Feature: Polynomials and rational functions #469
@ -447,7 +447,7 @@ public open class PolynomialSpace<C, A : Ring<C>>(
|
|||||||
callsInPlace(block, InvocationKind.EXACTLY_ONCE)
|
callsInPlace(block, InvocationKind.EXACTLY_ONCE)
|
||||||
}
|
}
|
||||||
block()
|
block()
|
||||||
while (elementAt(lastIndex).isZero()) removeAt(lastIndex)
|
while (isNotEmpty() && elementAt(lastIndex).isZero()) removeAt(lastIndex)
|
||||||
return this
|
return this
|
||||||
}
|
}
|
||||||
internal inline fun List<C>.applyAndRemoveZeros(block: MutableList<C>.() -> Unit) : List<C> =
|
internal inline fun List<C>.applyAndRemoveZeros(block: MutableList<C>.() -> Unit) : List<C> =
|
||||||
@ -456,7 +456,7 @@ public open class PolynomialSpace<C, A : Ring<C>>(
|
|||||||
internal inline fun MutableCoefficients(size: Int, init: (index: Int) -> C): MutableList<C> {
|
internal inline fun MutableCoefficients(size: Int, init: (index: Int) -> C): MutableList<C> {
|
||||||
val list = ArrayList<C>(size)
|
val list = ArrayList<C>(size)
|
||||||
repeat(size) { index -> list.add(init(index)) }
|
repeat(size) { index -> list.add(init(index)) }
|
||||||
with(list) { while (elementAt(lastIndex).isZero()) removeAt(lastIndex) }
|
with(list) { while (isNotEmpty() && elementAt(lastIndex).isZero()) removeAt(lastIndex) }
|
||||||
return list
|
return list
|
||||||
}
|
}
|
||||||
@Suppress("FunctionName")
|
@Suppress("FunctionName")
|
||||||
@ -466,7 +466,7 @@ public open class PolynomialSpace<C, A : Ring<C>>(
|
|||||||
contract { callsInPlace(builderAction, InvocationKind.EXACTLY_ONCE) }
|
contract { callsInPlace(builderAction, InvocationKind.EXACTLY_ONCE) }
|
||||||
return buildList {
|
return buildList {
|
||||||
builderAction()
|
builderAction()
|
||||||
while (elementAt(lastIndex).isZero()) removeAt(lastIndex)
|
while (isNotEmpty() && elementAt(lastIndex).isZero()) removeAt(lastIndex)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@OptIn(ExperimentalTypeInference::class)
|
@OptIn(ExperimentalTypeInference::class)
|
||||||
@ -474,7 +474,7 @@ public open class PolynomialSpace<C, A : Ring<C>>(
|
|||||||
contract { callsInPlace(builderAction, InvocationKind.EXACTLY_ONCE) }
|
contract { callsInPlace(builderAction, InvocationKind.EXACTLY_ONCE) }
|
||||||
return buildList(capacity) {
|
return buildList(capacity) {
|
||||||
builderAction()
|
builderAction()
|
||||||
while (elementAt(lastIndex).isZero()) removeAt(lastIndex)
|
while (isNotEmpty() && elementAt(lastIndex).isZero()) removeAt(lastIndex)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -5,11 +5,78 @@
|
|||||||
|
|
||||||
package space.kscience.kmath.functions
|
package space.kscience.kmath.functions
|
||||||
|
|
||||||
|
import space.kscience.kmath.operations.BigInt
|
||||||
import space.kscience.kmath.operations.algebra
|
import space.kscience.kmath.operations.algebra
|
||||||
|
import space.kscience.kmath.operations.toBigInt
|
||||||
|
import space.kscience.kmath.test.misc.Rational
|
||||||
|
import space.kscience.kmath.test.misc.RationalField
|
||||||
|
import space.kscience.kmath.test.misc.gcd
|
||||||
import kotlin.test.Test
|
import kotlin.test.Test
|
||||||
import kotlin.test.assertEquals
|
