forked from kscience/kmath
Rename Tensor::get to Tensor::getTensor to avoid name clash.
This commit is contained in:
parent
a9821772db
commit
3729faf49b
@ -58,7 +58,7 @@ fun main(): Unit = Double.tensorAlgebra.withBroadcast { // work in context with
|
||||
|
||||
// and find out eigenvector of it
|
||||
val (_, evecs) = covMatrix.symEig()
|
||||
val v = evecs[0]
|
||||
val v = evecs.getTensor(0)
|
||||
println("Eigenvector:\n$v")
|
||||
|
||||
// reduce dimension of dataset
|
||||
@ -68,7 +68,7 @@ fun main(): Unit = Double.tensorAlgebra.withBroadcast { // work in context with
|
||||
// we can restore original data from reduced data;
|
||||
// for example, find 7th element of dataset.
|
||||
val n = 7
|
||||
val restored = (datasetReduced[n] dot v.view(intArrayOf(1, 2))) * std + mean
|
||||
println("Original value:\n${dataset[n]}")
|
||||
val restored = (datasetReduced.getTensor(n) dot v.view(intArrayOf(1, 2))) * std + mean
|
||||
println("Original value:\n${dataset.getTensor(n)}")
|
||||
println("Restored value:\n$restored")
|
||||
}
|
||||
|
@ -66,7 +66,7 @@ fun main() = Double.tensorAlgebra.withBroadcast {// work in context with linear
|
||||
val n = l.shape[0]
|
||||
val x = zeros(intArrayOf(n))
|
||||
for (i in 0 until n) {
|
||||
x[intArrayOf(i)] = (b[intArrayOf(i)] - l[i].dot(x).value()) / l[intArrayOf(i, i)]
|
||||
x[intArrayOf(i)] = (b[intArrayOf(i)] - l.getTensor(i).dot(x).value()) / l[intArrayOf(i, i)]
|
||||
}
|
||||
return x
|
||||
}
|
||||
|
@ -197,7 +197,7 @@ fun main() = BroadcastDoubleTensorAlgebra {
|
||||
val y = fromArray(
|
||||
intArrayOf(sampleSize, 1),
|
||||
DoubleArray(sampleSize) { i ->
|
||||
if (x[i].sum() > 0.0) {
|
||||
if (x.getTensor(i).sum() > 0.0) {
|
||||
1.0
|
||||
} else {
|
||||
0.0
|
||||
|
@ -7,6 +7,7 @@ package space.kscience.kmath.misc
|
||||
|
||||
import space.kscience.kmath.operations.Ring
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import kotlin.jvm.JvmName
|
||||
|
||||
/**
|
||||
@ -42,8 +43,8 @@ public inline fun <T, R> List<T>.cumulative(initial: R, crossinline operation: (
|
||||
/**
|
||||
* Cumulative sum with custom space
|
||||
*/
|
||||
public fun <T> Iterable<T>.cumulativeSum(group: Ring<T>): Iterable<T> =
|
||||
group { cumulative(zero) { element: T, sum: T -> sum + element } }
|
||||
public fun <T> Iterable<T>.cumulativeSum(ring: Ring<T>): Iterable<T> =
|
||||
ring { cumulative(zero) { element: T, sum: T -> sum + element } }
|
||||
|
||||
@JvmName("cumulativeSumOfDouble")
|
||||
public fun Iterable<Double>.cumulativeSum(): Iterable<Double> = cumulative(0.0) { element, sum -> sum + element }
|
||||
@ -54,8 +55,8 @@ public fun Iterable<Int>.cumulativeSum(): Iterable<Int> = cumulative(0) { elemen
|
||||
@JvmName("cumulativeSumOfLong")
|
||||
public fun Iterable<Long>.cumulativeSum(): Iterable<Long> = cumulative(0L) { element, sum -> sum + element }
|
||||
|
||||
public fun <T> Sequence<T>.cumulativeSum(group: Ring<T>): Sequence<T> =
|
||||
group { cumulative(zero) { element: T, sum: T -> sum + element } }
|
||||
public fun <T> Sequence<T>.cumulativeSum(ring: Ring<T>): Sequence<T> =
|
||||
ring { cumulative(zero) { element: T, sum: T -> sum + element } }
|
||||
|
||||
@JvmName("cumulativeSumOfDouble")
|
||||
public fun Sequence<Double>.cumulativeSum(): Sequence<Double> = cumulative(0.0) { element, sum -> sum + element }
