0.1.4-dev-4 #86
@ -0,0 +1,55 @@
|
||||
package scientifik.kmath.functions
|
||||
|
||||
import scientifik.kmath.operations.Ring
|
||||
|
||||
interface Piecewise<T, R> {
|
||||
fun findPiece(arg: T): R?
|
||||
}
|
||||
|
||||
interface PiecewisePolynomial<T : Any> : Piecewise<T, Polynomial<T>>
|
||||
|
||||
/**
|
||||
* Ordered list of pieces in piecewise function
|
||||
*/
|
||||
class OrderedPiecewisePolynomial<T : Comparable<T>>(left: T) : PiecewisePolynomial<T> {
|
||||
|
||||
private val delimiters: ArrayList<T> = arrayListOf(left)
|
||||
private val pieces: ArrayList<Polynomial<T>> = ArrayList()
|
||||
|
||||
/**
|
||||
* Dynamically add a piece to the "right" side (beyond maximum argument value of previous piece)
|
||||
* @param right new rightmost position. If is less then current rightmost position, a error is thrown.
|
||||
*/
|
||||
fun putRight(right: T, piece: Polynomial<T>) {
|
||||
require(right > delimiters.last()) { "New delimiter should be to the right of old one" }
|
||||
delimiters.add(right)
|
||||
pieces.add(piece)
|
||||
}
|
||||
|
||||
fun putLeft(left: T, piece: Polynomial<T>) {
|
||||
require(left < delimiters.first()) { "New delimiter should be to the left of old one" }
|
||||
delimiters.add(0, left)
|
||||
pieces.add(0, piece)
|
||||
}
|
||||
|
||||
override fun findPiece(arg: T): Polynomial<T>? {
|
||||
if (arg < delimiters.first() || arg >= delimiters.last()) {
|
||||
return null
|
||||
} else {
|
||||
for (index in 1 until delimiters.size) {
|
||||
if (arg < delimiters[index]) {
|
||||
return pieces[index - 1]
|
||||
}
|
||||
}
|
||||
error("Piece not found")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Return a value of polynomial function with given [ring] an given [arg] or null if argument is outside of piecewise definition.
|
||||
*/
|
||||
fun <T : Comparable<T>, C : Ring<T>> PiecewisePolynomial<T>.value(ring: C, arg: T): T? =
|
||||
findPiece(arg)?.value(ring, arg)
|
||||
|
||||
fun <T : Comparable<T>, C : Ring<T>> PiecewisePolynomial<T>.asFunction(ring: C): (T) -> T? = { value(ring, it) }
|
@ -1,9 +1,7 @@
|
||||
package scientifik.kmath.functions
|
||||
|
||||
import scientifik.kmath.operations.RealField
|
||||
import scientifik.kmath.operations.Ring
|
||||
import scientifik.kmath.operations.Space
|
||||
import kotlin.jvm.JvmName
|
||||
import kotlin.math.max
|
||||
import kotlin.math.pow
|
||||
|
||||
@ -20,11 +18,11 @@ fun Polynomial<Double>.value() =
|
||||
|
||||
|
||||
fun <T : Any, C : Ring<T>> Polynomial<T>.value(ring: C, arg: T): T = ring.run {
|
||||
if( coefficients.isEmpty()) return@run zero
|
||||
if (coefficients.isEmpty()) return@run zero
|
||||
var res = coefficients.first()
|
||||
var powerArg = arg
|
||||
for( index in 1 until coefficients.size){
|
||||
res += coefficients[index]*powerArg
|
||||
for (index in 1 until coefficients.size) {
|
||||
res += coefficients[index] * powerArg
|
||||
//recalculating power on each step to avoid power costs on long polynomials
|
||||
powerArg *= arg
|
||||
}
|
||||
@ -43,9 +41,6 @@ fun <T : Any, C : Ring<T>> Polynomial<T>.asMathFunction(): MathFunction<T, out C
|
||||
*/
|
||||
fun <T : Any, C : Ring<T>> Polynomial<T>.asFunction(ring: C): (T) -> T = { value(ring, it) }
|
||||
|
||||
@JvmName("asRealUFunction")
|
||||
fun Polynomial<Double>.asFunction(): (Double) -> Double = asFunction(RealField)
|
||||
|
||||
/**
|
||||
* An algebra for polynomials
|
||||
*/
|
||||
@ -74,21 +69,3 @@ class PolynomialSpace<T : Any, C : Ring<T>>(val ring: C) : Space<Polynomial<T>>
|
||||
fun <T : Any, C : Ring<T>, R> C.polynomial(block: PolynomialSpace<T, C>.() -> R): R {
|
||||
return PolynomialSpace(this).run(block)
|
||||
}
|
||||
|
||||
class PiecewisePolynomial<T : Comparable<T>> internal constructor(
|
||||
val lowerBoundary: T,
|
||||
val pieces: List<Pair<T, Polynomial<T>>>
|
||||
)
|
||||
|
||||
private fun <T : Comparable<T>> PiecewisePolynomial<T>.findPiece(arg: T): Polynomial<T>? {
|
||||
if (arg < lowerBoundary || arg > pieces.last().first) return null
|
||||
return pieces.first { arg < it.first }.second
|
||||
}
|
||||
|
||||
/**
|
||||
* Return a value of polynomial function with given [ring] an given [arg] or null if argument is outside of piecewise definition.
