0.1.4-dev-4 #86
@ -9,109 +9,138 @@ import scientifik.kmath.structures.Matrix
|
||||
import scientifik.kmath.structures.asSequence
|
||||
import kotlin.math.pow
|
||||
|
||||
// Initial implementation of these functions is taken from:
|
||||
// https://github.com/thomasnield/numky/blob/master/src/main/kotlin/org/nield/numky/linear/DoubleOperators.kt
|
||||
/*
|
||||
* Functions for convenient "numpy-like" operations with Double matrices.
|
||||
*
|
||||
* Initial implementation of these functions is taken from:
|
||||
* https://github.com/thomasnield/numky/blob/master/src/main/kotlin/org/nield/numky/linear/DoubleOperators.kt
|
||||
*
|
||||
*/
|
||||
|
||||
fun realMatrix(rowNum: Int, colNum: Int, initializer: (i: Int, j: Int) -> Double) = MatrixContext.real.produce(rowNum, colNum, initializer)
|
||||
/*
|
||||
* Functions that help create a real (Double) matrix
|
||||
*/
|
||||
|
||||
fun realMatrix(rowNum: Int, colNum: Int, initializer: (i: Int, j: Int) -> Double) =
|
||||
MatrixContext.real.produce(rowNum, colNum, initializer)
|
||||
|
||||
fun Sequence<DoubleArray>.toMatrix() = toList().let {
|
||||
MatrixContext.real.produce(it.size,it[0].size) { row, col -> it[row][col] }
|
||||
MatrixContext.real.produce(it.size, it[0].size) { row, col -> it[row][col] }
|
||||
}
|
||||
|
||||
operator fun Matrix<Double>.times(double: Double) = MatrixContext.real.produce(rowNum, colNum) { row, col ->
|
||||
this@times[row, col] * double
|
||||
fun Matrix<Double>.repeatStackVertical(n: Int) = VirtualMatrix(rowNum*n, colNum) {
|
||||
row, col -> get(if (row == 0) 0 else row % rowNum, col)
|
||||
}
|
||||
|
||||
fun Matrix<Double>.square() = MatrixContext.real.produce(rowNum, colNum) { row, col ->
|
||||
this@square[row,col].pow(2)
|
||||
/*
|
||||
* Operations for matrix and real number
|
||||
*/
|
||||
|
||||
operator fun Matrix<Double>.times(double: Double) = MatrixContext.real.produce(rowNum, colNum) {
|
||||
row, col -> this[row, col] * double
|
||||
}
|
||||
|
||||
operator fun Matrix<Double>.plus(double: Double) = MatrixContext.real.produce(rowNum, colNum) { row, col ->
|
||||
this@plus[row,col] + double
|
||||
operator fun Matrix<Double>.plus(double: Double) = MatrixContext.real.produce(rowNum, colNum) {
|
||||
row, col -> this[row, col] + double
|
||||
}
|
||||
|
||||
operator fun Matrix<Double>.minus(double: Double) = MatrixContext.real.produce(rowNum, colNum) { row, col ->
|
||||
this@minus[row,col] - double
|
||||
operator fun Matrix<Double>.minus(double: Double) = MatrixContext.real.produce(rowNum, colNum) {
|
||||
row, col -> this[row, col] - double
|
||||
}
|
||||
|
||||
operator fun Matrix<Double>.div(double: Double) = MatrixContext.real.produce(rowNum, colNum) { row, col ->
|
||||
this@div[row,col] / double
|
||||
operator fun Matrix<Double>.div(double: Double) = MatrixContext.real.produce(rowNum, colNum) {
|
||||
row, col -> this[row, col] / double
|
||||
}
|
||||
|
||||
operator fun Double.times(matrix: Matrix<Double>) = MatrixContext.real.produce(matrix.rowNum, matrix.colNum) { row, col ->
|
||||
matrix[row,col] * this
|
||||
operator fun Double.times(matrix: Matrix<Double>) = MatrixContext.real.produce(matrix.rowNum, matrix.colNum) {
|
||||
row, col -> this * matrix[row, col]
|
||||
}
|
||||
|
||||
operator fun Double.plus(matrix: Matrix<Double>) = MatrixContext.real.produce(matrix.rowNum, matrix.colNum) { row, col ->
|
||||
matrix[row,col] + this
|
||||
operator fun Double.plus(matrix: Matrix<Double>) = MatrixContext.real.produce(matrix.rowNum, matrix.colNum) {
|
||||
row, col -> this * matrix[row, col]
|
||||
}
|
||||
|
||||
operator fun Double.minus(matrix: Matrix<Double>) = MatrixContext.real.produce(matrix.rowNum, matrix.colNum) { row, col ->
|
||||
matrix[row,col] - this
|
||||
operator fun Double.minus(matrix: Matrix<Double>) = MatrixContext.real.produce(matrix.rowNum, matrix.colNum) {
|
||||
row, col -> this - matrix[row, col]
|
||||
}
|
||||
|
||||
operator fun Double.div(matrix: Matrix<Double>) = MatrixContext.real.produce(matrix.rowNum, matrix.colNum) { row, col ->
|
||||
matrix[row,col] / this
|
||||
// TODO: does this operation make sense? Should it be 'this/matrix[row, col]'?