|
||||
@ -77,3 +78,12 @@ public fun List<Int>.cumulativeSum(): List<Int> = cumulative(0) { element, sum -
|
||||
|
||||
@JvmName("cumulativeSumOfLong")
|
||||
public fun List<Long>.cumulativeSum(): List<Long> = cumulative(0L) { element, sum -> sum + element }
|
||||
|
||||
|
||||
public fun <T> Buffer<T>.cumulativeSum(ring: Ring<T>): Buffer<T> = with(ring) {
|
||||
var accumulator: T = zero
|
||||
return bufferFactory(size) {
|
||||
accumulator += get(it)
|
||||
accumulator
|
||||
}
|
||||
}
|
||||
|
@ -185,7 +185,7 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>>(
|
||||
override fun StructureND<T>.unaryMinus(): MultikTensor<T> =
|
||||
asMultik().array.unaryMinus().wrap()
|
||||
|
||||
override fun Tensor<T>.get(i: Int): MultikTensor<T> = asMultik().array.mutableView(i).wrap()
|
||||
override fun Tensor<T>.getTensor(i: Int): MultikTensor<T> = asMultik().array.mutableView(i).wrap()
|
||||
|
||||
override fun Tensor<T>.transpose(i: Int, j: Int): MultikTensor<T> = asMultik().array.transpose(i, j).wrap()
|
||||
|
||||
@ -246,6 +246,12 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>>(
|
||||
return multikMath.minDN(asMultik().array, dim).wrap()
|
||||
}
|
||||
|
||||
override fun StructureND<T>.argMin(dim: Int, keepDim: Boolean): Tensor<Int> {
|
||||
if (keepDim) TODO("keepDim not implemented")
|
||||
val res = multikMath.argMinDN(asMultik().array, dim)
|
||||
return with(MultikIntAlgebra(multikEngine)) { res.wrap() }
|
||||
}
|
||||
|
||||
override fun StructureND<T>.max(): T? = asMultik().array.max()
|
||||
|
||||
override fun StructureND<T>.max(dim: Int, keepDim: Boolean): Tensor<T> {
|
||||
|
@ -95,7 +95,7 @@ public sealed interface Nd4jTensorAlgebra<T : Number, A : Field<T>> : AnalyticTe
|
||||
}
|
||||
|
||||
override fun StructureND<T>.unaryMinus(): Nd4jArrayStructure<T> = ndArray.neg().wrap()
|
||||
override fun Tensor<T>.get(i: Int): Nd4jArrayStructure<T> = ndArray.slice(i.toLong()).wrap()
|
||||
override fun Tensor<T>.getTensor(i: Int): Nd4jArrayStructure<T> = ndArray.slice(i.toLong()).wrap()
|
||||
override fun Tensor<T>.transpose(i: Int, j: Int): Nd4jArrayStructure<T> = ndArray.swapAxes(i, j).wrap()
|
||||
override fun StructureND<T>.dot(other: StructureND<T>): Nd4jArrayStructure<T> = ndArray.mmul(other.ndArray).wrap()
|
||||
|
||||
@ -111,6 +111,9 @@ public sealed interface Nd4jTensorAlgebra<T : Number, A : Field<T>> : AnalyticTe
|
||||
override fun Tensor<T>.view(shape: IntArray): Nd4jArrayStructure<T> = ndArray.reshape(shape).wrap()
|
||||
override fun Tensor<T>.viewAs(other: StructureND<T>): Nd4jArrayStructure<T> = view(other.shape)
|
||||
|
||||
override fun StructureND<T>.argMin(dim: Int, keepDim: Boolean): Tensor<Int> =
|
||||
ndBase.get().argmin(ndArray, keepDim, dim).asIntStructure()
|
||||
|
||||
override fun StructureND<T>.argMax(dim: Int, keepDim: Boolean): Tensor<Int> =
|
||||
ndBase.get().argmax(ndArray, keepDim, dim).asIntStructure()
|
||||
|
||||
|
@ -184,7 +184,7 @@ public abstract class TensorFlowAlgebra<T, TT : TNumber, A : Ring<T>> internal c
|
||||
|
||||
override fun StructureND<T>.unaryMinus(): TensorFlowOutput<T, TT> = operate(ops.math::neg)
|
||||
|
||||
override fun Tensor<T>.get(i: Int): Tensor<T> = operate {
|
||||
override fun Tensor<T>.getTensor(i: Int): Tensor<T> = operate {
|
||||
