forked from kscience/kmath
Merge pull request #486 from margarita0303/feature/tensors-performance
added partial implementation of svd calculation with divide-by-near-zero error
This commit is contained in:
commit
13fe078304
@ -0,0 +1,65 @@
|
|||||||
|
/*
|
||||||
|
* Copyright 2018-2021 KMath contributors.
|
||||||
|
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||||
|
*/
|
||||||
|
|
||||||
|
package space.kscience.kmath.tensors
|
||||||
|
|
||||||
|
import space.kscience.kmath.linear.transpose
|
||||||
|
import space.kscience.kmath.misc.PerformancePitfall
|
||||||
|
import space.kscience.kmath.nd.MutableStructure2D
|
||||||
|
import space.kscience.kmath.nd.Structure2D
|
||||||
|
import space.kscience.kmath.nd.as2D
|
||||||
|
import space.kscience.kmath.tensors.core.*
|
||||||
|
import space.kscience.kmath.tensors.core.tensorAlgebra
|
||||||
|
import kotlin.math.*
|
||||||
|
|
||||||
|
fun MutableStructure2D<Double>.print() {
|
||||||
|
val n = this.shape.component1()
|
||||||
|
val m = this.shape.component2()
|
||||||
|
for (i in 0 until n) {
|
||||||
|
for (j in 0 until m) {
|
||||||
|
val x = (this[i, j] * 100).roundToInt() / 100.0
|
||||||
|
print("$x ")
|
||||||
|
}
|
||||||
|
println()
|
||||||
|
}
|
||||||
|
println("______________")
|
||||||
|
}
|
||||||
|
|
||||||
|
@OptIn(PerformancePitfall::class)
|
||||||
|
fun main(): Unit = Double.tensorAlgebra.withBroadcast {
|
||||||
|
val shape = intArrayOf(5, 3)
|
||||||
|
val buffer = doubleArrayOf(
|
||||||
|
1.000000, 2.000000, 3.000000,
|
||||||
|
2.000000, 3.000000, 4.000000,
|
||||||
|
3.000000, 4.000000, 5.000000,
|
||||||
|
4.000000, 5.000000, 6.000000,
|
||||||
|
5.000000, 6.000000, 7.000000
|
||||||
|
)
|
||||||
|
val buffer2 = doubleArrayOf(
|
||||||
|
0.000000, 0.000000, 0.000000,
|
||||||
|
0.000000, 0.000000, 0.000000,
|
||||||
|
0.000000, 0.000000, 0.000000
|
||||||
|
)
|
||||||
|
val tensor = fromArray(shape, buffer).as2D()
|
||||||
|
val v = fromArray(intArrayOf(3, 3), buffer2).as2D()
|
||||||
|
val w_shape = intArrayOf(3, 1)
|
||||||
|
var w_buffer = doubleArrayOf(0.000000)
|
||||||
|
for (i in 0 until 3 - 1) {
|
||||||
|
w_buffer += doubleArrayOf(0.000000)
|
||||||
|
}
|
||||||
|
val w = BroadcastDoubleTensorAlgebra.fromArray(w_shape, w_buffer).as2D()
|
||||||
|
tensor.print()
|
||||||
|
var ans = Pair(w, v)
|
||||||
|
tensor.svdGolabKahan(v, w)
|
||||||
|
|
||||||
|
println("u")
|
||||||
|
tensor.print()
|
||||||
|
println("w")
|
||||||
|
w.print()
|
||||||
|
println("v")
|
||||||
|
v.print()
|
||||||
|
|
||||||
|
|
||||||
|
}
|
325
examples/src/main/kotlin/space/kscience/kmath/tensors/svdcmp.kt
Normal file
325
examples/src/main/kotlin/space/kscience/kmath/tensors/svdcmp.kt
Normal file
@ -0,0 +1,325 @@
|
|||||||
|
package space.kscience.kmath.tensors
|
||||||
|
|
||||||
|
import space.kscience.kmath.nd.*
|
||||||
|
import kotlin.math.abs
|
||||||
|
import kotlin.math.max
|
||||||
|
import kotlin.math.min
|
||||||
|
import kotlin.math.sqrt
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Copyright 2018-2021 KMath contributors.
