Feature/tensors performance #497
@ -833,8 +833,33 @@ public open class DoubleTensorAlgebra :
|
||||
return qTensor to rTensor
|
||||
}
|
||||
|
||||
override fun StructureND<Double>.svd(): Triple<DoubleTensor, DoubleTensor, DoubleTensor> =
|
||||
svd(epsilon = 1e-10)
|
||||
override fun StructureND<Double>.svd(): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
|
||||
val size = tensor.dimension
|
||||
val commonShape = tensor.shape.sliceArray(0 until size - 2)
|
||||
val (n, m) = tensor.shape.sliceArray(size - 2 until size)
|
||||
val uTensor = zeros(commonShape + intArrayOf(m, n))
|
||||
val sTensor = zeros(commonShape + intArrayOf(m))
|
||||
val vTensor = zeros(commonShape + intArrayOf(m, m))
|
||||
|
||||
val matrices = tensor.matrices
|
||||
val uTensors = uTensor.matrices
|
||||
val sTensorVectors = sTensor.vectors
|
||||
val vTensors = vTensor.matrices
|
||||
|
||||
for (index in matrices.indices) {
|
||||
val matrix = matrices[index]
|
||||
val matrixSize = matrix.shape.reduce { acc, i -> acc * i }
|
||||
val curMatrix = DoubleTensor(
|
||||
matrix.shape,
|
||||
matrix.mutableBuffer.array()
|
||||
.slice(matrix.bufferStart until matrix.bufferStart + matrixSize)
|
||||
.toDoubleArray()
|
||||
)
|
||||
curMatrix.as2D().svdHelper(uTensors[index].as2D(), sTensorVectors[index], vTensors[index].as2D())
|
||||
}
|
||||
|
||||
return Triple(uTensor.transpose(), sTensor, vTensor)
|
||||
}
|
||||
|
||||
/**
|
||||
* Singular Value Decomposition.
|
||||
@ -849,7 +874,7 @@ public open class DoubleTensorAlgebra :
|
||||
* i.e., the precision with which the cosine approaches 1 in an iterative algorithm.
|
||||
* @return a triple `Triple(U, S, V)`.
|
||||
*/
|
||||
public fun StructureND<Double>.svd(epsilon: Double): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
|
||||
public fun StructureND<Double>.svdPowerMethod(epsilon: Double = 1e-10): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
|
||||
val size = tensor.dimension
|
||||
val commonShape = tensor.shape.sliceArray(0 until size - 2)
|
||||
val (n, m) = tensor.shape.sliceArray(size - 2 until size)
|
||||
@ -876,40 +901,12 @@ public open class DoubleTensorAlgebra :
|
||||
.slice(matrix.bufferStart until matrix.bufferStart + matrixSize)
|
||||
.toDoubleArray()
|
||||
)
|
||||
svdHelper(curMatrix, usv, m, n, epsilon)
|
||||
svdPowerMethodHelper(curMatrix, usv, m, n, epsilon)
|
||||
}
|
||||
|
||||
return Triple(uTensor.transpose(), sTensor, vTensor.transpose())
|
||||
}
|
||||
|
||||
public fun StructureND<Double>.svdGolabKahan(): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
|
||||
val size = tensor.dimension
|
||||
val commonShape = tensor.shape.sliceArray(0 until size - 2)
|
||||
val (n, m) = tensor.shape.sliceArray(size - 2 until size)
|
||||
val uTensor = zeros(commonShape + intArrayOf(m, n))
|
||||
val sTensor = zeros(commonShape + intArrayOf(m))
|
||||
val vTensor = zeros(commonShape + intArrayOf(m, m))
|
||||
|
||||
val matrices = tensor.matrices
|
||||
val uTensors = uTensor.matrices
|
||||
val sTensorVectors = sTensor.vectors
|
||||
val vTensors = vTensor.matrices
|
||||
|
||||
for (index in matrices.indices) {
|
||||
val matrix = matrices[index]
|
||||
val matrixSize = matrix.shape.reduce { acc, i -> acc * i }
|
||||
val curMatrix = DoubleTensor(
|
||||
matrix.shape,
|
||||
matrix.mutableBuffer.array()
|
||||
.slice(matrix.bufferStart until matrix.bufferStart + matrixSize)
|
||||
.toDoubleArray()
|
||||
)
|
||||
curMatrix.as2D().svdGolabKahanHelper(uTensors[index].as2D(), sTensorVectors[index], vTensors[index].as2D())
|
||||
}
|
||||
|
||||
return Triple(uTensor.transpose(), sTensor, vTensor)
|
||||
}
|
||||
|
||||
override fun StructureND<Double>.symEig(): Pair<DoubleTensor, DoubleTensor> = symEigJacobi(maxIteration = 50, epsilon = 1e-15)
|
||||
|
||||
/**
|
||||
@ -935,7 +932,7 @@ public open class DoubleTensorAlgebra :
|
||||
}
|
||||
}
|
||||
|
||||
val (u, s, v) = tensor.svd(epsilon)
|
||||
val (u, s, v) = tensor.svd()
|
||||
val shp = s.shape + intArrayOf(1)
|
||||
val utv = u.transpose() dot v
|
||||
val n = s.shape.last()
|
||||
|
@ -300,7 +300,7 @@ internal fun DoubleTensorAlgebra.svd1d(a: DoubleTensor, epsilon: Double = 1e-10)
|
||||
}
|
||||
}
|
||||
|
||||
internal fun DoubleTensorAlgebra.svdHelper(
|
||||
internal fun DoubleTensorAlgebra.svdPowerMethodHelper(
|
||||
matrix: DoubleTensor,
|
||||
USV: Triple<BufferedTensor<Double>, BufferedTensor<Double>, BufferedTensor<Double>>,
|
||||
m: Int, n: Int, epsilon: Double,
|
||||
@ -372,7 +372,7 @@ private fun SIGN(a: Double, b: Double): Double {
|
||||
else
|
||||
return -abs(a)
|
||||
}
|
||||
internal fun MutableStructure2D<Double>.svdGolabKahanHelper(u: MutableStructure2D<Double>, w: BufferedTensor<Double>, v: MutableStructure2D<Double>) {
|
||||
internal fun MutableStructure2D<Double>.svdHelper(u: MutableStructure2D<Double>, w: BufferedTensor<Double>, v: MutableStructure2D<Double>) {
|
||||
val shape = this.shape
|
||||
val m = shape.component1()
|
||||
val n = shape.component2()
|
||||
|
Loading…
Reference in New Issue
Block a user