StridedSliceHelper.stridedSlice(ops.scope(), it, Indices.at(i.toLong()))
|
||||
}
|
||||
|
||||
@ -238,6 +238,11 @@ public abstract class TensorFlowAlgebra<T, TT : TNumber, A : Ring<T>> internal c
|
||||
ops.min(it, ops.constant(dim), Min.keepDims(keepDim))
|
||||
}
|
||||
|
||||
override fun StructureND<T>.argMin(dim: Int, keepDim: Boolean): Tensor<Int> = IntTensorFlowOutput(
|
||||
graph,
|
||||
ops.math.argMin(asTensorFlow().output, ops.constant(dim), TInt32::class.java).output()
|
||||
).actualTensor
|
||||
|
||||
override fun StructureND<T>.max(): T = operate {
|
||||
ops.max(it, ops.constant(intArrayOf()))
|
||||
}.value()
|
||||
|
@ -166,7 +166,11 @@ public interface TensorAlgebra<T, A : Ring<T>> : RingOpsND<T, A> {
|
||||
* @param i index of the extractable tensor
|
||||
* @return subtensor of the original tensor with index [i]
|
||||
*/
|
||||
public operator fun Tensor<T>.get(i: Int): Tensor<T>
|
||||
public fun Tensor<T>.getTensor(i: Int): Tensor<T>
|
||||
|
||||
public fun Tensor<T>.getTensor(first: Int, second: Int): Tensor<T> {
|
||||
return getTensor(first).getTensor(second)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a tensor that is a transposed version of this tensor. The given dimensions [i] and [j] are swapped.
|
||||
@ -286,6 +290,19 @@ public interface TensorAlgebra<T, A : Ring<T>> : RingOpsND<T, A> {
|
||||
*/
|
||||
public fun StructureND<T>.min(dim: Int, keepDim: Boolean): Tensor<T>
|
||||
|
||||
/**
|
||||
* Returns the index of minimum value of each row of the input tensor in the given dimension [dim].
|
||||
*
|
||||
* If [keepDim] is true, the output tensor is of the same size as
|
||||
* input except in the dimension [dim] where it is of size 1.
|
||||
* Otherwise, [dim] is squeezed, resulting in the output tensor having 1 fewer dimension.
|
||||
*
|
||||
* @param dim the dimension to reduce.
|
||||
* @param keepDim whether the output tensor has [dim] retained or not.
|
||||
* @return the index of maximum value of each row of the input tensor in the given dimension [dim].
|
||||
*/
|
||||
public fun StructureND<T>.argMin(dim: Int, keepDim: Boolean): Tensor<Int>
|
||||
|
||||
/**
|
||||
* Returns the maximum value of all elements in the input tensor or null if there are no values
|
||||
*/
|
||||
|
@ -24,6 +24,7 @@ import kotlin.math.*
|
||||
/**
|
||||
* Implementation of basic operations over double tensors and basic algebra operations on them.
|
||||
*/
|
||||
@OptIn(PerformancePitfall::class)
|
||||
public open class DoubleTensorAlgebra :
|
||||
TensorPartialDivisionAlgebra<Double, DoubleField>,
|
||||
AnalyticTensorAlgebra<Double, DoubleField>,
|
||||
@ -120,7 +121,7 @@ public open class DoubleTensorAlgebra :
|
||||
TensorLinearStructure(shape).asSequence().map { DoubleField.initializer(it) }.toMutableList().toDoubleArray()
|
||||
)
|
||||
|
||||
override operator fun Tensor<Double>.get(i: Int): DoubleTensor {
|
||||
override fun Tensor<Double>.getTensor(i: Int): DoubleTensor {
|
||||
val lastShape = asDoubleTensor().shape.drop(1).toIntArray()
|
||||
val newShape = if (lastShape.isNotEmpty()) lastShape else intArrayOf(1)
|
||||
val newStart = newShape.reduce(Int::times) * i + asDoubleTensor().bufferStart
|
||||
@ -204,7 +205,11 @@ public open class DoubleTensorAlgebra :
|
||||
* @return a copy of the `input` tensor with a copied buffer.