|
||||||
|
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||||
|
*/
|
||||||
|
|
||||||
|
fun pythag(a: Double, b: Double): Double {
|
||||||
|
val at: Double = abs(a)
|
||||||
|
val bt: Double = abs(b)
|
||||||
|
val ct: Double
|
||||||
|
val result: Double
|
||||||
|
if (at > bt) {
|
||||||
|
ct = bt / at
|
||||||
|
result = at * sqrt(1.0 + ct * ct)
|
||||||
|
} else if (bt > 0.0) {
|
||||||
|
ct = at / bt
|
||||||
|
result = bt * sqrt(1.0 + ct * ct)
|
||||||
|
} else result = 0.0
|
||||||
|
return result
|
||||||
|
}
|
||||||
|
|
||||||
|
fun SIGN(a: Double, b: Double): Double {
|
||||||
|
if (b >= 0.0)
|
||||||
|
return abs(a)
|
||||||
|
else
|
||||||
|
return -abs(a)
|
||||||
|
}
|
||||||
|
|
||||||
|
// matrix v is not transposed at the output
|
||||||
|
|
||||||
|
internal fun MutableStructure2D<Double>.svdGolabKahan(v: MutableStructure2D<Double>, w: MutableStructure2D<Double>) {
|
||||||
|
val shape = this.shape
|
||||||
|
val m = shape.component1()
|
||||||
|
val n = shape.component2()
|
||||||
|
var f = 0.0
|
||||||
|
val rv1 = DoubleArray(n)
|
||||||
|
var s = 0.0
|
||||||
|
var scale = 0.0
|
||||||
|
var anorm = 0.0
|
||||||
|
var g = 0.0
|
||||||
|
var l = 0
|
||||||
|
for (i in 0 until n) {
|
||||||
|
/* left-hand reduction */
|
||||||
|
l = i + 1
|
||||||
|
rv1[i] = scale * g
|
||||||
|
g = 0.0
|
||||||
|
s = 0.0
|
||||||
|
scale = 0.0
|
||||||
|
if (i < m) {
|
||||||
|
for (k in i until m) {
|
||||||
|
scale += abs(this[k, i]);
|
||||||
|
}
|
||||||
|
if (scale != 0.0) {
|
||||||
|
for (k in i until m) {
|
||||||
|
this[k, i] = (this[k, i] / scale)
|
||||||
|
s += this[k, i] * this[k, i]
|
||||||
|
}
|
||||||
|
f = this[i, i]
|
||||||
|
if (f >= 0) {
|
||||||
|
g = (-1) * abs(sqrt(s))
|
||||||
|
} else {
|
||||||
|
g = abs(sqrt(s))
|
||||||
|
}
|
||||||
|
val h = f * g - s
|
||||||
|
this[i, i] = f - g
|
||||||
|
if (i != n - 1) {
|
||||||
|
for (j in l until n) {
|
||||||
|
s = 0.0
|
||||||
|
for (k in i until m) {
|
||||||
|
s += this[k, i] * this[k, j]
|
||||||
|
}
|
||||||
|
f = s / h
|
||||||
|
for (k in i until m) {
|
||||||
|
this[k, j] += f * this[k, i]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (k in i until m) {
|
||||||
|
this[k, i] = this[k, i] * scale
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
w[i, 0] = scale * g
|
||||||
|
/* right-hand reduction */
|
||||||
|
g = 0.0
|
||||||
|
s = 0.0
|
||||||
|
scale = 0.0
|
||||||
|
if (i < m && i != n - 1) {
|
||||||
|
for (k in l until n) {
|
||||||
|
scale += abs(this[i, k])
|
||||||
|
}
|
||||||
|
if (scale != 0.0) {
|
||||||
|
for (k in l until n) {
|
||||||
|
this[i, k] = this[i, k] / scale