import kotlin.test.assertEquals
|
||||||
|
|
||||||
class PolynomialTest {
|
class PolynomialTest {
|
||||||
|
@Test
|
||||||
|
fun test_Polynomial_Polynomial_plus() {
|
||||||
|
RationalField.polynomial {
|
||||||
|
// (5/9 - 8/9 x - 8/7 x^2) + (-5/7 + 5/1 x + 5/8 x^2) ?= -10/63 + 37/9 x - 29/56 x^2
|
||||||
|
assertEquals(
|
||||||
|
Polynomial(Rational(-10, 63), Rational(37, 9), Rational(-29, 56)),
|
||||||
|
Polynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)) +
|
||||||
|
Polynomial(Rational(-5, 7), Rational(5, 1), Rational(5, 8)),
|
||||||
|
"test 1"
|
||||||
|
)
|
||||||
|
// (-2/9 - 8/3 x) + (0 + 9/4 x + 2/4 x^2) ?= -2/9 - 5/12 x + 2/4 x^2
|
||||||
|
assertEquals(
|
||||||
|
Polynomial(Rational(-2, 9), Rational(-5, 12), Rational(2, 4)),
|
||||||
|
Polynomial(Rational(-2, 9), Rational(-8, 3)) +
|
||||||
|
Polynomial(Rational(0), Rational(9, 4), Rational(2, 4)),
|
||||||
|
"test 2"
|
||||||
|
)
|
||||||
|
// (-4/7 - 2/6 x + 0 x^2 + 0 x^3) + (-6/3 - 7/2 x + 2/3 x^2) ?= -18/7 - 23/6 x + 2/3 x^2
|
||||||
|
assertEquals(
|
||||||
|
Polynomial(Rational(-18, 7), Rational(-23, 6), Rational(2, 3)),
|
||||||
|
Polynomial(Rational(-4, 7), Rational(-2, 6), Rational(0), Rational(0)) +
|
||||||
|
Polynomial(Rational(-6, 3), Rational(-7, 2), Rational(2, 3)),
|
||||||
|
"test 3"
|
||||||
|
)
|
||||||
|
// (-2/4 - 6/9 x - 4/9 x^2) + (2/4 + 6/9 x + 4/9 x^2) ?= 0
|
||||||
|
assertEquals(
|
||||||
|
Polynomial(),
|
||||||
|
Polynomial(Rational(-2, 4), Rational(-6, 9), Rational(-4, 9)) +
|
||||||
|
Polynomial(Rational(2, 4), Rational(6, 9), Rational(4, 9)),
|
||||||
|
"test 4"
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// @Test
|
||||||
|
// fun test_Polynomial_Polynomial_minus() {
|
||||||
|
// RationalField.polynomial {
|
||||||
|
// assertEquals(
|
||||||
|
// Polynomial(Rational(1, 2), Rational(3, 5), Rational(-2)) +
|
||||||
|
// Polynomial(Rational(3), Rational(7, 8), Rational(1, 9)),
|
||||||
|
// Polynomial(Rational(7, 2), Rational(59, 40), Rational(-17, 9)),
|
||||||
|
// "test 1"
|
||||||
|
// )
|
||||||
|
// assertEquals(
|
||||||
|
// Polynomial(Rational(1, 2), Rational(3, 5)) +
|
||||||
|
// Polynomial(Rational(3), Rational(7, 8), Rational(1, 9)),
|
||||||
|
// Polynomial(Rational(7, 2), Rational(59, 40), Rational(1, 9)),
|
||||||
|
// "test 2"
|
||||||
|
// )
|
||||||
|
// assertEquals(
|
||||||
|
// Polynomial(Rational(1, 2), Rational(3, 5), Rational(0), Rational(0)) +
|
||||||
|
// Polynomial(Rational(3), Rational(7, 8), Rational(1, 9)),
|
||||||
|
// Polynomial(Rational(7, 2), Rational(59, 40), Rational(1, 9)),
|
||||||
|
// "test 3"
|
||||||
|
// )
|
||||||
|
// assertEquals(
|
||||||
|
// Polynomial(Rational(1, 2), Rational(-3, 5), Rational(7, 3)) +
|
||||||
|
// Polynomial(Rational(3), Rational(3, 5), Rational(-7, 3)),
|
||||||
|
// Polynomial(Rational(7, 2)),
|
||||||
|
// "test 4"
|
||||||
|
// )
|
||||||
|
// }
|
||||||
|
// }
|
||||||
@Test
|
@Test
|
||||||
fun simple_polynomial_test() {
|
fun simple_polynomial_test() {
|
||||||
val polynomial : Polynomial<Double>
|
val polynomial : Polynomial<Double>
|
||||||
|
@ -0,0 +1,387 @@
|
|||||||
|
/*
|
||||||
|
* Copyright 2018-2021 KMath contributors.