|
||||
*/
|
||||
public fun StructureND<Double>.copy(): DoubleTensor =
|
||||
DoubleTensor(asDoubleTensor().shape, asDoubleTensor().mutableBuffer.array().copyOf(), asDoubleTensor().bufferStart)
|
||||
DoubleTensor(
|
||||
asDoubleTensor().shape,
|
||||
asDoubleTensor().mutableBuffer.array().copyOf(),
|
||||
asDoubleTensor().bufferStart
|
||||
)
|
||||
|
||||
override fun Double.plus(arg: StructureND<Double>): DoubleTensor {
|
||||
val resBuffer = DoubleArray(arg.asDoubleTensor().numElements) { i ->
|
||||
@ -413,7 +418,10 @@ public open class DoubleTensorAlgebra :
|
||||
@UnstableKMathAPI
|
||||
public infix fun StructureND<Double>.matmul(other: StructureND<Double>): DoubleTensor {
|
||||
if (asDoubleTensor().shape.size == 1 && other.shape.size == 1) {
|
||||
return DoubleTensor(intArrayOf(1), doubleArrayOf(asDoubleTensor().times(other).asDoubleTensor().mutableBuffer.array().sum()))
|
||||
return DoubleTensor(
|
||||
intArrayOf(1),
|
||||
doubleArrayOf(asDoubleTensor().times(other).asDoubleTensor().mutableBuffer.array().sum())
|
||||
)
|
||||
}
|
||||
|
||||
var newThis = asDoubleTensor().copy()
|
||||
@ -592,7 +600,8 @@ public open class DoubleTensorAlgebra :
|
||||
check(tensors.all { it.shape contentEquals shape }) { "Tensors must have same shapes" }
|
||||
val resShape = intArrayOf(tensors.size) + shape
|
||||
val resBuffer = tensors.flatMap {
|
||||
it.asDoubleTensor().mutableBuffer.array().drop(it.asDoubleTensor().bufferStart).take(it.asDoubleTensor().numElements)
|
||||
it.asDoubleTensor().mutableBuffer.array().drop(it.asDoubleTensor().bufferStart)
|
||||
.take(it.asDoubleTensor().numElements)
|
||||
}.toDoubleArray()
|
||||
return DoubleTensor(resShape, resBuffer, 0)
|
||||
}
|
||||
@ -603,7 +612,7 @@ public open class DoubleTensorAlgebra :
|
||||
* @param indices the [IntArray] of 1-dimensional indices
|
||||
* @return tensor with rows corresponding to row by [indices]
|
||||
*/
|
||||
public fun Tensor<Double>.rowsByIndices(indices: IntArray): DoubleTensor = stack(indices.map { this[it] })
|
||||
public fun Tensor<Double>.rowsByIndices(indices: IntArray): DoubleTensor = stack(indices.map { getTensor(it) })
|
||||
|
||||
private inline fun StructureND<Double>.fold(foldFunction: (DoubleArray) -> Double): Double =
|
||||
foldFunction(asDoubleTensor().copyArray())
|
||||
@ -645,6 +654,10 @@ public open class DoubleTensorAlgebra :
|
||||
override fun StructureND<Double>.min(dim: Int, keepDim: Boolean): DoubleTensor =
|
||||
foldDim(dim, keepDim) { x -> x.minOrNull()!! }.asDoubleTensor()
|
||||
|
||||
override fun StructureND<Double>.argMin(dim: Int, keepDim: Boolean): Tensor<Int> = foldDim(dim, keepDim) { x ->
|
||||
x.withIndex().minByOrNull { it.value }?.index!!
|
||||
}.asIntTensor()
|
||||
|
||||
override fun StructureND<Double>.max(): Double = this.fold { it.maxOrNull()!! }
|
||||
|
||||
override fun StructureND<Double>.max(dim: Int, keepDim: Boolean): DoubleTensor =
|
||||
|
@ -118,7 +118,7 @@ public open class IntTensorAlgebra : TensorAlgebra<Int, IntRing> {
|
||||
TensorLinearStructure(shape).asSequence().map { IntRing.initializer(it) }.toMutableList().toIntArray()
|
||||
)
|
||||
|
||||
override operator fun Tensor<Int>.get(i: Int): IntTensor {
|
||||
override fun Tensor<Int>.getTensor(i: Int): IntTensor {
|
||||
val lastShape = asIntTensor().shape.drop(1).toIntArray()
|
||||
val newShape = if (lastShape.isNotEmpty()) lastShape else intArrayOf(1)
|
||||
val newStart = newShape.reduce(Int::times) * i + asIntTensor().bufferStart
|
||||
@ -433,7 +433,7 @@ public open class IntTensorAlgebra : TensorAlgebra<Int, IntRing> {
|
||||
* @param indices the [IntArray] of 1-dimensional indices
|
||||
* @return tensor with rows corresponding to row by [indices]
|
||||
*/
|
||||
public fun Tensor<Int>.rowsByIndices(indices: IntArray): IntTensor = stack(indices.map { this[it] })
|
||||
public fun Tensor<Int>.rowsByIndices(indices: IntArray): IntTensor = stack(indices.map { getTensor(it) })
|
||||
|
||||
private inline fun StructureND<Int>.fold(foldFunction: (IntArray) -> Int): Int =
|
||||
foldFunction(asIntTensor().copyArray())
|
||||
@ -475,6 +475,11 @@ public open class IntTensorAlgebra : TensorAlgebra<Int, IntRing> {
|
||||
override fun StructureND<Int>.min(dim: Int, keepDim: Boolean): IntTensor =
|
||||
foldDim(dim, keepDim) { x -> x.minOrNull()!! }.asIntTensor()
|
||||
|
||||
override fun StructureND<Int>.argMin(dim: Int, keepDim: Boolean): IntTensor =
|
||||
foldDim(dim, keepDim) { x ->
|
||||
x.withIndex().minByOrNull { it.value }?.index!!
