Golub-Kahan SVD algorithm for KMP tensors #499
@ -308,6 +308,14 @@ internal fun DoubleTensorAlgebra.svdPowerMethodHelper(
|
||||
val res = ArrayList<Triple<Double, DoubleTensor, DoubleTensor>>(0)
|
||||
val (matrixU, matrixS, matrixV) = USV
|
||||
|
||||
val matrixUStart = matrixU.bufferStart
|
||||
val matrixSStart = matrixS.bufferStart
|
||||
val matrixVStart = matrixV.bufferStart
|
||||
|
||||
val matrixUBuffer = matrixU.mutableBuffer
|
||||
val matrixSBuffer = matrixS.mutableBuffer
|
||||
val matrixVBuffer = matrixV.mutableBuffer
|
||||
|
||||
for (k in 0 until min(n, m)) {
|
||||
var a = matrix.copy()
|
||||
for ((singularValue, u, v) in res.slice(0 until k)) {
|
||||
@ -341,13 +349,13 @@ internal fun DoubleTensorAlgebra.svdPowerMethodHelper(
|
||||
val uBuffer = res.map { it.second }.flatMap { it.mutableBuffer.array().toList() }.toDoubleArray()
|
||||
val vBuffer = res.map { it.third }.flatMap { it.mutableBuffer.array().toList() }.toDoubleArray()
|
||||
for (i in uBuffer.indices) {
|
||||
matrixU.mutableBuffer.array()[matrixU.bufferStart + i] = uBuffer[i]
|
||||
matrixUBuffer[matrixUStart + i] = uBuffer[i]
|
||||
}
|
||||
for (i in s.indices) {
|
||||
matrixS.mutableBuffer.array()[matrixS.bufferStart + i] = s[i]
|
||||
matrixSBuffer[matrixSStart + i] = s[i]
|
||||
}
|
||||
for (i in vBuffer.indices) {
|
||||
matrixV.mutableBuffer.array()[matrixV.bufferStart + i] = vBuffer[i]
|
||||
matrixVBuffer[matrixVStart + i] = vBuffer[i]
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user