# Interpreters ## Results ![results](result.png) ### Observations - Functions w/o Numpy in PyPy run **much faster**. JIT compilation optimizes the function's code and runs compiled versions of them $\Rightarrow$ improvement in time - Entire file evaluation for PyPy takes **a bit longer**. This may be a drawback of JIT optimization - [PyPy with Numpy is slow](https://stackoverflow.com/questions/42536308/why-is-pypy-slower-for-adding-numpy-arrays). Reason: - Numpy is written in C - PyPy's JIT compilation is not compatible with C - Extra conversion is required (takes time) - Numpy functions don't give a good improvement in perfomance. Possibly because the code uses classic Python loops instead of numpy vectorisation. ## Tested interpreters - CPython 3.9 - CPython 3.11 - PyPy 3.9 latest - Pyodide (did not test full file because it only runs in a browser) - Xeus (again no full file) ## Failed to test - PyPy 3.9 v5.7 - couldn't install numpy `Ignoring ensurepip failure: pip 9.0.1 requires SSL/TLS` - error when testing with types: ```python invalid syntax --> image: list[list[int]] = [[0 for i in range(qpoints)] for j in range(ppoints)] ``` - Jython (dependencies issues) ## Testing Code - Tested functions code is in `./test_funcs` package - File for testing function times: `test_func_only.py` - Files for entire evaluation testing: `test_full_{func}.py` - Bash script: `test_full.sh` - Analysis file: `analyse.ipynb` ### Realisations of mandelbrot functions tested: ```python def linspace(start, stop, n): if n == 1: yield stop return h = (stop - start) / (n - 1) for i in range(n): yield start + h * i def mandelbrot_with_types( pmin: float = -2.5, pmax: float = 1.5, qmin: float = -2, qmax: float = 2, ppoints: int = 200, qpoints: int = 200, max_iterations: int = 300, infinity_border: float = 100) -> list[list[int]]: image: list[list[int]] = [[0 for i in range(qpoints)] for j in range(ppoints)] for ip, p in enumerate(linspace(pmin, pmax, ppoints)): for iq, q in enumerate(linspace(qmin, qmax, qpoints)): c: complex = p + 1j * q z: complex = 0 for k in range(max_iterations): z = z ** 2 + c if abs(z) > infinity_border: image[ip][iq] = 1 break return image def mandelbrot_no_types( pmin=-2.5, pmax=1.5, qmin=-2, qmax=2, ppoints=200, qpoints=200, max_iterations=300, infinity_border=100): image = [[0 for i in range(qpoints)] for j in range(ppoints)] for ip, p in enumerate(linspace(pmin, pmax, ppoints)): for iq, q in enumerate(linspace(qmin, qmax, qpoints)): c = p + 1j * q z = 0 for k in range(max_iterations): z = z ** 2 + c if abs(z) > infinity_border: image[ip][iq] = 1 break return image def mandelbrot_np( pmin=-2.5, pmax=1.5, qmin=-2, qmax=2, ppoints=200, qpoints=200, max_iterations=300, infinity_border=100): image = np.zeros((ppoints, qpoints)) for ip, p in enumerate(np.linspace(pmin, pmax, ppoints)): for iq, q in enumerate(np.linspace(qmin, qmax, qpoints)): c = p + 1j * q z = 0 for k in range(max_iterations): z = z ** 2 + c if abs(z) > infinity_border: image[ip, iq] = 1 break return image ```