|
||||
}.asIntTensor()
|
||||
|
||||
override fun StructureND<Int>.max(): Int = this.fold { it.maxOrNull()!! }
|
||||
|
||||
override fun StructureND<Int>.max(dim: Int, keepDim: Boolean): IntTensor =
|
||||
|
@ -257,13 +257,13 @@ internal fun DoubleTensorAlgebra.qrHelper(
|
||||
val qT = q.transpose(0, 1)
|
||||
|
||||
for (j in 0 until n) {
|
||||
val v = matrixT[j]
|
||||
val v = matrixT.getTensor(j)
|
||||
val vv = v.as1D()
|
||||
if (j > 0) {
|
||||
for (i in 0 until j) {
|
||||
r[i, j] = (qT[i] dot matrixT[j]).value()
|
||||
r[i, j] = (qT.getTensor(i) dot matrixT.getTensor(j)).value()
|
||||
for (k in 0 until n) {
|
||||
val qTi = qT[i].as1D()
|
||||
val qTi = qT.getTensor(i).as1D()
|
||||
vv[k] = vv[k] - r[i, j] * qTi[k]
|
||||
}
|
||||
}
|
||||
@ -313,7 +313,7 @@ internal fun DoubleTensorAlgebra.svdHelper(
|
||||
val outerProduct = DoubleArray(u.shape[0] * v.shape[0])
|
||||
for (i in 0 until u.shape[0]) {
|
||||
for (j in 0 until v.shape[0]) {
|
||||
outerProduct[i * v.shape[0] + j] = u[i].value() * v[j].value()
|
||||
outerProduct[i * v.shape[0] + j] = u.getTensor(i).value() * v.getTensor(j).value()
|
||||
}
|
||||
}
|
||||
a = a - singularValue.times(DoubleTensor(intArrayOf(u.shape[0], v.shape[0]), outerProduct))
|
||||
|
@ -36,17 +36,18 @@ internal class TestDoubleTensor {
|
||||
val tensor = fromArray(intArrayOf(2, 2), doubleArrayOf(3.5, 5.8, 58.4, 2.4))
|
||||
assertEquals(tensor[intArrayOf(0, 1)], 5.8)
|
||||
assertTrue(
|
||||
tensor.elements().map { it.second }.toList().toDoubleArray() contentEquals tensor.mutableBuffer.toDoubleArray()
|
||||
tensor.elements().map { it.second }.toList()
|
||||
.toDoubleArray() contentEquals tensor.mutableBuffer.toDoubleArray()
|
||||
)
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testGet() = DoubleTensorAlgebra {
|
||||
val tensor = fromArray(intArrayOf(1, 2, 2), doubleArrayOf(3.5, 5.8, 58.4, 2.4))
|
||||
val matrix = tensor[0].as2D()
|
||||
val matrix = tensor.getTensor(0).as2D()
|
||||
assertEquals(matrix[0, 1], 5.8)
|
||||
|
||||
val vector = tensor[0][1].as1D()
|
||||
val vector = tensor.getTensor(0, 1).as1D()
|
||||
assertEquals(vector[0], 58.4)
|
||||
|
||||
matrix[0, 1] = 77.89
|
||||
@ -57,8 +58,8 @@ internal class TestDoubleTensor {
|
||||
|
||||
tensor.matrixSequence().forEach {
|
||||
val a = it.toTensor()
|
||||
val secondRow = a[1].as1D()
|
||||
val secondColumn = a.transpose(0, 1)[1].as1D()
|
||||
val secondRow = a.getTensor(1).as1D()
|
||||
val secondColumn = a.transpose(0, 1).getTensor(1).as1D()
|
||||
assertEquals(secondColumn[0], 77.89)
|
||||
assertEquals(secondRow[1], secondColumn[1])
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user