|
||||
//operator fun Double.div(matrix: Matrix<Double>) = MatrixContext.real.produce(matrix.rowNum, matrix.colNum) {
|
||||
// row, col -> matrix[row, col] / this
|
||||
//}
|
||||
|
||||
/*
|
||||
* Per-element (!) square and power operations
|
||||
*/
|
||||
|
||||
fun Matrix<Double>.square() = MatrixContext.real.produce(rowNum, colNum) {
|
||||
row, col -> this[row, col].pow(2)
|
||||
}
|
||||
|
||||
operator fun Matrix<Double>.times(other: Matrix<Double>) = MatrixContext.real.produce(rowNum, colNum) { row, col ->
|
||||
this@times[row,col] * other[row,col]
|
||||
fun Matrix<Double>.pow(n: Int) = MatrixContext.real.produce(rowNum, colNum) {
|
||||
i, j -> this[i, j].pow(n)
|
||||
}
|
||||
|
||||
operator fun Matrix<Double>.minus(other: Matrix<Double>) = MatrixContext.real.produce(rowNum, colNum) { row, col ->
|
||||
this@minus[row,col] - other[row,col]
|
||||
/*
|
||||
* Operations on two matrices (per-element!)
|
||||
*/
|
||||
|
||||
operator fun Matrix<Double>.times(other: Matrix<Double>) = MatrixContext.real.produce(rowNum, colNum) {
|
||||
row, col -> this[row, col] * other[row, col]
|
||||
}
|
||||
|
||||
operator fun Matrix<Double>.plus(other: Matrix<Double>) = MatrixContext.real.add(this,other)
|
||||
operator fun Matrix<Double>.plus(other: Matrix<Double>) = MatrixContext.real.add(this, other)
|
||||
|
||||
fun Matrix<Double>.repeatStackVertical(n: Int) = VirtualMatrix(rowNum*n, colNum) { row, col ->
|
||||
get(if (row == 0) 0 else row % rowNum, col)
|
||||
operator fun Matrix<Double>.minus(other: Matrix<Double>) = MatrixContext.real.produce(rowNum, colNum) {
|
||||
row, col -> this[row,col] - other[row,col]
|
||||
}
|
||||
|
||||
/*
|
||||
* Operations on columns
|
||||
*/
|
||||
|
||||
inline fun Matrix<Double>.appendColumn(crossinline mapper: (Buffer<Double>) -> Double) =
|
||||
MatrixContext.real.produce(rowNum,colNum+1) { row,col ->
|
||||
MatrixContext.real.produce(rowNum,colNum+1) {
|
||||
row, col ->
|
||||
if (col < colNum)
|
||||
this[row,col]
|
||||
this[row, col]
|
||||
else
|
||||
mapper(rows[row])
|
||||
}
|
||||
|
||||
fun Matrix<Double>.extractColumn(columnIndex: Int) = extractColumns(columnIndex..columnIndex)
|
||||
|
||||
fun Matrix<Double>.extractColumns(columnRange: IntRange) = MatrixContext.real.produce(rowNum, columnRange.count()) { row, col ->
|
||||
this@extractColumns[row, columnRange.start + col]
|
||||
fun Matrix<Double>.extractColumns(columnRange: IntRange) = MatrixContext.real.produce(rowNum, columnRange.count()) {
|
||||
row, col -> this[row, columnRange.first + col]
|
||||
}
|
||||
|
||||
fun Matrix<Double>.sumByColumn() = MatrixContext.real.produce(1, colNum) { i, j ->
|
||||
fun Matrix<Double>.extractColumn(columnIndex: Int) = extractColumns(columnIndex..columnIndex)
|
||||
|
||||
fun Matrix<Double>.sumByColumn() = MatrixContext.real.produce(1, colNum) { _, j ->
