Moved probability distributions to commons-rng and to prob module

This commit is contained in:
Alexander Nozik 2020-05-22 21:24:20 +03:00
parent c15f77acef
commit 048a1ceaed
14 changed files with 261 additions and 141 deletions

View File

@ -2,7 +2,7 @@ plugins {
id("scientifik.publish") apply false id("scientifik.publish") apply false
} }
val kmathVersion by extra("0.1.4-dev-6") val kmathVersion by extra("0.1.4-dev-7")
val bintrayRepo by extra("scientifik") val bintrayRepo by extra("scientifik")
val githubProject by extra("kmath") val githubProject by extra("kmath")

View File

@ -1,32 +0,0 @@
package scientifik.kmath.commons.prob
import org.apache.commons.math3.random.JDKRandomGenerator
import scientifik.kmath.prob.RandomGenerator
import org.apache.commons.math3.random.RandomGenerator as CMRandom
inline class CMRandomGeneratorWrapper(val generator: CMRandom) : RandomGenerator {
override fun nextDouble(): Double = generator.nextDouble()
override fun nextInt(): Int = generator.nextInt()
override fun nextLong(): Long = generator.nextLong()
override fun nextBlock(size: Int): ByteArray = ByteArray(size).apply { generator.nextBytes(this) }
override fun fork(): RandomGenerator {
TODO("not implemented") //To change body of created functions use File | Settings | File Templates.
}
}
fun CMRandom.asKmathGenerator(): RandomGenerator = CMRandomGeneratorWrapper(this)
fun RandomGenerator.asCMGenerator(): CMRandom =
(this as? CMRandomGeneratorWrapper)?.generator ?: TODO("Implement reverse CM wrapper")
val RandomGenerator.Companion.default: RandomGenerator by lazy { JDKRandomGenerator().asKmathGenerator() }
fun RandomGenerator.Companion.jdk(seed: Int? = null): RandomGenerator = if (seed == null) {
JDKRandomGenerator()
} else {
JDKRandomGenerator(seed)
}.asKmathGenerator()

View File

@ -1,82 +0,0 @@
package scientifik.kmath.commons.prob
import org.apache.commons.math3.distribution.*
import scientifik.kmath.prob.Distribution
import scientifik.kmath.prob.RandomChain
import scientifik.kmath.prob.RandomGenerator
import scientifik.kmath.prob.UnivariateDistribution
import org.apache.commons.math3.random.RandomGenerator as CMRandom
class CMRealDistributionWrapper(val builder: (CMRandom?) -> RealDistribution) : UnivariateDistribution<Double> {
private val defaultDistribution by lazy { builder(null) }
override fun probability(arg: Double): Double = defaultDistribution.probability(arg)
override fun cumulative(arg: Double): Double = defaultDistribution.cumulativeProbability(arg)
override fun sample(generator: RandomGenerator): RandomChain<Double> {
val distribution = builder(generator.asCMGenerator())
return RandomChain(generator) { distribution.sample() }
}
}
class CMIntDistributionWrapper(val builder: (CMRandom?) -> IntegerDistribution) : UnivariateDistribution<Int> {
private val defaultDistribution by lazy { builder(null) }
override fun probability(arg: Int): Double = defaultDistribution.probability(arg)
override fun cumulative(arg: Int): Double = defaultDistribution.cumulativeProbability(arg)
override fun sample(generator: RandomGenerator): RandomChain<Int> {
val distribution = builder(generator.asCMGenerator())
return RandomChain(generator) { distribution.sample() }
}
}
fun Distribution.Companion.normal(mean: Double = 0.0, sigma: Double = 1.0): UnivariateDistribution<Double> =
CMRealDistributionWrapper { generator -> NormalDistribution(generator, mean, sigma) }
fun Distribution.Companion.poisson(mean: Double): UnivariateDistribution<Int> = CMIntDistributionWrapper { generator ->
PoissonDistribution(
generator,
mean,
PoissonDistribution.DEFAULT_EPSILON,
PoissonDistribution.DEFAULT_MAX_ITERATIONS
)
}
fun Distribution.Companion.binomial(trials: Int, p: Double): UnivariateDistribution<Int> =
CMIntDistributionWrapper { generator ->
BinomialDistribution(generator, trials, p)
}
fun Distribution.Companion.student(degreesOfFreedom: Double): UnivariateDistribution<Double> =
CMRealDistributionWrapper { generator ->
TDistribution(generator, degreesOfFreedom, TDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
}
fun Distribution.Companion.chi2(degreesOfFreedom: Double): UnivariateDistribution<Double> =
CMRealDistributionWrapper { generator ->
ChiSquaredDistribution(generator, degreesOfFreedom)
}
fun Distribution.Companion.fisher(
numeratorDegreesOfFreedom: Double,
denominatorDegreesOfFreedom: Double
): UnivariateDistribution<Double> =
CMRealDistributionWrapper { generator ->
FDistribution(generator, numeratorDegreesOfFreedom, denominatorDegreesOfFreedom)
}
fun Distribution.Companion.exponential(mean: Double): UnivariateDistribution<Double> =
CMRealDistributionWrapper { generator ->
ExponentialDistribution(generator, mean)
}
fun Distribution.Companion.uniform(a: Double, b: Double): UnivariateDistribution<Double> =
CMRealDistributionWrapper { generator ->
UniformRealDistribution(generator, a, b)
}

