# Module kmath-ast Extensions to MST API: transformations, dynamic compilation and visualization. - [expression-language](src/commonMain/kotlin/space/kscience/kmath/ast/parser.kt) : Expression language and its parser - [mst-jvm-codegen](src/jvmMain/kotlin/space/kscience/kmath/asm/asm.kt) : Dynamic MST to JVM bytecode compiler - [mst-js-codegen](src/jsMain/kotlin/space/kscience/kmath/estree/estree.kt) : Dynamic MST to JS compiler - [rendering](src/commonMain/kotlin/space/kscience/kmath/ast/rendering/MathRenderer.kt) : Extendable MST rendering ## Artifact: The Maven coordinates of this project are `space.kscience:kmath-ast:0.4.1`. **Gradle Kotlin DSL:** ```kotlin repositories { maven("https://repo.kotlin.link") mavenCentral() } dependencies { implementation("space.kscience:kmath-ast:0.4.1") } ``` ## Parsing expressions In this module there is a parser from human-readable strings like `"x^3-x+3"` (in the more specific [grammar](reference/ArithmeticsEvaluator.g4)) to MST instances. Supported literals: 1. Constants and variables (consist of latin letters, digits and underscores, can't start with digit): `x`, `_Abc2`. 2. Numbers: `123`, `1.02`, `1e10`, `1e-10`, `1.0e+3`—all parsed either as `kotlin.Long` or `kotlin.Double`. Supported binary operators (from the highest precedence to the lowest one): 1. `^` 2. `*`, `/` 3. `+`, `-` Supported unary operator: 1. `-`, e. g. `-x` Arbitrary unary and binary functions are also supported: names consist of latin letters, digits and underscores, can't start with digit. Examples: 1. `sin(x)` 2. `add(x, y)` ## Dynamic expression code generation ### On JVM `kmath-ast` JVM module supports runtime code generation to eliminate overhead of tree traversal. Code generator builds a special implementation of `Expression` with implemented `invoke` function. For example, the following code: ```kotlin import space.kscience.kmath.asm.compileToExpression import space.kscience.kmath.operations.DoubleField "x^3-x+3".parseMath().compileToExpression(DoubleField) ``` … leads to generation of bytecode, which can be decompiled to the following Java class: ```java import java.util.*; import kotlin.jvm.functions.*; import space.kscience.kmath.asm.internal.*; import space.kscience.kmath.complex.*; import space.kscience.kmath.expressions.*; public final class CompiledExpression_45045_0 implements Expression { private final Object[] constants; public Complex invoke(Map arguments) { Complex var2 = (Complex)MapIntrinsics.getOrFail(arguments, "x"); return (Complex)((Function2)this.constants[0]).invoke(var2, (Complex)this.constants[1]); } } ``` For `LongRing`, `IntRing`, and `DoubleField` specialization is supported for better performance: ```java import java.util.*; import space.kscience.kmath.asm.internal.*; import space.kscience.kmath.expressions.*; public final class CompiledExpression_-386104628_0 implements DoubleExpression { private final SymbolIndexer indexer; public SymbolIndexer getIndexer() { return this.indexer; } public double invoke(double[] arguments) { double var2 = arguments[0]; return Math.pow(var2, 3.0D) - var2 + 3.0D; } public final Double invoke(Map arguments) { double var2 = ((Double)MapIntrinsics.getOrFail(arguments, "x")).doubleValue(); return Math.pow(var2, 3.0D) - var2 + 3.0D; } } ``` Setting JVM system property `space.kscience.kmath.ast.dump.generated.classes` to `1` makes the translator dump class files to program's working directory, so they can be reviewed manually. #### Limitations - The same classes may be generated and loaded twice, so it is recommended to cache compiled expressions to avoid class loading overhead. - This API is not supported by non-dynamic JVM implementations like TeaVM or GraalVM Native Image because they may not support class loaders. ### On JS A similar feature is also available on JS. ```kotlin import space.kscience.kmath.expressions.Symbol.Companion.x import space.kscience.kmath.expressions.* import space.kscience.kmath.operations.* import space.kscience.kmath.estree.* MstField { x + 2 }.compileToExpression(DoubleField) ``` The code above returns expression implemented with such a JS function: ```js var executable = function (constants, arguments) { return constants[1](constants[0](arguments, "x"), 2); }; ``` JS also supports experimental expression optimization with [WebAssembly](https://webassembly.org/) IR generation. Currently, only expressions inside `DoubleField` and `IntRing` are supported. ```kotlin import space.kscience.kmath.expressions.Symbol.Companion.x import space.kscience.kmath.expressions.* import space.kscience.kmath.operations.* import space.kscience.kmath.wasm.* MstField { x + 2 }.compileToExpression(DoubleField) ``` An example of emitted Wasm IR in the form of WAT: ```lisp (func \$executable (param \$0 f64) (result f64) (f64.add (local.get \$0) (f64.const 2) ) ) ``` #### Limitations - ESTree expression compilation uses `eval` which can be unavailable in several environments. - WebAssembly isn't supported by old versions of browsers (see https://webassembly.org/roadmap/). ## Rendering expressions kmath-ast also includes an extensible engine to display expressions in LaTeX or MathML syntax. Example usage: ```kotlin import space.kscience.kmath.ast.* import space.kscience.kmath.ast.rendering.* import space.kscience.kmath.misc.* @OptIn(UnstableKMathAPI::class) public fun main() { val mst = "exp(sqrt(x))-asin(2*x)/(2e10+x^3)/(12)+x^(2/3)".parseMath() val syntax = FeaturedMathRendererWithPostProcess.Default.render(mst) val latex = LatexSyntaxRenderer.renderWithStringBuilder(syntax) println("LaTeX:") println(latex) println() val mathML = MathMLSyntaxRenderer.renderWithStringBuilder(syntax) println("MathML:") println(mathML) } ``` Result LaTeX: $$\operatorname{exp}\\,\left(\sqrt{x}\right)-\frac{\frac{\operatorname{arcsin}\\,\left(2\\,x\right) }{2\times10^{10}+x^{3}}}{12}+x^{2/3}$$ Result MathML (can be used with MathJax or other renderers):
```html exp x - arcsin 2 x 2 × 10 10 + x 3 12 + x 2 / 3 ```
It is also possible to create custom algorithms of render, and even add support of other markup languages (see API reference).