|
||||||
|
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||||
|
*/
|
||||||
|
|
||||||
|
package space.kscience.kmath.test.misc
|
||||||
|
|
||||||
|
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||||
|
import space.kscience.kmath.operations.BigInt
|
||||||
|
import space.kscience.kmath.operations.Field
|
||||||
|
import space.kscience.kmath.operations.NumbersAddOps
|
||||||
|
import space.kscience.kmath.operations.toBigInt
|
||||||
|
import space.kscience.kmath.operations.BigInt.Companion.ZERO as I0
|
||||||
|
import space.kscience.kmath.operations.BigInt.Companion.ONE as I1
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The class represents rational numbers.
|
||||||
|
*
|
||||||
|
* Instances contain [numerator] and [denominator] represented as [Long].
|
||||||
|
*
|
||||||
|
* Also [numerator] and [denominator] are coprime and [denominator] is positive.
|
||||||
|
*
|
||||||
|
* @author [Gleb Minaev](https://github.com/lounres)
|
||||||
|
*/
|
||||||
|
public class Rational: Comparable<Rational> {
|
||||||
|
public companion object {
|
||||||
|
/**
|
||||||
|
* Constant containing the zero (the additive identity) of the [Rational] field.
|
||||||
|
*/
|
||||||
|
public val ZERO: Rational = Rational(I0)
|
||||||
|
/**
|
||||||
|
* Constant containing the one (the multiplicative identity) of the [Rational] field.
|
||||||
|
*/
|
||||||
|
public val ONE: Rational = Rational(I1)
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Numerator of the fraction. It's stored as non-negative coprime with [denominator] integer.
|
||||||
|
*/
|
||||||
|
public val numerator: BigInt
|
||||||
|
/**
|
||||||
|
* Denominator of the fraction. It's stored as non-zero coprime with [numerator] integer.
|
||||||
|
*/
|
||||||
|
public val denominator: BigInt
|
||||||
|
|
||||||
|
/**
|
||||||
|
* If [toCheckInput] is `true` before assigning values to [Rational.numerator] and [Rational.denominator] makes them coprime and makes
|
||||||
|
* denominator positive. Otherwise, just assigns the values.
|
||||||
|
*
|
||||||
|
* @throws ArithmeticException If denominator is zero.
|
||||||
|
*/
|
||||||
|
internal constructor(numerator: BigInt, denominator: BigInt, toCheckInput: Boolean = true) {
|
||||||
|
if (toCheckInput) {
|
||||||
|
if (denominator == I0) throw ArithmeticException("/ by zero")
|
||||||
|
|
||||||
|
val greatestCommonDivider = gcd(numerator, denominator).let { if (denominator < I0) -it else it }
|
||||||
|
|
||||||
|
this.numerator = numerator / greatestCommonDivider
|
||||||
|
this.denominator = denominator / greatestCommonDivider
|
||||||
|
} else {
|
||||||
|
this.numerator = numerator
|
||||||
|
this.denominator = denominator
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Before assigning values to [Rational.numerator] and [Rational.denominator] makes them coprime and makes
|
||||||
|
* denominator positive.
|
||||||
|
*
|
||||||
|
* @throws ArithmeticException If denominator is zero.