View File

@ -38,9 +38,13 @@ interface Chain<out R>: Flow<R> {
*/ */
fun fork(): Chain<R> fun fork(): Chain<R>
@InternalCoroutinesApi @OptIn(InternalCoroutinesApi::class)
override suspend fun collect(collector: FlowCollector<R>) { override suspend fun collect(collector: FlowCollector<R>) {
kotlinx.coroutines.flow.flow { while (true) emit(next()) }.collect(collector) kotlinx.coroutines.flow.flow {
while (true){
emit(next())
}
}.collect(collector)
} }
companion object companion object

View File

@ -69,3 +69,9 @@ inline fun Memory.write(block: MemoryWriter.() -> Unit) {
* Allocate the most effective platform-specific memory * Allocate the most effective platform-specific memory
*/ */
expect fun Memory.Companion.allocate(length: Int): Memory expect fun Memory.Companion.allocate(length: Int): Memory
/**
* Wrap a [Memory] around existing [ByteArray]. This operation is unsafe since the array is not copied
* and could be mutated independently from the resulting [Memory]
*/
expect fun Memory.Companion.wrap(array: ByteArray): Memory

View File

@ -2,14 +2,7 @@ package scientifik.memory
import org.khronos.webgl.ArrayBuffer import org.khronos.webgl.ArrayBuffer
import org.khronos.webgl.DataView import org.khronos.webgl.DataView
import org.khronos.webgl.Int8Array
/**
* Allocate the most effective platform-specific memory
*/
actual fun Memory.Companion.allocate(length: Int): Memory {
val buffer = ArrayBuffer(length)
return DataViewMemory(DataView(buffer, 0, length))
}
class DataViewMemory(val view: DataView) : Memory { class DataViewMemory(val view: DataView) : Memory {
@ -89,3 +82,16 @@ class DataViewMemory(val view: DataView) : Memory {
override fun writer(): MemoryWriter = writer override fun writer(): MemoryWriter = writer
} }
/**
* Allocate the most effective platform-specific memory
*/
actual fun Memory.Companion.allocate(length: Int): Memory {
val buffer = ArrayBuffer(length)
return DataViewMemory(DataView(buffer, 0, length))
}
actual fun Memory.Companion.wrap(array: ByteArray): Memory {
@Suppress("CAST_NEVER_SUCCEEDS") val int8Array = array as Int8Array
return DataViewMemory(DataView(int8Array.buffer, int8Array.byteOffset, int8Array.length))
}