|
||||
*/
|
||||
fun <T : Comparable<T>, C : Ring<T>> PiecewisePolynomial<T>.value(ring: C, arg: T): T? =
|
||||
findPiece(arg)?.value(ring, arg)
|
||||
|
||||
fun <T : Comparable<T>, C : Ring<T>> PiecewisePolynomial<T>.asFunction(ring: C): (T) -> T? = { value(ring, it) }
|
@ -1,5 +1,6 @@
|
||||
package scientifik.kmath.interpolation
|
||||
|
||||
import scientifik.kmath.functions.OrderedPiecewisePolynomial
|
||||
import scientifik.kmath.functions.PiecewisePolynomial
|
||||
import scientifik.kmath.functions.Polynomial
|
||||
import scientifik.kmath.operations.Field
|
||||
@ -10,15 +11,18 @@ import scientifik.kmath.operations.Field
|
||||
class LinearInterpolator<T : Comparable<T>>(override val algebra: Field<T>) : PolynomialInterpolator<T> {
|
||||
|
||||
override fun interpolatePolynomials(points: Collection<Pair<T, T>>): PiecewisePolynomial<T> = algebra.run {
|
||||
require(points.isNotEmpty()) { "Point array should not be empty" }
|
||||
|
||||
//sorting points
|
||||
val sorted = points.sortedBy { it.first }
|
||||
|
||||
val pairs: List<Pair<T, Polynomial<T>>> = (0 until points.size - 1).map { i ->
|
||||
val slope = (sorted[i + 1].second - sorted[i].second) / (sorted[i + 1].first - sorted[i].first)
|
||||
val const = sorted[i].second - slope * sorted[i].first
|
||||
sorted[i + 1].first to Polynomial(const, slope)
|
||||
return@run OrderedPiecewisePolynomial(points.first().first).apply {
|
||||
for (i in 0 until points.size - 1) {
|
||||
val slope = (sorted[i + 1].second - sorted[i].second) / (sorted[i + 1].first - sorted[i].first)
|
||||
val const = sorted[i].second - slope * sorted[i].first
|
||||
val polynomial = Polynomial(const, slope)
|
||||
putRight(sorted[i + 1].first, polynomial)
|
||||
}
|
||||
}
|
||||
|
||||
return PiecewisePolynomial(sorted.first().first, pairs)
|
||||
}
|
||||
}
|
@ -18,8 +18,8 @@ class LinearInterpolatorTest {
|
||||
val polynomial = LinearInterpolator(RealField).interpolatePolynomials(data)
|
||||
val function = polynomial.asFunction(RealField)
|
||||
|
||||
// assertEquals(null, function(-1.0))
|
||||
// assertEquals(0.5, function(0.5))
|
||||
assertEquals(null, function(-1.0))
|
||||
assertEquals(0.5, function(0.5))
|
||||
assertEquals(2.0, function(1.5))
|
||||
assertEquals(3.0, function(2.0))
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user