModulo =
+        IntModulo(
+            (residue + other) % modulus,
+            modulus,
+            toCheckInput = false
+        )
+    operator fun minus(other: IntModulo): IntModulo {
+        require(modulus == other.modulus) { "can not subtract two residue different modulo" }
+        return IntModulo(
+            (residue - other.residue) % modulus,
+            modulus,
+            toCheckInput = false
+        )
+    }
+    operator fun minus(other: Int): IntModulo =
+        IntModulo(
+            (residue - other) % modulus,
+            modulus,
+            toCheckInput = false
+        )
+    operator fun times(other: IntModulo): IntModulo {
+        require(modulus == other.modulus) { "can not multiply two residue different modulo" }
+        return IntModulo(
+            (residue * other.residue) % modulus,
+            modulus,
+            toCheckInput = false
+        )
+    }
+    operator fun times(other: Int): IntModulo =
+        IntModulo(
+            (residue * other) % modulus,
+            modulus,
+            toCheckInput = false
+        )
+    operator fun div(other: IntModulo): IntModulo {
+        require(modulus == other.modulus) { "can not divide two residue different modulo" }
+        val (reciprocalCandidate, gcdOfOtherResidueAndModulus) = bezoutIdentityWithGCD(other.residue, modulus)
+        require(gcdOfOtherResidueAndModulus == 1) { "can not divide to residue that has non-trivial GCD with modulo" }
+        return IntModulo(
+            (residue * reciprocalCandidate) % modulus,
+            modulus,
+            toCheckInput = false
+        )
+    }
+    operator fun div(other: Int): IntModulo {
+        val (reciprocalCandidate, gcdOfOtherResidueAndModulus) = bezoutIdentityWithGCD(other, modulus)
+        require(gcdOfOtherResidueAndModulus == 1) { "can not divide to residue that has non-trivial GCD with modulo" }
+        return IntModulo(
+            (residue * reciprocalCandidate) % modulus,
+            modulus,
+            toCheckInput = false
+        )
+    }
+    override fun equals(other: Any?): Boolean =
+        when (other) {
+            is IntModulo -> residue == other.residue && modulus == other.modulus
+            else -> false
+        }
+
+    override fun hashCode(): Int = residue.hashCode()
+
+    override fun toString(): String = "$residue mod $modulus"
+}
+
+@Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE")
+class IntModuloRing : Ring<IntModulo> {
+
+    val modulus: Int
+
+    constructor(modulus: Int) {
+        require(modulus != 0) { "modulus can not be zero" }
+        this.modulus = if (modulus < 0) -modulus else modulus
+    }
+
+    override inline val zero: IntModulo get() = IntModulo(0, modulus, toCheckInput = false)
+    override inline val one: IntModulo get() = IntModulo(1, modulus, toCheckInput = false)
+
+    fun number(arg: Int) = IntModulo(arg, modulus, toCheckInput = false)
+
+    override inline fun add(left: IntModulo, right: IntModulo): IntModulo = left + right
+    override inline fun multiply(left: IntModulo, right: IntModulo): IntModulo = left * right
+
+    override inline fun IntModulo.unaryMinus(): IntModulo = -this
+    override inline fun IntModulo.plus(arg: IntModulo): IntModulo = this + arg
+    override inline fun IntModulo.minus(arg: IntModulo): IntModulo = this - arg
+    override inline fun IntModulo.times(arg: IntModulo): IntModulo = this * arg
+    inline fun IntModulo.div(arg: IntModulo): IntModulo = this / arg
+}
+
+fun ListPolynomialSpace<IntModulo, IntModuloRing>.ListPolynomial(vararg coefs: Int): ListPolynomial<IntModulo> =
+    ListPolynomial(coefs.map { IntModulo(it, ring.modulus) })
+fun IntModuloRing.ListPolynomial(vararg coefs: Int): ListPolynomial<IntModulo> =
+    ListPolynomial(coefs.map { IntModulo(it, modulus) })
\ No newline at end of file
diff --git a/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/Rational.kt b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/Rational.kt
new file mode 100644
index 000000000..72bb5942c
--- /dev/null
+++ b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/Rational.kt
@@ -0,0 +1,135 @@
+/*
+ * Copyright 2018-2021 KMath contributors.
+ * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
+ */
+
+package space.kscience.kmath.test.misc
+
+import space.kscience.kmath.misc.UnstableKMathAPI
+import space.kscience.kmath.operations.Field
+import space.kscience.kmath.operations.NumbersAddOps
+
+class Rational {
+    companion object {
+        val ZERO: Rational = Rational(0L)
+        val ONE: Rational = Rational(1L)
+    }
+
+    val numerator: Long
+    val denominator: Long
+
+    internal constructor(numerator: Long, denominator: Long, toCheckInput: Boolean = true) {
+        if (toCheckInput) {
+            if (denominator == 0L) throw ArithmeticException("/ by zero")
+
+            val greatestCommonDivider = gcd(numerator, denominator).let { if (denominator < 0L) -it else it }
+
+            this.numerator = numerator / greatestCommonDivider
+            this.denominator = denominator / greatestCommonDivider
+        } else {
+            this.numerator = numerator
+            this.denominator = denominator
+        }
+    }
+
+    constructor(numerator: Int, denominator: Int) : this(numerator.toLong(), denominator.toLong(), true)
+    constructor(numerator: Int, denominator: Long) : this(numerator.toLong(), denominator, true)
+    constructor(numerator: Long, denominator: Int) : this(numerator, denominator.toLong(), true)
+    constructor(numerator: Long, denominator: Long) : this(numerator, denominator, true)
+    constructor(numerator: Int) : this(numerator.toLong(), 1L, false)
+    constructor(numerator: Long) : this(numerator, 1L, false)
+
+    operator fun unaryPlus(): Rational = this
+    operator fun unaryMinus(): Rational = Rational(-this.numerator, this.denominator)
+    operator fun plus(other: Rational): Rational =
+        Rational(
+            numerator * other.denominator + denominator * other.numerator,
+            denominator * other.denominator
+        )
+    operator fun plus(other: Int): Rational =
+        Rational(
+            numerator + denominator * other.toLong(),
+            denominator
+        )
+    operator fun plus(other: Long): Rational =
+        Rational(
+            numerator + denominator * other,
+            denominator
+        )
+    operator fun minus(other: Rational): Rational =
+        Rational(
+            numerator * other.denominator - denominator * other.numerator,
+            denominator * other.denominator
+        )
+    operator fun minus(other: Int): Rational =
+        Rational(
+            numerator - denominator * other.toLong(),
+            denominator
+        )
+    operator fun minus(other: Long): Rational =
+        Rational(
+            numerator - denominator * other,
+            denominator
+        )
+    operator fun times(other: Rational): Rational =
+        Rational(
+            numerator * other.numerator,
+            denominator * other.denominator
+        )
+    operator fun times(other: Int): Rational =
+        Rational(
+            numerator * other.toLong(),
+            denominator
+        )
+    operator fun times(other: Long): Rational =
+        Rational(
+            numerator * other,
+            denominator
+        )
+    operator fun div(other: Rational): Rational =
+        Rational(
+            numerator * other.denominator,
+            denominator * other.numerator
+        )
+    operator fun div(other: Int): Rational =
+        Rational(
+            numerator,
+            denominator * other.toLong()
+        )
+    operator fun div(other: Long): Rational =
+        Rational(
+            numerator,
+            denominator * other
+        )
+    override fun equals(other: Any?): Boolean =
+        when (other) {
+            is Rational -> numerator == other.numerator && denominator == other.denominator
+            is Int -> numerator == other && denominator == 1L
+            is Long -> numerator == other && denominator == 1L
+            else -> false
+        }
+
+    override fun hashCode(): Int = 31 * numerator.hashCode() + denominator.hashCode()
+
+    override fun toString(): String = if (denominator == 1L) "$numerator" else "$numerator/$denominator"
+}
+
+@Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE")
+@OptIn(UnstableKMathAPI::class)
+object RationalField : Field<Rational>, NumbersAddOps<Rational> {
+    override inline val zero: Rational get() = Rational.ZERO
+    override inline val one: Rational get() = Rational.ONE
+
+    override inline fun number(value: Number): Rational = Rational(value.toLong())
+
+    override inline fun add(left: Rational, right: Rational): Rational = left + right
+    override inline fun multiply(left: Rational, right: Rational): Rational = left * right
+    override inline fun divide(left: Rational, right: Rational): Rational = left / right
+    override inline fun scale(a: Rational, value: Double): Rational = a * number(value)
+
+    override inline fun Rational.unaryMinus(): Rational = -this
+    override inline fun Rational.plus(arg: Rational): Rational = this + arg
+    override inline fun Rational.minus(arg: Rational): Rational = this - arg
+    override inline fun Rational.times(arg: Rational): Rational = this * arg
+    override inline fun Rational.div(arg: Rational): Rational = this / arg
+}
\ No newline at end of file
diff --git a/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/misc.kt b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/misc.kt
new file mode 100644
index 000000000..ed41b9245
--- /dev/null
+++ b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/misc.kt
@@ -0,0 +1,29 @@
+/*
+ * Copyright 2018-2021 KMath contributors.
+ * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
+ */
+
+package space.kscience.kmath.test.misc
+
+import kotlin.math.abs
+
+
+data class BezoutIdentityWithGCD<T>(val first: T, val second: T, val gcd: T)
+
+tailrec fun gcd(a: Long, b: Long): Long = if (a == 0L) abs(b) else gcd(b % a, a)
+
+fun bezoutIdentityWithGCD(a: Int, b: Int): BezoutIdentityWithGCD<Int> =
+    when {
+        a < 0 && b < 0 -> with(bezoutIdentityWithGCDInternalLogic(-a, -b, 1, 0, 0, 1)) { BezoutIdentityWithGCD(-first, -second, gcd) }
+        a < 0 -> with(bezoutIdentityWithGCDInternalLogic(-a, b, 1, 0, 0, 1)) { BezoutIdentityWithGCD(-first, second, gcd) }
+        b < 0 -> with(bezoutIdentityWithGCDInternalLogic(a, -b, 1, 0, 0, 1)) { BezoutIdentityWithGCD(first, -second, gcd) }
+        else -> bezoutIdentityWithGCDInternalLogic(a, b, 1, 0, 0, 1)
+    }
+
+internal tailrec fun bezoutIdentityWithGCDInternalLogic(a: Int, b: Int, m1: Int, m2: Int, m3: Int, m4: Int): BezoutIdentityWithGCD<Int> =
+    if (b == 0) BezoutIdentityWithGCD(m1, m3, a)
+    else {
+        val quotient = a / b
+        val reminder = a % b
+        bezoutIdentityWithGCDInternalLogic(b, reminder, m2, m1 - quotient * m2, m4, m3 - quotient * m4)
+    }
\ No newline at end of file