View File

@ -7,14 +7,6 @@ import java.nio.file.Path
import java.nio.file.StandardOpenOption import java.nio.file.StandardOpenOption
/**
* Allocate the most effective platform-specific memory
*/
actual fun Memory.Companion.allocate(length: Int): Memory {
val buffer = ByteBuffer.allocate(length)
return ByteBufferMemory(buffer)
}
private class ByteBufferMemory( private class ByteBufferMemory(
val buffer: ByteBuffer, val buffer: ByteBuffer,
val startOffset: Int = 0, val startOffset: Int = 0,
@ -96,6 +88,22 @@ private class ByteBufferMemory(
override fun writer(): MemoryWriter = writer override fun writer(): MemoryWriter = writer
} }
/**
* Allocate the most effective platform-specific memory
*/
actual fun Memory.Companion.allocate(length: Int): Memory {
val buffer = ByteBuffer.allocate(length)
return ByteBufferMemory(buffer)
}
actual fun Memory.Companion.wrap(array: ByteArray): Memory {
val buffer = ByteBuffer.wrap(array)
return ByteBufferMemory(buffer)
}
fun ByteBuffer.asMemory(startOffset: Int = 0, size: Int = limit()): Memory =
ByteBufferMemory(this, startOffset, size)
/** /**
* Use direct memory-mapped buffer from file to read something and close it afterwards. * Use direct memory-mapped buffer from file to read something and close it afterwards.
*/ */

View File

@ -8,4 +8,10 @@ kotlin.sourceSets {
api(project(":kmath-coroutines")) api(project(":kmath-coroutines"))
} }
} }
jvmMain{
dependencies{
api("org.apache.commons:commons-rng-sampling:1.3")
api("org.apache.commons:commons-rng-simple:1.3")
}
}
} }

View File

@ -6,10 +6,16 @@ import kotlin.random.Random
* A basic generator * A basic generator
*/ */
interface RandomGenerator { interface RandomGenerator {
fun nextBoolean(): Boolean
fun nextDouble(): Double fun nextDouble(): Double
fun nextInt(): Int fun nextInt(): Int
fun nextInt(until: Int): Int
fun nextLong(): Long fun nextLong(): Long
fun nextBlock(size: Int): ByteArray fun nextLong(until: Long): Long
fun fillBytes(array: ByteArray, fromIndex: Int = 0, toIndex: Int = array.size)
fun nextBytes(size: Int): ByteArray = ByteArray(size).also { fillBytes(it) }
/** /**
* Create a new generator which is independent from current generator (operations on new generator do not affect this one * Create a new generator which is independent from current generator (operations on new generator do not affect this one
@ -21,21 +27,29 @@ interface RandomGenerator {
fun fork(): RandomGenerator fun fork(): RandomGenerator
companion object { companion object {
val default by lazy { DefaultGenerator(Random.nextLong()) } val default by lazy { DefaultGenerator() }
fun default(seed: Long) = DefaultGenerator(Random(seed))
} }
} }
class DefaultGenerator(seed: Long?) : RandomGenerator { inline class DefaultGenerator(val random: Random = Random) : RandomGenerator {
private val random = seed?.let { Random(it) } ?: Random override fun nextBoolean(): Boolean = random.nextBoolean()
override fun nextDouble(): Double = random.nextDouble() override fun nextDouble(): Double = random.nextDouble()
override fun nextInt(): Int = random.nextInt() override fun nextInt(): Int = random.nextInt()
override fun nextInt(until: Int): Int = random.nextInt(until)
override fun nextLong(): Long = random.nextLong() override fun nextLong(): Long = random.nextLong()
override fun nextBlock(size: Int): ByteArray = random.nextBytes(size) override fun nextLong(until: Long): Long = random.nextLong(until)
override fun fork(): RandomGenerator = DefaultGenerator(nextLong()) override fun fillBytes(array: ByteArray, fromIndex: Int, toIndex: Int) {
random.nextBytes(array, fromIndex, toIndex)
}
override fun nextBytes(size: Int): ByteArray = random.nextBytes(size)
override fun fork(): RandomGenerator = RandomGenerator.default(random.nextLong())
} }

