Added Levenberg-Marquardt algorithm and svd Golub-Kahan #513
@ -165,16 +165,15 @@ public fun DoubleTensorAlgebra.levenbergMarquardt(inputData: LMInput): LMResultI
|
|||||||
}
|
}
|
||||||
|
|
||||||
var maxIterations = inputData.maxIterations
|
var maxIterations = inputData.maxIterations
|
||||||
var epsilon1 = inputData.epsilons[0] // convergence tolerance for gradient
|
var epsilon1 = inputData.epsilons[0]
|
||||||
var epsilon2 = inputData.epsilons[1] // convergence tolerance for parameters
|
var epsilon2 = inputData.epsilons[1]
|
||||||
var epsilon3 = inputData.epsilons[2] // convergence tolerance for Chi-square
|
var epsilon3 = inputData.epsilons[2]
|
||||||
var epsilon4 = inputData.epsilons[3] // determines acceptance of a L-M step
|
var epsilon4 = inputData.epsilons[3]
|
||||||
var lambda0 = inputData.lambdas[0] // initial value of damping paramter, lambda
|
var lambda0 = inputData.lambdas[0]
|
||||||
var lambdaUpFac = inputData.lambdas[1] // factor for increasing lambda
|
var lambdaUpFac = inputData.lambdas[1]
|
||||||
var lambdaDnFac = inputData.lambdas[2] // factor for decreasing lambda
|
var lambdaDnFac = inputData.lambdas[2]
|
||||||
var updateType = inputData.updateType // 1: Levenberg-Marquardt lambda update
|
var updateType = inputData.updateType
|
||||||
// 2: Quadratic update
|
|
||||||
// 3: Nielsen's lambda update equations
|
|
||||||
if (inputData.nargin < 9) {
|
if (inputData.nargin < 9) {
|
||||||
maxIterations = 10 * Npar
|
maxIterations = 10 * Npar
|
||||||
epsilon1 = 1e-3
|
epsilon1 = 1e-3
|
||||||
@ -218,34 +217,30 @@ public fun DoubleTensorAlgebra.levenbergMarquardt(inputData: LMInput): LMResultI
|
|||||||
|
|
||||||
var lambda = 1.0
|
var lambda = 1.0
|
||||||
var nu = 1
|
var nu = 1
|
||||||
when (updateType) {
|
|
||||||
1 -> lambda = lambda0 // Marquardt: init'l lambda
|
if (updateType == 1) {
|
||||||
else -> { // Quadratic and Nielsen
|
lambda = lambda0 // Marquardt: init'l lambda
|
||||||
lambda = lambda0 * (makeColumnFromDiagonal(JtWJ)).max()!!
|
|
||||||
nu = 2
|
|
||||||
}
|
}
|
||||||
|
else {
|
||||||
|
lambda = lambda0 * (makeColumnFromDiagonal(JtWJ)).max()
|
||||||
|
nu = 2
|
||||||
}
|
}
|
||||||
|
|
||||||
X2Old = X2 // previous value of X2
|
X2Old = X2 // previous value of X2
|
||||||
|
|
||||||
var h: DoubleTensor
|
var h: DoubleTensor
|
||||||
|
|
||||||
while (!stop && settings.iteration <= maxIterations) { //--- Start Main Loop
|
while (!stop && settings.iteration <= maxIterations) {
|
||||||
settings.iteration += 1
|
settings.iteration += 1
|
||||||
|
|
||||||
// incremental change in parameters
|
// incremental change in parameters
|
||||||
h = when (updateType) {
|
h = if (updateType == 1) { // Marquardt
|
||||||
1 -> { // Marquardt
|
val solve = solve(JtWJ.plus(makeMatrixWithDiagonal(makeColumnFromDiagonal(JtWJ)).div(1 / lambda)).as2D(), JtWdy)
|
||||||
val solve =
|
|
||||||
solve(JtWJ.plus(makeMatrixWithDiagonal(makeColumnFromDiagonal(JtWJ)).div(1 / lambda)).as2D(), JtWdy)
|
|
||||||