|
||||||
|
s += this[i, k] * this[i, k]
|
||||||
|
}
|
||||||
|
f = this[i, l]
|
||||||
|
if (f >= 0) {
|
||||||
|
g = (-1) * abs(sqrt(s))
|
||||||
|
} else {
|
||||||
|
g = abs(sqrt(s))
|
||||||
|
}
|
||||||
|
val h = f * g - s
|
||||||
|
this[i, l] = f - g
|
||||||
|
for (k in l until n) {
|
||||||
|
rv1[k] = this[i, k] / h
|
||||||
|
}
|
||||||
|
if (i != m - 1) {
|
||||||
|
for (j in l until m) {
|
||||||
|
s = 0.0
|
||||||
|
for (k in l until n) {
|
||||||
|
s += this[j, k] * this[i, k]
|
||||||
|
}
|
||||||
|
for (k in l until n) {
|
||||||
|
this[j, k] += s * rv1[k]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (k in l until n) {
|
||||||
|
this[i, k] = this[i, k] * scale
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
anorm = max(anorm, (abs(w[i, 0]) + abs(rv1[i])));
|
||||||
|
}
|
||||||
|
|
||||||
|
for (i in n - 1 downTo 0) {
|
||||||
|
if (i < n - 1) {
|
||||||
|
if (g != 0.0) {
|
||||||
|
for (j in l until n) {
|
||||||
|
v[j, i] = (this[i, j] / this[i, l]) / g
|
||||||
|
}
|
||||||
|
for (j in l until n) {
|
||||||
|
s = 0.0
|
||||||
|
for (k in l until n)
|
||||||
|
s += this[i, k] * v[k, j]
|
||||||
|
for (k in l until n)
|
||||||
|
v[k, j] += s * v[k, i]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (j in l until n) {
|
||||||
|
v[i, j] = 0.0
|
||||||
|
v[j, i] = 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
v[i, i] = 1.0
|
||||||
|
g = rv1[i]
|
||||||
|
l = i
|
||||||
|
}
|
||||||
|
|
||||||
|
// до этого момента все правильно считается
|
||||||
|
// дальше - нет
|
||||||
|
|
||||||
|
for (i in min(n, m) - 1 downTo 0) {
|
||||||
|
l = i + 1
|
||||||
|
g = w[i, 0]
|
||||||
|
for (j in l until n) {
|
||||||
|
this[i, j] = 0.0
|
||||||
|
}
|
||||||
|
if (g != 0.0) {
|
||||||
|
// !!!!! вот тут деление на почти ноль
|
||||||
|
g = 1.0 / g
|
||||||
|
for (j in l until n) {
|
||||||
|
s = 0.0
|
||||||
|
for (k in l until m) {
|
||||||
|
s += this[k, i] * this[k, j]
|
||||||
|
}
|
||||||
|
f = (s / this[i, i]) * g
|
||||||
|
for (k in i until m) {
|
||||||
|
this[k, j] += f * this[k, i]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (j in i until m) {
|
||||||
|
this[j, i] *= g
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for (j in i until m) {
|
||||||
|
this[j, i] = 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
this[i, i] += 1.0
|
||||||
|
}
|
||||||
|
|
||||||
|
// println("matrix")
|
||||||
|
// this.print()
|
||||||
|
// тут матрица должна выглядеть так:
|
||||||
|
// 0.134840 -0.762770 0.522117
|
||||||
|
// -0.269680 -0.476731 -0.245388
|
||||||
|
// -0.404520 -0.190693 -0.527383
|
||||||
|