View File

@ -29,3 +29,6 @@ class UniformDistribution(val range: ClosedFloatingPointRange<Double>) : Univari
} }
} }
} }
fun Distribution.Companion.uniform(range: ClosedFloatingPointRange<Double>): UniformDistribution =
UniformDistribution(range)

View File

@ -0,0 +1,61 @@
package scientifik.kmath.prob
import org.apache.commons.rng.UniformRandomProvider
import org.apache.commons.rng.simple.RandomSource
class RandomSourceGenerator(val source: RandomSource, seed: Long?) : RandomGenerator {
internal val random: UniformRandomProvider = seed?.let {
RandomSource.create(source, seed, null)
} ?: RandomSource.create(source)
override fun nextBoolean(): Boolean = random.nextBoolean()
override fun nextDouble(): Double = random.nextDouble()
override fun nextInt(): Int = random.nextInt()
override fun nextInt(until: Int): Int = random.nextInt(until)
override fun nextLong(): Long = random.nextLong()
override fun nextLong(until: Long): Long = random.nextLong(until)
override fun fillBytes(array: ByteArray, fromIndex: Int, toIndex: Int) {
require(toIndex > fromIndex)
random.nextBytes(array, fromIndex, toIndex - fromIndex)
}
override fun fork(): RandomGenerator = RandomSourceGenerator(source, nextLong())
}
inline class RandomGeneratorProvider(val generator: RandomGenerator) : UniformRandomProvider {
override fun nextBoolean(): Boolean = generator.nextBoolean()
override fun nextFloat(): Float = generator.nextDouble().toFloat()
override fun nextBytes(bytes: ByteArray) {
generator.fillBytes(bytes)
}
override fun nextBytes(bytes: ByteArray, start: Int, len: Int) {
generator.fillBytes(bytes, start, start + len)
}
override fun nextInt(): Int = generator.nextInt()
override fun nextInt(n: Int): Int = generator.nextInt(n)
override fun nextDouble(): Double = generator.nextDouble()
override fun nextLong(): Long = generator.nextLong()
override fun nextLong(n: Long): Long = generator.nextLong(n)
}
/**
* Represent this [RandomGenerator] as commons-rng [UniformRandomProvider] preserving and mirroring its current state.
* Getting new value from one of those changes the state of another.
*/
fun RandomGenerator.asUniformRandomProvider(): UniformRandomProvider = if (this is RandomSourceGenerator) {
random
} else {
RandomGeneratorProvider(this)
}

