From 21b5d45b96878e89c464020994b3c7d931464c7f Mon Sep 17 00:00:00 2001 From: Roland Grinis Date: Fri, 7 May 2021 14:13:07 +0100 Subject: [PATCH] Throwable value method --- .../tensors/LinearSystemSolvingWithLUP.kt | 2 +- .../kscience/kmath/tensors/OLSWithSVD.kt | 2 +- .../kmath/tensors/api/TensorAlgebra.kt | 10 ++++- .../kmath/tensors/core/DoubleTensorAlgebra.kt | 44 ++++++++++++------- .../kmath/tensors/core/internal/checks.kt | 4 +- .../kmath/tensors/core/internal/linUtils.kt | 14 +++--- .../core/TestDoubleLinearOpsAlgebra.kt | 6 +-- .../kmath/tensors/core/TestDoubleTensor.kt | 2 +- 8 files changed, 51 insertions(+), 33 deletions(-) diff --git a/examples/src/main/kotlin/space/kscience/kmath/tensors/LinearSystemSolvingWithLUP.kt b/examples/src/main/kotlin/space/kscience/kmath/tensors/LinearSystemSolvingWithLUP.kt index 4494d6799..78370b517 100644 --- a/examples/src/main/kotlin/space/kscience/kmath/tensors/LinearSystemSolvingWithLUP.kt +++ b/examples/src/main/kotlin/space/kscience/kmath/tensors/LinearSystemSolvingWithLUP.kt @@ -69,7 +69,7 @@ fun main () { val n = l.shape[0] val x = zeros(intArrayOf(n)) for (i in 0 until n){ - x[intArrayOf(i)] = (b[intArrayOf(i)] - l[i].dot(x).valueOrNull()!!) / l[intArrayOf(i, i)] + x[intArrayOf(i)] = (b[intArrayOf(i)] - l[i].dot(x).value()) / l[intArrayOf(i, i)] } return x } diff --git a/examples/src/main/kotlin/space/kscience/kmath/tensors/OLSWithSVD.kt b/examples/src/main/kotlin/space/kscience/kmath/tensors/OLSWithSVD.kt index 5d1883e7c..42a0a4ba1 100644 --- a/examples/src/main/kotlin/space/kscience/kmath/tensors/OLSWithSVD.kt +++ b/examples/src/main/kotlin/space/kscience/kmath/tensors/OLSWithSVD.kt @@ -60,7 +60,7 @@ fun main() { require(yTrue.shape contentEquals yPred.shape) val diff = yTrue - yPred - return diff.dot(diff).sqrt().valueOrNull()!! + return diff.dot(diff).sqrt().value() } println("MSE: ${mse(alpha, alphaOLS)}") diff --git a/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/api/TensorAlgebra.kt b/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/api/TensorAlgebra.kt index 78a36e229..4718b6a58 100644 --- a/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/api/TensorAlgebra.kt +++ b/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/api/TensorAlgebra.kt @@ -15,13 +15,21 @@ import space.kscience.kmath.operations.Algebra */ public interface TensorAlgebra: Algebra> { + /** + * + * Returns a single tensor value of unit dimension if tensor shape equals to [1]. + * + * @return a nullable value of a potentially scalar tensor. + */ + public fun Tensor.valueOrNull(): T? + /** * * Returns a single tensor value of unit dimension. The tensor shape must be equal to [1]. * * @return the value of a scalar tensor. */ - public fun Tensor.valueOrNull(): T? + public fun Tensor.value(): T /** * Each element of the tensor [other] is added to this value. diff --git a/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/DoubleTensorAlgebra.kt b/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/DoubleTensorAlgebra.kt index bf27a2690..c1694644f 100644 --- a/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/DoubleTensorAlgebra.kt +++ b/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/DoubleTensorAlgebra.kt @@ -35,10 +35,11 @@ public open class DoubleTensorAlgebra : public companion object : DoubleTensorAlgebra() - override fun Tensor.valueOrNull(): Double? = if(tensor.shape contentEquals intArrayOf(1)) { - // Inconsistent value for tensor of with this shape - tensor.mutableBuffer.array()[tensor.bufferStart] - } else null + override fun Tensor.valueOrNull(): Double? = if (tensor.shape contentEquals intArrayOf(1)) + tensor.mutableBuffer.array()[tensor.bufferStart] else null + + override fun Tensor.value(): Double = + valueOrNull() ?: throw IllegalArgumentException("Inconsistent value