// -0.539360 0.095346 -0.297540
|
||||||
|
// -0.674200 0.381385 0.548193
|
||||||
|
|
||||||
|
this[0, 2] = 0.522117
|
||||||
|
this[1, 2] = -0.245388
|
||||||
|
this[2, 2] = -0.527383
|
||||||
|
this[3, 2] = -0.297540
|
||||||
|
this[4, 2] = 0.548193
|
||||||
|
|
||||||
|
// задала правильные значения, чтобы проверить правильность кода дальше
|
||||||
|
// дальше - все корректно
|
||||||
|
|
||||||
|
var flag = 0
|
||||||
|
var nm = 0
|
||||||
|
var c = 0.0
|
||||||
|
var h = 0.0
|
||||||
|
var y = 0.0
|
||||||
|
var z = 0.0
|
||||||
|
var x = 0.0
|
||||||
|
for (k in n - 1 downTo 0) {
|
||||||
|
for (its in 1 until 30) {
|
||||||
|
flag = 1
|
||||||
|
for (newl in k downTo 0) {
|
||||||
|
nm = newl - 1
|
||||||
|
if (abs(rv1[newl]) + anorm == anorm) {
|
||||||
|
flag = 0
|
||||||
|
l = newl
|
||||||
|
break
|
||||||
|
}
|
||||||
|
if (abs(w[nm, 0]) + anorm == anorm) {
|
||||||
|
l = newl
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (flag != 0) {
|
||||||
|
c = 0.0
|
||||||
|
s = 1.0
|
||||||
|
for (i in l until k) {
|
||||||
|
f = s * rv1[i]
|
||||||
|
rv1[i] = c * rv1[i]
|
||||||
|
if (abs(f) + anorm == anorm) {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
h = pythag(f, g)
|
||||||
|
w[i, 0] = h
|
||||||
|
h = 1.0 / h
|
||||||
|
c = g * h
|
||||||
|
s = (-f) * h
|
||||||
|
for (j in 0 until m) {
|
||||||
|
y = this[j, nm]
|
||||||
|
z = this[j, i]
|
||||||
|
this[j, nm] = y * c + z * s
|
||||||
|
this[j, i] = z * c - y * s
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
z = w[k, 0]
|
||||||
|
if (l == k) {
|
||||||
|
if (z < 0.0) {
|
||||||
|
w[k, 0] = -z
|
||||||
|
for (j in 0 until n)
|
||||||
|
v[j, k] = -v[j, k]
|
||||||
|
}
|
||||||
|
break
|
||||||
|
}
|
||||||
|
|
||||||
|
// надо придумать, что сделать - выкинуть ошибку?
|
||||||
|
// if (its == 30) {
|
||||||
|
// return
|
||||||
|
// }
|
||||||
|
|
||||||
|
x = w[l, 0]
|
||||||
|
nm = k - 1
|
||||||
|
y = w[nm, 0]
|
||||||
|
g = rv1[nm]
|
||||||
|
h = rv1[k]
|
||||||
|
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y)
|
||||||
|
g = pythag(f, 1.0)
|
||||||
|
f = ((x - z) * (x + z) + h * ((y / (f + SIGN(g, f))) - h)) / x
|
||||||
|
c = 1.0
|
||||||
|
s = 1.0
|
||||||
|
|
||||||
|
var i = 0
|
||||||
|
for (j in l until nm + 1) {
|
||||||
|
i = j + 1
|
||||||
|
g = rv1[i]
|
||||||
|
y = w[i, 0]
|
||||||
|
h = s * g
|
||||||
|
g = c * g
|
||||||
|
z = pythag(f, h)
|
||||||
|
rv1[j] = z
|
||||||
|
c = f / z
|
||||||
|
s = h / z
|
||||||
|
f = x * c + g * s
|
||||||
|
g = g * c - x * s
|
||||||
|
h = y * s
|
||||||
|
y *= c
|
||||||
|
|
||||||
|
for (jj in 0 until n) {
|
||||||
|
x = v[jj, j];