|
||||||
|
*/
|
||||||
|
public constructor(numerator: BigInt, denominator: BigInt) : this(numerator, denominator, true)
|
||||||
|
public constructor(numerator: Int, denominator: BigInt) : this(numerator.toBigInt(), denominator, true)
|
||||||
|
public constructor(numerator: Long, denominator: BigInt) : this(numerator.toBigInt(), denominator, true)
|
||||||
|
public constructor(numerator: BigInt, denominator: Int) : this(numerator, denominator.toBigInt(), true)
|
||||||
|
public constructor(numerator: BigInt, denominator: Long) : this(numerator, denominator.toBigInt(), true)
|
||||||
|
public constructor(numerator: Int, denominator: Int) : this(numerator.toBigInt(), denominator.toBigInt(), true)
|
||||||
|
public constructor(numerator: Int, denominator: Long) : this(numerator.toBigInt(), denominator.toBigInt(), true)
|
||||||
|
public constructor(numerator: Long, denominator: Int) : this(numerator.toBigInt(), denominator.toBigInt(), true)
|
||||||
|
public constructor(numerator: Long, denominator: Long) : this(numerator.toBigInt(), denominator.toBigInt(), true)
|
||||||
|
public constructor(numerator: BigInt) : this(numerator, I1, false)
|
||||||
|
public constructor(numerator: Int) : this(numerator.toBigInt(), I1, false)
|
||||||
|
public constructor(numerator: Long) : this(numerator.toBigInt(), I1, false)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the same instant.
|
||||||
|
*/
|
||||||
|
public operator fun unaryPlus(): Rational = this
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns negation of the instant of [Rational] field.
|
||||||
|
*/
|
||||||
|
public operator fun unaryMinus(): Rational = Rational(-this.numerator, this.denominator)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns sum of the instants of [Rational] field.
|
||||||
|
*/
|
||||||
|
public operator fun plus(other: Rational): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator * other.denominator + denominator * other.numerator,
|
||||||
|
denominator * other.denominator
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns sum of the instants of [Rational] field. [other] is represented as [Rational].
|
||||||
|
*/
|
||||||
|
public operator fun plus(other: BigInt): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator + denominator * other,
|
||||||
|
denominator
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns sum of the instants of [Rational] field. [other] is represented as [Rational].
|
||||||
|
*/
|
||||||
|
public operator fun plus(other: Int): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator + denominator * other.toBigInt(),
|
||||||
|
denominator
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns sum of the instants of [Rational] field. [other] is represented as [Rational].
|
||||||
|
*/
|
||||||
|
public operator fun plus(other: Long): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator + denominator * other.toBigInt(),
|
||||||
|
denominator
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns difference of the instants of [Rational] field.
|
||||||
|
*/
|
||||||
|
public operator fun minus(other: Rational): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator * other.denominator - denominator * other.numerator,
|
||||||
|
denominator * other.denominator
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns difference of the instants of [Rational] field. [other] is represented as [Rational].
|
||||||
|
*/
|
||||||
|
public operator fun minus(other: BigInt): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator - denominator * other,
|
||||||
|
denominator
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns difference of the instants of [Rational] field. [other] is represented as [Rational].
|
||||||
|
*/
|
||||||
|
public operator fun minus(other: Int): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator - denominator * other.toBigInt(),
|
||||||
|
denominator
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns difference of the instants of [Rational] field. [other] is represented as [Rational].
|
||||||
|
*/
|
||||||
|
public operator fun minus(other: Long): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator - denominator * other.toBigInt(),
|
||||||
|
denominator
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns product of the instants of [Rational] field.
|
||||||
|
*/
|
||||||
|
public operator fun times(other: Rational): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator * other.numerator,
|
||||||
|
denominator * other.denominator
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns product of the instants of [Rational] field. [other] is represented as [Rational].
|
||||||
|
*/
|
||||||
|
public operator fun times(other: BigInt): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator * other,
|
||||||
|
denominator
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns product of the instants of [Rational] field. [other] is represented as [Rational].
|
||||||
|
*/
|
||||||
|
public operator fun times(other: Int): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator * other.toBigInt(),
|
||||||
|
denominator
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns product of the instants of [Rational] field. [other] is represented as [Rational].