View File

@ -0,0 +1,107 @@
package scientifik.kmath.prob
import org.apache.commons.rng.UniformRandomProvider
import org.apache.commons.rng.sampling.distribution.*
import scientifik.kmath.chains.Chain
import java.util.*
import kotlin.math.PI
import kotlin.math.exp
import kotlin.math.pow
import kotlin.math.sqrt
abstract class ContinuousSamplerDistribution : Distribution<Double> {
private inner class ContinuousSamplerChain(val generator: RandomGenerator) : Chain<Double> {
private val sampler = buildSampler(generator)
override suspend fun next(): Double = sampler.sample()
override fun fork(): Chain<Double> = ContinuousSamplerChain(generator.fork())
}
protected abstract fun buildSampler(generator: RandomGenerator): ContinuousSampler
override fun sample(generator: RandomGenerator): Chain<Double> = ContinuousSamplerChain(generator)
}
abstract class DiscreteSamplerDistribution : Distribution<Int> {
private inner class ContinuousSamplerChain(val generator: RandomGenerator) : Chain<Int> {
private val sampler = buildSampler(generator)
override suspend fun next(): Int = sampler.sample()
override fun fork(): Chain<Int> = ContinuousSamplerChain(generator.fork())
}
protected abstract fun buildSampler(generator: RandomGenerator): DiscreteSampler
override fun sample(generator: RandomGenerator): Chain<Int> = ContinuousSamplerChain(generator)
}
enum class NormalSamplerMethod {
BoxMuller,
Marsaglia,
Ziggurat
}
private fun normalSampler(method: NormalSamplerMethod, provider: UniformRandomProvider): NormalizedGaussianSampler =
when (method) {
NormalSamplerMethod.BoxMuller -> BoxMullerNormalizedGaussianSampler(provider)
NormalSamplerMethod.Marsaglia -> MarsagliaNormalizedGaussianSampler(provider)
NormalSamplerMethod.Ziggurat -> ZigguratNormalizedGaussianSampler(provider)
}
fun Distribution.Companion.normal(
method: NormalSamplerMethod = NormalSamplerMethod.Ziggurat
): Distribution<Double> = object : ContinuousSamplerDistribution() {
override fun buildSampler(generator: RandomGenerator): ContinuousSampler {
val provider: UniformRandomProvider = generator.asUniformRandomProvider()
return normalSampler(method, provider)
}
override fun probability(arg: Double): Double {
return exp(-arg.pow(2) / 2) / sqrt(PI * 2)
}
}
fun Distribution.Companion.normal(
mean: Double,
sigma: Double,
method: NormalSamplerMethod = NormalSamplerMethod.Ziggurat
): Distribution<Double> = object : ContinuousSamplerDistribution() {
private val sigma2 = sigma.pow(2)
private val norm = sigma * sqrt(PI * 2)
override fun buildSampler(generator: RandomGenerator): ContinuousSampler {
val provider: UniformRandomProvider = generator.asUniformRandomProvider()
val normalizedSampler = normalSampler(method, provider)
return GaussianSampler(normalizedSampler, mean, sigma)
}
override fun probability(arg: Double): Double {
return exp(-(arg - mean).pow(2) / 2 / sigma2) / norm
}
}
fun Distribution.Companion.poisson(
lambda: Double
): Distribution<Int> = object : DiscreteSamplerDistribution() {
override fun buildSampler(generator: RandomGenerator): DiscreteSampler {
return PoissonSampler.of(generator.asUniformRandomProvider(), lambda)
}
private val computedProb: HashMap<Int, Double> = hashMapOf(0 to exp(-lambda))
override fun probability(arg: Int): Double {
require(arg >= 0) { "The argument must be >= 0" }
return if (arg > 40) {
exp(-(arg - lambda).pow(2) / 2 / lambda) / sqrt(2 * PI * lambda)
} else {
computedProb.getOrPut(arg) {
probability(arg - 1) * lambda / arg
}
}
}
}

View File

@ -0,0 +1,19 @@
package scientifik.kmath.prob
import kotlinx.coroutines.flow.take
import kotlinx.coroutines.flow.toList
import kotlinx.coroutines.runBlocking
import org.junit.jupiter.api.Assertions
import org.junit.jupiter.api.Test
class CommonsDistributionsTest {
@Test
fun testNormalDistribution(){
val distribution = Distribution.normal(7.0,2.0)
val generator = RandomGenerator.default(1)
val sample = runBlocking {
distribution.sample(generator).take(1000).toList()
}
Assertions.assertEquals(7.0, sample.average(), 0.1)
}
}

View File

@ -9,7 +9,7 @@ import kotlin.test.Test
class StatisticTest { class StatisticTest {
//create a random number generator. //create a random number generator.
val generator = DefaultGenerator(1) val generator = RandomGenerator.default(1)
//Create a stateless chain from generator. //Create a stateless chain from generator.
val data = generator.chain { nextDouble() } val data = generator.chain { nextDouble() }
//Convert a chaint to Flow and break it into chunks. //Convert a chaint to Flow and break it into chunks.