|
||||||
|
z = v[jj, i];
|
||||||
|
v[jj, j] = x * c + z * s;
|
||||||
|
v[jj, i] = z * c - x * s;
|
||||||
|
}
|
||||||
|
z = pythag(f, h)
|
||||||
|
w[j, 0] = z
|
||||||
|
if (z != 0.0) {
|
||||||
|
z = 1.0 / z
|
||||||
|
c = f * z
|
||||||
|
s = h * z
|
||||||
|
}
|
||||||
|
f = c * g + s * y
|
||||||
|
x = c * y - s * g
|
||||||
|
for (jj in 0 until m) {
|
||||||
|
y = this[jj, j]
|
||||||
|
z = this[jj, i]
|
||||||
|
this[jj, j] = y * c + z * s
|
||||||
|
this[jj, i] = z * c - y * s
|
||||||
|
}
|
||||||
|
}
|
||||||
|
rv1[l] = 0.0
|
||||||
|
rv1[k] = f
|
||||||
|
w[k, 0] = x
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -132,6 +132,27 @@ internal class TestDoubleTensorAlgebra {
|
|||||||
468.0, 501.0, 534.0, 594.0, 636.0, 678.0, 720.0, 771.0, 822.0
|
468.0, 501.0, 534.0, 594.0, 636.0, 678.0, 720.0, 771.0, 822.0
|
||||||
))
|
))
|
||||||
assertTrue(res45.shape contentEquals intArrayOf(2, 3, 3))
|
assertTrue(res45.shape contentEquals intArrayOf(2, 3, 3))
|
||||||
|
|
||||||
|
val oneDimTensor1 = fromArray(intArrayOf(3), doubleArrayOf(1.0, 2.0, 3.0))
|
||||||
|
val oneDimTensor2 = fromArray(intArrayOf(3), doubleArrayOf(4.0, 5.0, 6.0))
|
||||||
|
val resOneDimTensors = oneDimTensor1.dot(oneDimTensor2)
|
||||||
|
assertTrue(resOneDimTensors.mutableBuffer.array() contentEquals doubleArrayOf(32.0))
|
||||||
|
assertTrue(resOneDimTensors.shape contentEquals intArrayOf(1))
|
||||||
|
|
||||||
|
val twoDimTensor1 = fromArray(intArrayOf(2, 2), doubleArrayOf(1.0, 2.0, 3.0, 4.0))
|
||||||
|
val twoDimTensor2 = fromArray(intArrayOf(2, 2), doubleArrayOf(5.0, 6.0, 7.0, 8.0))
|
||||||
|
val resTwoDimTensors = twoDimTensor1.dot(twoDimTensor2)
|
||||||
|
assertTrue(resTwoDimTensors.mutableBuffer.array() contentEquals doubleArrayOf(19.0, 22.0, 43.0, 50.0))
|
||||||
|
assertTrue(resTwoDimTensors.shape contentEquals intArrayOf(2, 2))
|
||||||
|
|
||||||
|
val oneDimTensor3 = fromArray(intArrayOf(2), doubleArrayOf(1.0, 2.0))
|
||||||
|
val resOneDimTensorOnTwoDimTensor = oneDimTensor3.dot(twoDimTensor1)
|
||||||
|
assertTrue(resOneDimTensorOnTwoDimTensor.mutableBuffer.array() contentEquals doubleArrayOf(7.0, 10.0))
|
||||||
|
assertTrue(resOneDimTensorOnTwoDimTensor.shape contentEquals intArrayOf(2))
|
||||||
|
|
||||||
|
val resTwoDimTensorOnOneDimTensor = twoDimTensor1.dot(oneDimTensor3)
|
||||||
|
assertTrue(resTwoDimTensorOnOneDimTensor.mutableBuffer.array() contentEquals doubleArrayOf(5.0, 11.0))
|
||||||
|
assertTrue(resTwoDimTensorOnOneDimTensor.shape contentEquals intArrayOf(2))
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
|
Loading…
Reference in New Issue
Block a user