/* * Copyright 2018-2021 KMath contributors. * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. */ package space.kscience.kmath.optimization.qow import space.kscience.kmath.data.ColumnarData import space.kscience.kmath.data.XYErrorColumnarData import space.kscience.kmath.expressions.* import space.kscience.kmath.linear.* import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.operations.DoubleField import space.kscience.kmath.operations.Field import space.kscience.kmath.optimization.OptimizationFeature import space.kscience.kmath.optimization.OptimizationProblemFactory import space.kscience.kmath.optimization.OptimizationResult import space.kscience.kmath.optimization.XYOptimization import space.kscience.kmath.structures.DoubleBuffer import space.kscience.kmath.structures.DoubleL2Norm import kotlin.math.pow private typealias ParamSet = Map @OptIn(UnstableKMathAPI::class) public class QowFit( override val symbols: List, private val space: LinearSpace, private val solver: LinearSolver, ) : XYOptimization, SymbolIndexer { private var logger: FitLogger? = null private var startingPoint: Map = TODO() private var covariance: Matrix? = TODO() private val prior: DifferentiableExpression>? = TODO() private var data: XYErrorColumnarData = TODO() private var model: DifferentiableExpression> = TODO() private val features = HashSet() override fun update(result: OptimizationResult) { TODO("Not yet implemented") } override val algebra: Field get() = TODO("Not yet implemented") override fun data( dataSet: ColumnarData, xSymbol: Symbol, ySymbol: Symbol, xErrSymbol: Symbol?, yErrSymbol: Symbol?, ) { TODO("Not yet implemented") } override fun model(model: (Double) -> DifferentiableExpression) { TODO("Not yet implemented") } private var x: Symbol = Symbol.x /** * The signed distance from the model to the [i]-th point of data. */ private fun distance(i: Int, parameters: Map): Double = model(parameters + (x to data.x[i])) - data.y[i] /** * The derivative of [distance] * TODO use expressions instead */ private fun distanceDerivative(symbol: Symbol, i: Int, parameters: Map): Double = model.derivative(symbol)(parameters + (x to data.x[i])) /** * The dispersion of [i]-th data point */ private fun getDispersion(i: Int, parameters: Map): Double = data.yErr[i].pow(2) private fun getCovariance(weight: QoWeight): Matrix = solver.inverse(getEqDerivValues(weight)) /** * Теоретическая ковариация весовых функций. * * D(\phi)=E(\phi_k(\theta_0) \phi_l(\theta_0))= disDeriv_k * disDeriv_l /sigma^2 */ private fun covarF(weight: QoWeight): Matrix = space.buildSymmetricMatrix(symbols.size) { k, l -> (0 until data.size).sumOf { i -> weight.derivs[k, i] * weight.derivs[l, i] / weight.dispersion[i] } } /** * Экспериментальная ковариация весов. Формула (22) из * http://arxiv.org/abs/physics/0604127 * * @param source * @param set * @param fitPars * @param weight * @return */ private fun covarFExp(weight: QoWeight, theta: Map): Matrix = space.run { /* * Важно! Если не делать предварителього вычисления этих производных, то * количество вызывов функции будет dim^2 вместо dim Первый индекс - * номер точки, второй - номер переменной, по которой берется производная */ val eqvalues = buildMatrix(data.size, symbols.size) { i, l -> distance(i, theta) * weight.derivs[l, i] / weight.dispersion[i] } buildMatrix(symbols.size, symbols.size) { k, l -> (0 until data.size).sumOf { i -> eqvalues[i, l] * eqvalues[i, k] } } } /** * производные уравнений для метода Ньютона * * @param source * @param set * @param fitPars * @param weight * @return */ private fun getEqDerivValues( weight: QoWeight, theta: Map = weight.theta, ): Matrix = space.run { val fitDim = symbols.size //Возвращает производную k-того Eq по l-тому параметру val res = Array(fitDim) { DoubleArray(fitDim) } val sderiv = buildMatrix(data.size, symbols.size) { i, l -> distanceDerivative(symbols[l], i, theta) } buildMatrix(symbols.size, symbols.size) { k, l -> val base = (0 until data.size).sumOf { i -> require(weight.dispersion[i] > 0) sderiv[i, l] * weight.derivs[k, i] / weight.dispersion[i] } prior?.let { prior -> //Check if this one is correct val pi = prior(theta) val deriv1 = prior.derivative(symbols[k])(theta) val deriv2 = prior.derivative(symbols[l])(theta) base + deriv1 * deriv2 / pi / pi } ?: base } } /** * Значения уравнений метода квазиоптимальных весов * * @param source * @param set * @param fitPars * @param weight * @return */ private fun getEqValues(weight: QoWeight, theta: Map = weight.theta): Point { val distances = DoubleBuffer(data.size) { i -> distance(i, theta) } return DoubleBuffer(symbols.size) { k -> val base = (0 until data.size).sumOf { i -> distances[i] * weight.derivs[k, i] / weight.dispersion[i] } //Поправка на априорную вероятность prior?.let { prior -> base - prior.derivative(symbols[k])(theta) / prior(theta) } ?: base } } /** * The state of QOW fitter * Created by Alexander Nozik on 17-Oct-16. */ private inner class QoWeight( val theta: Map, ) { init { require(data.size > 0) { "The state does not contain data" } } /** * Derivatives of the spectrum over parameters. First index in the point number, second one - index of parameter */ val derivs: Matrix by lazy { space.buildMatrix(data.size, symbols.size) { i, k -> distanceDerivative(symbols[k], i, theta) } } /** * Array of dispersions in each point */ val dispersion: Point by lazy { DoubleBuffer(data.size) { i -> getDispersion(i, theta) } } } private fun newtonianStep( weight: QoWeight, par: Map, eqvalues: Point, ): Map = space.run { val start = par.toPoint() val invJacob = solver.inverse(getEqDerivValues(weight, par)) val step = invJacob.dot(eqvalues) return par + (start - step).toMap() } private fun newtonianRun( weight: QoWeight, maxSteps: Int = 100, tolerance: Double = 0.0, fast: Boolean = false, ): ParamSet { var dis: Double//норма невязки // Для удобства работаем всегда с полным набором параметров var par = startingPoint logger?.log { "Starting newtonian iteration from: \n\t$par" } var eqvalues = getEqValues(weight, par)//значения функций dis = DoubleL2Norm.norm(eqvalues)// невязка logger?.log { "Starting discrepancy is $dis" } var i = 0 var flag = false while (!flag) { i++ logger?.log { "Starting step number $i" } val currentSolution = if (fast) { //Берет значения матрицы в той точке, где считается вес newtonianStep(weight, weight.theta, eqvalues) } else { //Берет значения матрицы в точке par newtonianStep(weight, par, eqvalues) } // здесь должен стоять учет границ параметров logger?.log { "Parameter values after step are: \n\t$currentSolution" } eqvalues = getEqValues(weight, currentSolution) val currentDis = DoubleL2Norm.norm(eqvalues)// невязка после шага logger?.log { "The discrepancy after step is: $currentDis." } if (currentDis >= dis && i > 1) { //дополнительно проверяем, чтобы был сделан хотя бы один шаг flag = true logger?.log { "The discrepancy does not decrease. Stopping iteration." } } else { par = currentSolution dis = currentDis } if (i >= maxSteps) { flag = true logger?.log { "Maximum number of iterations reached. Stopping iteration." } } if (dis <= tolerance) { flag = true logger?.log { "Tolerance threshold is reached. Stopping iteration." } } } return par } // // override fun run(state: FitState, parentLog: History?, meta: Meta): FitResult { // val log = Chronicle("QOW", parentLog) // val action = meta.getString(FIT_STAGE_TYPE, TASK_RUN) // log.report("QOW fit engine started task '{}'", action) // return when (action) { // TASK_SINGLE -> makeRun(state, log, meta) // TASK_COVARIANCE -> generateErrors(state, log, meta) // TASK_RUN -> { // var res = makeRun(state, log, meta) // res = makeRun(res.optState().get(), log, meta) // generateErrors(res.optState().get(), log, meta) // } // else -> throw IllegalArgumentException("Unknown task") // } // } // private fun makeRun(state: FitState, log: History, meta: Meta): FitResult { // /*Инициализация объектов, задание исходных значений*/ // log.report("Starting fit using quasioptimal weights method.") // // val fitPars = getFitPars(state, meta) // // val curWeight = QoWeight(state, fitPars, state.parameters) // // // вычисляем вес в allPar. Потом можно будет попробовать ручное задание веса // log.report("The starting weight is: \n\t{}", // MathUtils.toString(curWeight.theta)) // // //Стартовая точка такая же как и параметр веса // /*Фитирование*/ // val res = newtonianRun(state, curWeight, log, meta) // // /*Генерация результата*/ // // return FitResult.build(state.edit().setPars(res).build(), *fitPars) // } /** * generateErrors. */ private fun generateErrors(): Matrix { logger?.log { """ Starting errors estimation using quasioptimal weights method. The starting weight is: ${curWeight.theta} """.trimIndent() } val curWeight = QoWeight(startingPoint) val covar = getCovariance(curWeight) val decomposition = EigenDecomposition(covar.matrix) var valid = true for (lambda in decomposition.realEigenvalues) { if (lambda <= 0) { log.report("The covariance matrix is not positive defined. Error estimation is not valid") valid = false } } } override suspend fun optimize(): OptimizationResult { val curWeight = QoWeight(startingPoint) logger?.log { """ Starting fit using quasioptimal weights method. The starting weight is: ${curWeight.theta} """.trimIndent() } val res = newtonianRun(curWeight) } companion object : OptimizationProblemFactory { override fun build(symbols: List): QowFit { TODO("Not yet implemented") } /** * Constant `QOW_ENGINE_NAME="QOW"` */ const val QOW_ENGINE_NAME = "QOW" /** * Constant `QOW_METHOD_FAST="fast"` */ const val QOW_METHOD_FAST = "fast" } }