forked from kscience/kmath
testing algebra
This commit is contained in:
parent
ea6cd01b89
commit
28fac22f12
@ -0,0 +1,85 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.noa
|
||||
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertTrue
|
||||
|
||||
|
||||
internal fun NoaDouble.testingLinearStructure(device: Device = Device.CPU): Unit {
|
||||
|
||||
val shape = intArrayOf(3)
|
||||
val tensorA = full(value = -4.5, shape = shape, device = device)
|
||||
val tensorB = full(value = 10.9, shape = shape, device = device)
|
||||
val tensorC = full(value = 789.3, shape = shape, device = device)
|
||||
val tensorD = full(value = -72.9, shape = shape, device = device)
|
||||
val tensorE = full(value = 553.1, shape = shape, device = device)
|
||||
val result = 15.8 * tensorA - 1.5 * tensorB * (-tensorD) + 0.02 * tensorC / tensorE - 39.4
|
||||
val expected = copyFromArray(
|
||||
array = (1..3).map {
|
||||
15.8 * (-4.5) - 1.5 * 10.9 * 72.9 + 0.02 * 789.3 / 553.1 - 39.4
|
||||
}.toDoubleArray(),
|
||||
shape = shape,
|
||||
device = device
|
||||
)
|
||||
|
||||
val assignResult = full(value = 0.0, shape = shape, device = device)
|
||||
tensorA *= 15.8
|
||||
tensorB *= 1.5
|
||||
tensorB *= -tensorD
|
||||
tensorC *= 0.02
|
||||
tensorC /= tensorE
|
||||
assignResult += tensorA
|
||||
assignResult -= tensorB
|
||||
assignResult += tensorC
|
||||
assignResult += -39.4
|
||||
|
||||
val error = (expected - result).abs().sum() +
|
||||
(expected - assignResult).abs().sum()
|
||||
assertTrue(error < TOLERANCE)
|
||||
|
||||
}
|
||||
|
||||
internal fun NoaDouble.testingBatchedSVD(device: Device = Device.CPU): Unit {
|
||||
val tensor = randNormal(shape = intArrayOf(7, 5, 3), device = device)
|
||||
val (tensorU, tensorS, tensorV) = tensor.svd()
|
||||
val error = tensor - (tensorU dot (diagonalEmbedding(tensorS) dot tensorV.transpose(-2, -1)))
|
||||
assertTrue(error.abs().sum() < TOLERANCE)
|
||||
}
|
||||
|
||||
internal fun NoaDouble.testingBatchedSymEig(device: Device = Device.CPU): Unit {
|
||||
val tensor = randNormal(shape = intArrayOf(5, 5), device = device)
|
||||
val tensorSigma = tensor + tensor.transpose(-2, -1)
|
||||
val (tensorS, tensorV) = tensorSigma.symEig()
|
||||
val error = tensorSigma - (tensorV dot (diagonalEmbedding(tensorS) dot tensorV.transpose(-2, -1)))
|
||||
assertTrue(error.abs().sum() < TOLERANCE)
|
||||
}
|
||||
|
||||
|
||||
class TestAlgebra {
|
||||
|
||||
@Test
|
||||
fun testLinearStructure() = NoaDouble {
|
||||
withCuda { device ->
|
||||
testingLinearStructure(device)
|
||||
}
|
||||
}!!
|
||||
|
||||
@Test
|
||||
fun testBatchedSVD() = NoaDouble {
|
||||
withCuda { device ->
|
||||
testingBatchedSVD(device)
|
||||
}
|
||||
}!!
|
||||
|
||||
@Test
|
||||
fun testBatchedSymEig() = NoaDouble {
|
||||
withCuda { device ->
|
||||
testingBatchedSymEig(device)
|
||||
}
|
||||
}!!
|
||||
|
||||
}
|
Loading…
Reference in New Issue
Block a user