kmath/kmath-noa/README.md

265 lines
8.0 KiB
Markdown
Raw Normal View History

2021-06-26 00:36:01 +03:00
# Module kmath-noa
2021-08-25 11:09:55 +03:00
A general purpose differentiable programming library over
2021-06-26 00:36:01 +03:00
[NOA](https://github.com/grinisrit/noa.git)
2021-07-11 21:01:50 +03:00
together with relevant functionality from
2021-06-26 00:36:01 +03:00
[LibTorch](https://pytorch.org/cppdocs).
2021-07-13 11:42:40 +03:00
Our aim is to cover a wide set of applications
2021-08-25 11:09:55 +03:00
from bayesian computation and deep learning to particle physics
2021-07-13 11:42:40 +03:00
simulations. In fact, we support any
2021-07-11 21:01:50 +03:00
differentiable program written on top of
`AutoGrad` & `ATen`.
2021-06-26 00:36:01 +03:00
2021-07-13 11:42:40 +03:00
## Installation from source
2021-06-27 18:28:28 +03:00
2021-08-02 00:04:08 +03:00
Currently, we support only the linux platform for the native artifacts.
2021-07-13 11:37:06 +03:00
For `GPU` kernels, we require a compatible
[CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html)
installation. If you are on Windows, we recommend setting up
everything on [WSL](https://docs.nvidia.com/cuda/wsl-user-guide/index.html).
2021-08-02 12:10:15 +03:00
To install the library, you can simply publish `KMath` to the local
2021-07-12 23:12:02 +03:00
Maven repository:
```
2021-08-02 12:10:15 +03:00
$ ./gradlew -Dorg.gradle.java.home=/path/to/local/jdk -q publishToMavenLocal
2021-07-12 23:12:02 +03:00
```
2021-07-13 11:37:06 +03:00
This will fetch and build the `JNI` wrapper `jnoa`.
2022-02-07 12:15:03 +03:00
The library has been tested with
[graalvm-ce-java11-linux-amd64-22.0.0.2.](https://github.com/graalvm/graalvm-ce-builds/releases/download/vm-22.0.0.2/graalvm-ce-java11-linux-amd64-22.0.0.2.tar.gz)
2021-07-13 11:37:06 +03:00
In your own application add the local dependency:
```kotlin
repositories {
mavenCentral()
mavenLocal()
}
dependencies {
2022-02-07 12:15:03 +03:00
implementation("space.kscience:kmath-noa:0.3.0-dev-17")
2021-07-13 11:37:06 +03:00
}
```
To load the native library you will need to add to the VM options:
```
2022-02-07 12:15:03 +03:00
-Djava.library.path=${HOME}/.kmath/third-party/noa-v0.0.1/cpp-build/jnoa
2021-07-13 11:37:06 +03:00
```
2021-07-13 17:12:19 +03:00
## Usage
2021-07-13 21:55:36 +03:00
The library is under active development. Many more features
will be available soon.
2021-07-13 21:50:57 +03:00
2021-07-31 20:37:42 +03:00
### Tensors and Linear Algebra
2021-07-13 21:48:21 +03:00
2021-07-13 17:12:19 +03:00
We implement the tensor algebra interfaces
from [kmath-tensors](../kmath-tensors):
```kotlin
NoaFloat {
val tensor =
randNormal(
shape = intArrayOf(7, 5, 3),
device = Device.CPU) // or Device.CUDA(0) for GPU
// Compute SVD
val (tensorU, tensorS, tensorV) = tensor.svd()
// Reconstruct tensor
val tensorReg =
tensorU dot (diagonalEmbedding(tensorS) dot tensorV.transpose(-2, -1))
2021-07-31 00:33:43 +03:00
// Serialise tensor for later
tensorReg.save("tensorReg.pt")
2021-07-13 17:12:19 +03:00
}
```
2021-07-31 20:37:42 +03:00
2021-07-31 00:33:43 +03:00
The saved tensor can be loaded in `C++` or in `python`:
```python
import torch
tensor_reg = list(torch.jit.load('tensorReg.pt').parameters())[0]
```
2021-07-31 23:23:15 +03:00
The most efficient way passing data between the `JVM` and the native backend
2021-07-31 20:37:42 +03:00
is to rely on primitive arrays:
```kotlin
val array = (1..8).map { 100f * it }.toFloatArray()
val updateArray = floatArrayOf(15f, 20f)
val resArray = NoaFloat {
val tensor = copyFromArray(array, intArrayOf(2, 2, 2))
NoaFloat {
// The call `tensor[0]` creates a native tensor instance pointing to a slice of `tensor`
// The second call `[1]` is a setter call and does not create any new instances
tensor[0][1] = updateArray
// The instance `tensor[0]` is destroyed as we move out of the scope
}!! // if the computation fails the result fill be null
tensor.copyToArray()
// the instance `tensor` is destroyed here
}!!
