forked from Advanced_Python/advanced-python-homework-2023
.. | ||
results | ||
.gitignore | ||
linspace.py | ||
np_extended.py | ||
pure_no_types.py | ||
pure_with_types.py | ||
README.md | ||
table.png | ||
test_full_no_types.py | ||
test_full_np.py | ||
test_full_with_types.py | ||
test_full.sh | ||
test.py |
Interpreters
Tested interpreters
- CPython 3.9
- CPython 3.11
- PyPy 3.9
Table of evaluation times in seconds
Testing Code
Three realisations of mandelbrot functions tested:
def linspace(start, stop, n):
if n == 1:
yield stop
return
h = (stop - start) / (n - 1)
for i in range(n):
yield start + h * i
def mandelbrot_with_types(
pmin: float = -2.5,
pmax: float = 1.5,
qmin: float = -2,
qmax: float = 2,
ppoints: int = 200,
qpoints: int = 200,
max_iterations: int = 300,
infinity_border: float = 100) -> list[list[int]]:
image: list[list[int]] = [[0 for i in range(qpoints)] for j in range(ppoints)]
for ip, p in enumerate(linspace(pmin, pmax, ppoints)):
for iq, q in enumerate(linspace(qmin, qmax, qpoints)):
c: complex = p + 1j * q
z: complex = 0
for k in range(max_iterations):
z = z ** 2 + c
if abs(z) > infinity_border:
image[ip][iq] = 1
break
return image
def mandelbrot_no_types(
pmin=-2.5,
pmax=1.5,
qmin=-2,
qmax=2,
ppoints=200,
qpoints=200,
max_iterations=300,
infinity_border=100):
image = [[0 for i in range(qpoints)] for j in range(ppoints)]
for ip, p in enumerate(linspace(pmin, pmax, ppoints)):
for iq, q in enumerate(linspace(qmin, qmax, qpoints)):
c = p + 1j * q
z = 0
for k in range(max_iterations):
z = z ** 2 + c
if abs(z) > infinity_border:
image[ip][iq] = 1
break
return image
def mandelbrot_np(
pmin=-2.5,
pmax=1.5,
qmin=-2,
qmax=2,
ppoints=200,
qpoints=200,
max_iterations=300,
infinity_border=100):
image = np.zeros((ppoints, qpoints))
for ip, p in enumerate(np.linspace(pmin, pmax, ppoints)):
for iq, q in enumerate(np.linspace(qmin, qmax, qpoints)):
c = p + 1j * q
z = 0
for k in range(max_iterations):
z = z ** 2 + c
if abs(z) > infinity_border:
image[ip, iq] = 1
break
return image