|
||||
val column = columns[j]
|
||||
with(elementContext) {
|
||||
sum(column.asSequence())
|
||||
}
|
||||
}
|
||||
|
||||
fun Matrix<Double>.minByColumn() = MatrixContext.real.produce(1, colNum) { i, j ->
|
||||
val column = columns[j]
|
||||
column.asSequence().min()?:throw Exception("Cannot produce min on empty column")
|
||||
fun Matrix<Double>.minByColumn() = MatrixContext.real.produce(1, colNum) {
|
||||
_, j -> columns[j].asSequence().min() ?: throw Exception("Cannot produce min on empty column")
|
||||
}
|
||||
|
||||
fun Matrix<Double>.maxByColumn() = MatrixContext.real.produce(1, colNum) { i, j ->
|
||||
val column = columns[j]
|
||||
column.asSequence().max()?:throw Exception("Cannot produce min on empty column")
|
||||
fun Matrix<Double>.maxByColumn() = MatrixContext.real.produce(1, colNum) {
|
||||
_, j -> columns[j].asSequence().max() ?: throw Exception("Cannot produce min on empty column")
|
||||
}
|
||||
|
||||
fun Matrix<Double>.averageByColumn() = MatrixContext.real.produce(1, colNum) { i, j ->
|
||||
val column = columns[j]
|
||||
column.asSequence().average()
|
||||
fun Matrix<Double>.averageByColumn() = MatrixContext.real.produce(1, colNum) {
|
||||
_, j -> columns[j].asSequence().average()
|
||||
}
|
||||
|
||||
fun Matrix<Double>.sum() = this.elements().map { (_,value) -> value }.sum()
|
||||
/*
|
||||
* Operations processing all elements
|
||||
*/
|
||||
|
||||
fun Matrix<Double>.min() = this.elements().map { (_,value) -> value }.min()
|
||||
fun Matrix<Double>.sum() = elements().map { (_, value) -> value }.sum()
|
||||
|
||||
fun Matrix<Double>.max() = this.elements().map { (_,value) -> value }.max()
|
||||
fun Matrix<Double>.min() = elements().map { (_, value) -> value }.min()
|
||||
|
||||
fun Matrix<Double>.average() = this.elements().map { (_,value) -> value }.average()
|
||||
fun Matrix<Double>.max() = elements().map { (_, value) -> value }.max()
|
||||
|
||||
fun Matrix<Double>.pow(n: Int) = MatrixContext.real.produce(rowNum, colNum) { i, j ->
|
||||
this@pow[i,j].pow(n)
|
||||
}
|
||||
fun Matrix<Double>.average() = elements().map { (_, value) -> value }.average()
|
||||
|
@ -0,0 +1,16 @@
|
||||
package scientific.kmath.real
|
||||
|
||||
import scientifik.kmath.real.average
|
||||
import scientifik.kmath.real.realMatrix
|
||||
import scientifik.kmath.real.sum
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertEquals
|
||||
|
||||
class RealMatrixTest {
|
||||
@Test
|
||||
fun testSum() {
|
||||
val m = realMatrix(10, 10) { i, j -> (i + j).toDouble() }
|
||||
assertEquals(m.sum(), 900.0)
|
||||
assertEquals(m.average(), 9.0)
|
||||
}
|
||||
}
|
0
kmath-for-real/src/jvmMain/kotlin/.gitkeep
Normal file
0
kmath-for-real/src/jvmMain/kotlin/.gitkeep
Normal file
Loading…
Reference in New Issue
Block a user