```
2021-07-31 00:33:43 +03:00
2021-07-13 21:48:21 +03:00
### Automatic Differentiation
2021-07-13 17:12:19 +03:00
The [AutoGrad](https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html)
engine is exposed:
```kotlin
NoaFloat {
// Create a quadratic function
val dim = 3
val tensorX = randNormal(shape = intArrayOf(dim))
val randFeatures = randNormal(shape = intArrayOf(dim, dim))
val tensorSigma = randFeatures + randFeatures.transpose(0, 1)
val tensorMu = randNormal(shape = intArrayOf(dim))
// Create a differentiable expression
val expressionAtX = withGradAt(tensorX) { x ->
0.5f * (x dot (tensorSigma dot x)) + (tensorMu dot x) + 25.9f
}
// Evaluate the gradient at tensorX
// retaining the graph for the hessian computation
val gradientAtX = expressionAtX.autoGradient(tensorX, retainGraph = true)
// Compute the hessian at tensorX
val hessianAtX = expressionAtX.autoHessian(tensorX)
}
```
2021-07-13 21:48:21 +03:00
### Deep Learning
You can train any [TorchScript](https://pytorch.org/docs/stable/jit.html) model.
For example, you can build in `python` the following neural network
and prepare the training data:
```python
import torch
n_tr = 7
n_val = 300
x_val = torch.linspace(-5, 5, n_val).view(-1, 1)
y_val = torch.sin(x_val)
x_train = torch.linspace(-3.14, 3.14, n_tr).view(-1, 1)
y_train = torch.sin(x_train) + torch.randn_like(x_train) * 0.1
class Data(torch.nn.Module):
def __init__(self):
super(Data, self).__init__()
self.register_buffer('x_val', x_val)
self.register_buffer('y_val', y_val)
self.register_buffer('x_train', x_train)
self.register_buffer('y_train', y_train)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = torch.nn.Linear(1, 10, bias = True)
self.l2 = torch.nn.Linear(10, 10, bias = True)
self.l3 = torch.nn.Linear(10, 1, bias = True)
def forward(self, x):
x = self.l1(x)
x = torch.relu(x)
x = self.l2(x)
x = torch.relu(x)
x = self.l3(x)
return x
class Loss(torch.nn.Module):
def __init__(self, target):
super(Loss, self).__init__()
self.register_buffer('target', target)
self.loss = torch.nn.MSELoss()
def forward(self, x):
return self.loss(x, self.target)
2021-07-13 22:00:36 +03:00
# Generate TorchScript modules and serialise them
2021-07-13 21:48:21 +03:00
torch.jit.script(Data()).save('data.pt')
torch.jit.script(Net()).save('net.pt')
torch.jit.script(Loss(y_train)).save('loss.pt')
```
2021-07-13 17:12:19 +03:00
2021-07-13 21:48:21 +03:00
You can then load the modules into `kotlin` and train them:
```kotlin
NoaFloat {
// Load the serialised JIT modules
// The training data
val dataModule = loadJitModule("data.pt")
// The DL model
val netModule = loadJitModule("net.pt")
// The loss function
val lossModule = loadJitModule("loss.pt")
// Get the tensors from the module
val xTrain = dataModule.getBuffer("x_train")
val yTrain = dataModule.getBuffer("y_train")
val xVal = dataModule.getBuffer("x_val")
val yVal = dataModule.getBuffer("y_val")
// Set the model in training mode
netModule.train(true)
2021-07-13 22:00:36 +03:00
// Loss function for training
2021-07-13 21:48:21 +03:00
lossModule.setBuffer("target", yTrain)
// Compute the predictions
val yPred = netModule.forward(xTrain)
2021-07-13 22:00:36 +03:00
// Compute the training loss
2021-07-13 21:48:21 +03:00
val loss = lossModule.forward(yPred)
println(loss)
// Set-up the Adam optimiser with learning rate 0.005
val optimiser = netModule.adamOptimiser(0.005)
// Train for 250 epochs
repeat(250){
// Clean gradients
optimiser.zeroGrad()
// Use forwardAssign to for better memory management
netModule.forwardAssign(xTrain, yPred)
lossModule.forwardAssign(yPred, loss)
// Backward pass
loss.backward()
// Update model parameters
optimiser.step()
if(it % 50 == 0)
println("Training loss: $loss")
}
// Finally validate the model
// Compute the predictions for the validation features
netModule.forwardAssign(xVal, yPred)
2021-07-13 22:00:36 +03:00
// Set the loss for validation
2021-07-13 21:48:21 +03:00
lossModule.setBuffer("target", yVal)
// Compute the loss on validation dataset
lossModule.forwardAssign(yPred, loss)
println("Validation loss: $loss")
2021-07-31 00:33:43 +03:00
// The model can be serialised in its current state
netModule.save("trained_net.pt")
2021-07-13 21:58:22 +03:00
}
2021-07-13 17:12:19 +03:00
2021-07-13 21:48:21 +03:00
```
### Custom memory management
2021-07-13 17:12:19 +03:00
Native memory management relies on scoping
with [NoaScope](src/main/kotlin/space/kscience/kmath/noa/memory/NoaScope.kt)
2021-07-13 21:48:21 +03:00
which is readily available within an algebra context.
2021-07-13 17:12:19 +03:00
Manual management is also possible:
```kotlin
// Create a scope
val scope = NoaScope()
val tensor = NoaFloat(scope){
full(5f, intArrayOf(1))
}!! // the result might be null
// If the computation fails resources will be freed automatically
// Otherwise it's your responsibility:
scope.disposeAll()
// Attempts to use tensor here is undefined behaviour
2021-07-13 21:48:21 +03:00
```
2021-07-13 21:55:36 +03:00
2021-07-14 10:26:00 +03:00
For more examples have a look at
[NOA](https://github.com/grinisrit/noa) docs.
2021-07-13 21:55:36 +03:00
2021-07-13 21:48:21 +03:00
Contributed by [Roland Grinis](https://github.com/grinisrit)