solve.asDoubleTensor()
|
solve.asDoubleTensor()
|
||||||
}
|
} else { // Quadratic and Nielsen
|
||||||
|
|
||||||
else -> { // Quadratic and Nielsen
|
|
||||||
val solve = solve(JtWJ.plus(lmEye(Npar).div(1 / lambda)).as2D(), JtWdy)
|
val solve = solve(JtWJ.plus(lmEye(Npar).div(1 / lambda)).as2D(), JtWdy)
|
||||||
solve.asDoubleTensor()
|
solve.asDoubleTensor()
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
var pTry = (p + h).as2D() // update the [idx] elements
|
var pTry = (p + h).as2D() // update the [idx] elements
|
||||||
pTry = smallestElementComparison(largestElementComparison(minParameters, pTry.as2D()), maxParameters) // apply constraints
|
pTry = smallestElementComparison(largestElementComparison(minParameters, pTry.as2D()), maxParameters) // apply constraints
|
||||||
@ -269,7 +264,6 @@ public fun DoubleTensorAlgebra.levenbergMarquardt(inputData: LMInput): LMResultI
|
|||||||
val alpha = 1.0
|
val alpha = 1.0
|
||||||
if (updateType == 2) { // Quadratic
|
if (updateType == 2) { // Quadratic
|
||||||
// One step of quadratic line update in the h direction for minimum X2
|
// One step of quadratic line update in the h direction for minimum X2
|
||||||
|
|
||||||
val alpha = JtWdy.transpose().dot(h) / ((X2Try.minus(X2)).div(2.0).plus(2 * JtWdy.transpose().dot(h)))
|
val alpha = JtWdy.transpose().dot(h) / ((X2Try.minus(X2)).div(2.0).plus(2 * JtWdy.transpose().dot(h)))
|
||||||
h = h.dot(alpha)
|
h = h.dot(alpha)
|
||||||
pTry = p.plus(h).as2D() // update only [idx] elements
|
pTry = p.plus(h).as2D() // update only [idx] elements
|
||||||
@ -287,7 +281,6 @@ public fun DoubleTensorAlgebra.levenbergMarquardt(inputData: LMInput): LMResultI
|
|||||||
.dot(makeMatrixWithDiagonal(makeColumnFromDiagonal(JtWJ)).div(1 / lambda).dot(h).plus(JtWdy))
|
.dot(makeMatrixWithDiagonal(makeColumnFromDiagonal(JtWJ)).div(1 / lambda).dot(h).plus(JtWdy))
|
||||||
X2.minus(X2Try).as2D()[0, 0] / abs(tmp.as2D()).as2D()[0, 0]
|
X2.minus(X2Try).as2D()[0, 0] / abs(tmp.as2D()).as2D()[0, 0]
|
||||||
}
|
}
|
||||||
|
|
||||||
else -> {
|
else -> {
|
||||||
val tmp = h.transposed().dot(h.div(1 / lambda).plus(JtWdy))
|
val tmp = h.transposed().dot(h.div(1 / lambda).plus(JtWdy))
|
||||||
X2.minus(X2Try).as2D()[0, 0] / abs(tmp.as2D()).as2D()[0, 0]
|
X2.minus(X2Try).as2D()[0, 0] / abs(tmp.as2D()).as2D()[0, 0]
|
||||||
@ -303,7 +296,6 @@ public fun DoubleTensorAlgebra.levenbergMarquardt(inputData: LMInput): LMResultI
|
|||||||
|
|
||||||
lmMatxAns = lmMatx(inputData.func, t, pOld, yOld, dX2.toInt(), J, p, inputData.realValues, weight, dp, settings)
|
lmMatxAns = lmMatx(inputData.func, t, pOld, yOld, dX2.toInt(), J, p, inputData.realValues, weight, dp, settings)
|
||||||
// decrease lambda ==> Gauss-Newton method
|
// decrease lambda ==> Gauss-Newton method
|
||||||
|
|
||||||
JtWJ = lmMatxAns[0]
|
JtWJ = lmMatxAns[0]
|
||||||
JtWdy = lmMatxAns[1]
|
JtWdy = lmMatxAns[1]
|
||||||
X2 = lmMatxAns[2][0, 0]
|
X2 = lmMatxAns[2][0, 0]
|
||||||
|
Loading…
Reference in New Issue
Block a user