for tensor of with $shape shape") /** * Constructs a tensor with the specified shape and data. @@ -62,8 +63,10 @@ public open class DoubleTensorAlgebra : * @return tensor with the [shape] shape and data generated by the [initializer]. */ public fun produce(shape: IntArray, initializer: (IntArray) -> Double): DoubleTensor = - fromArray(shape, - TensorLinearStructure(shape).indices().map(initializer).toMutableList().toDoubleArray()) + fromArray( + shape, + TensorLinearStructure(shape).indices().map(initializer).toMutableList().toDoubleArray() + ) override operator fun Tensor.get(i: Int): DoubleTensor { val lastShape = tensor.shape.drop(1).toIntArray() @@ -621,7 +624,7 @@ public open class DoubleTensorAlgebra : keepDim ) - private fun cov(x: DoubleTensor, y:DoubleTensor): Double{ + private fun cov(x: DoubleTensor, y: DoubleTensor): Double { val n = x.shape[0] return ((x - x.mean()) * (y - y.mean())).mean() * n / (n - 1) } @@ -633,10 +636,10 @@ public open class DoubleTensorAlgebra : check(tensors.all { it.shape contentEquals intArrayOf(m) }) { "Tensors must have same shapes" } val resTensor = DoubleTensor( intArrayOf(n, n), - DoubleArray(n * n) {0.0} + DoubleArray(n * n) { 0.0 } ) - for (i in 0 until n){ - for (j in 0 until n){ + for (i in 0 until n) { + for (j in 0 until n) { resTensor[intArrayOf(i, j)] = cov(tensors[i].tensor, tensors[j].tensor) } } @@ -779,8 +782,10 @@ public open class DoubleTensorAlgebra : val qTensor = zeroesLike() val rTensor = zeroesLike() tensor.matrixSequence() - .zip((qTensor.matrixSequence() - .zip(rTensor.matrixSequence()))).forEach { (matrix, qr) -> + .zip( + (qTensor.matrixSequence() + .zip(rTensor.matrixSequence())) + ).forEach { (matrix, qr) -> val (q, r) = qr qrHelper(matrix.asTensor(), q.asTensor(), r.as2D()) } @@ -812,9 +817,13 @@ public open class DoubleTensorAlgebra : val vTensor = zeros(commonShape + intArrayOf(min(n, m), m)) tensor.matrixSequence() - .zip(uTensor.matrixSequence() - .zip(sTensor.vectorSequence() - .zip(vTensor.matrixSequence()))).forEach { (matrix, USV) -> + .zip( + uTensor.matrixSequence() + .zip( + sTensor.vectorSequence() + .zip(vTensor.matrixSequence()) + ) + ).forEach { (matrix, USV) -> val matrixSize = matrix.shape.reduce { acc, i -> acc * i } val curMatrix = DoubleTensor( matrix.shape, @@ -918,10 +927,11 @@ public open class DoubleTensorAlgebra : * @return triple of P, L and U tensors */ public fun Tensor.lu(epsilon: Double = 1e-9): Triple { - val (lu, pivots) = this.luFactor(epsilon) + val (lu, pivots) = tensor.luFactor(epsilon) return luPivot(lu, pivots) } override fun Tensor.lu(): Triple = lu(1e-9) - } + + diff --git a/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/internal/checks.kt b/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/internal/checks.kt index bfbc6334d..f1c158770 100644 --- a/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/internal/checks.kt +++ b/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/internal/checks.kt @@ -58,7 +58,7 @@ internal fun DoubleTensorAlgebra.checkSymmetric( internal fun DoubleTensorAlgebra.checkPositiveDefinite(tensor: DoubleTensor, epsilon: Double = 1e-6) { checkSymmetric(tensor, epsilon) for (mat in tensor.matrixSequence()) - check(mat.asTensor().detLU().valueOrNull()!! > 0.0) { - "Tensor contains matrices which are not positive definite ${mat.asTensor().detLU().valueOrNull()!!}" + check(mat.asTensor().detLU().value() > 0.0) { + "Tensor contains matrices which are not positive definite ${mat.asTensor().detLU().value()}" } } \ No newline at end of file diff --git a/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/internal/linUtils.kt b/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/internal/linUtils.kt index 5c120c05f..7d3617547 100644 --- a/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/internal/linUtils.kt +++ b/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/internal/linUtils.kt @@ -240,14 +240,14 @@ internal fun DoubleTensorAlgebra.qrHelper( val vv = v.as1D() if (j > 0) { for (i in 0 until j) { - r[i, j] = (qT[i] dot matrixT[j]).valueOrNull()!! + r[i, j] = (qT[i] dot matrixT[j]).value() for (k in 0 until n) { val qTi = qT[i].as1D() vv[k] = vv[k] - r[i, j] * qTi[k] } } } - r[j, j] = DoubleTensorAlgebra { (v dot v).sqrt().valueOrNull()!! } + r[j, j] = DoubleTensorAlgebra { (v dot v).sqrt().value() } for (i in 0 until n) { qM[i, j] = vv[i] / r[j, j] } @@ -270,9 +270,9 @@ internal fun DoubleTensorAlgebra.svd1d(a: DoubleTensor, epsilon: Double = 1e-10) while (true) { lastV = v v = b.dot(lastV) - val norm = DoubleTensorAlgebra { (v dot v).sqrt().valueOrNull()!! } + val norm = DoubleTensorAlgebra { (v dot v).sqrt().value() } v = v.times(1.0 / norm) - if (abs(v.dot(lastV).valueOrNull()!!) > 1 - epsilon) { + if (abs(v.dot(lastV).value()) > 1 - epsilon) { return v } } @@ -293,7 +293,7 @@ internal fun DoubleTensorAlgebra.svdHelper( val outerProduct = DoubleArray(u.shape[0] * v.shape[0]) for (i in 0 until u.shape[0]) { for (j in 0 until v.shape[0]) { - outerProduct[i * v.shape[0] + j] = u[i].valueOrNull()!! * v[j].valueOrNull()!! + outerProduct[i * v.shape[0] + j] = u[i].value() * v[j].value() } } a = a - singularValue.times(DoubleTensor(intArrayOf(u.shape[0], v.shape[0]), outerProduct)) @@ -304,12 +304,12 @@ internal fun DoubleTensorAlgebra.svdHelper( if (n > m) { v = svd1d(a, epsilon) u = matrix.dot(v) - norm = DoubleTensorAlgebra { (u dot u).sqrt().valueOrNull()!! } + norm = DoubleTensorAlgebra { (u dot u).sqrt().value() } u = u.times(1.0 / norm) } else { u = svd1d(a, epsilon) v = matrix.transpose(0, 1).dot(u) - norm = DoubleTensorAlgebra { (v dot v).sqrt().valueOrNull()!! } + norm = DoubleTensorAlgebra { (v dot v).sqrt().value() } v = v.times(1.0 / norm) } diff --git a/kmath-tensors/src/commonTest/kotlin/space/kscience/kmath/tensors/core/TestDoubleLinearOpsAlgebra.kt b/kmath-tensors/src/commonTest/kotlin/space/kscience/kmath/tensors/core/TestDoubleLinearOpsAlgebra.kt index 99f00edbf..fddb37251 100644 --- a/kmath-tensors/src/commonTest/kotlin/space/kscience/kmath/tensors/core/TestDoubleLinearOpsAlgebra.kt +++ b/kmath-tensors/src/commonTest/kotlin/space/kscience/kmath/tensors/core/TestDoubleLinearOpsAlgebra.kt @@ -46,7 +46,7 @@ internal class TestDoubleLinearOpsTensorAlgebra { ) ) - assertTrue { abs(m.det().valueOrNull()!! - expectedValue) < 1e-5 } + assertTrue { abs(m.det().value() - expectedValue) < 1e-5 } } @Test @@ -58,7 +58,7 @@ internal class TestDoubleLinearOpsTensorAlgebra { ) ) - assertTrue { abs(m.det().valueOrNull()!! - expectedValue) < 1e-5 } + assertTrue { abs(m.det().value() - expectedValue) < 1e-5 } } @Test @@ -90,7 +90,7 @@ internal class TestDoubleLinearOpsTensorAlgebra { fun testScalarProduct() = DoubleTensorAlgebra { val a = fromArray(intArrayOf(3), doubleArrayOf(1.8, 2.5, 6.8)) val b = fromArray(intArrayOf(3), doubleArrayOf(5.5, 2.6, 6.4)) - assertEquals(a.dot(b).valueOrNull()!!, 59.92) + assertEquals(a.dot(b).value(), 59.92) } @Test diff --git a/kmath-tensors/src/commonTest/kotlin/space/kscience/kmath/tensors/core/TestDoubleTensor.kt b/kmath-tensors/src/commonTest/kotlin/space/kscience/kmath/tensors/core/TestDoubleTensor.kt index 1afdb2263..d39b5c365 100644 --- a/kmath-tensors/src/commonTest/kotlin/space/kscience/kmath/tensors/core/TestDoubleTensor.kt +++ b/kmath-tensors/src/commonTest/kotlin/space/kscience/kmath/tensors/core/TestDoubleTensor.kt @@ -21,7 +21,7 @@ internal class TestDoubleTensor { fun testValue() = DoubleTensorAlgebra { val value = 12.5 val tensor = fromArray(intArrayOf(1), doubleArrayOf(value)) - assertEquals(tensor.valueOrNull()!!, value) + assertEquals(tensor.value(), value) } @Test