|
||||||
|
*/
|
||||||
|
public operator fun times(other: Long): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator * other.toBigInt(),
|
||||||
|
denominator
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns quotient of the instants of [Rational] field.
|
||||||
|
*
|
||||||
|
* @throws ArithmeticException if [other] is the zero of the field it can't be a divisor.
|
||||||
|
*/
|
||||||
|
public operator fun div(other: Rational): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator * other.denominator,
|
||||||
|
denominator * other.numerator
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns quotient of the instants of [Rational] field. [other] is represented as [Rational].
|
||||||
|
*
|
||||||
|
* @throws ArithmeticException if [other] is the zero of the field it can't be a divisor.
|
||||||
|
*/
|
||||||
|
public operator fun div(other: BigInt): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator,
|
||||||
|
denominator * other
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns quotient of the instants of [Rational] field. [other] is represented as [Rational].
|
||||||
|
*
|
||||||
|
* @throws ArithmeticException if [other] is the zero of the field it can't be a divisor.
|
||||||
|
*/
|
||||||
|
public operator fun div(other: Int): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator,
|
||||||
|
denominator * other.toBigInt()
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns quotient of the instants of [Rational] field. [other] is represented as [Rational].
|
||||||
|
*
|
||||||
|
* @throws ArithmeticException if [other] is the zero of the field it can't be a divisor.
|
||||||
|
*/
|
||||||
|
public operator fun div(other: Long): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator,
|
||||||
|
denominator * other.toBigInt()
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns reminder from integral division.
|
||||||
|
*
|
||||||
|
* @throws ArithmeticException if [other] is the zero of the field it can't be a divisor.
|
||||||
|
*/
|
||||||
|
public operator fun rem(other: Rational): Rational =
|
||||||
|
Rational(
|
||||||
|
(numerator * other.denominator) % (denominator * other.numerator),
|
||||||
|
denominator * other.denominator
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns reminder from integral division.
|
||||||
|
*
|
||||||
|
* @throws ArithmeticException if [other] is the zero of the field it can't be a divisor.
|
||||||
|
*/
|
||||||
|
public operator fun rem(other: BigInt): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator % denominator * other,
|
||||||
|
denominator * other
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns reminder from integral division.
|
||||||
|
*
|
||||||
|
* @throws ArithmeticException if [other] is the zero of the field it can't be a divisor.
|
||||||
|
*/
|
||||||
|
public operator fun rem(other: Int): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator % denominator * other.toBigInt(),
|
||||||
|
denominator * other.toBigInt()
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns reminder from integral division.
|
||||||
|
*
|
||||||
|
* @throws ArithmeticException if [other] is the zero of the field it can't be a divisor.
|
||||||
|
*/
|
||||||
|
public operator fun rem(other: Long): Rational =
|
||||||
|
Rational(
|
||||||
|
numerator % denominator * other.toBigInt(),
|
||||||
|
denominator * other.toBigInt()
|
||||||
|
)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Checks equality of the instance to [other].
|
||||||
|
*
|
||||||
|
* [BigInt], [Int] and [Long] values are also checked as Rational ones.
|
||||||
|
*/
|
||||||
|
override fun equals(other: Any?): Boolean =
|
||||||
|
when (other) {
|
||||||
|
is Rational -> numerator == other.numerator && denominator == other.denominator
|
||||||
|
is BigInt -> numerator == other && denominator == I1
|
||||||
|
is Int -> numerator == other && denominator == I1
|
||||||
|
is Long -> numerator == other && denominator == I1
|
||||||
|
else -> false
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compares the instance to [other] as [Comparable.compareTo].
|
||||||
|
*
|
||||||
|
* @see Comparable.compareTo
|
||||||
|
*/
|
||||||
|
override operator fun compareTo(other: Rational): Int = (numerator * other.denominator).compareTo(other.numerator * denominator)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compares the instance to [other] as [Comparable.compareTo].
|
||||||
|
*
|
||||||
|
* [Integer] values are also checked as Rational ones.
|
||||||
|
*
|
||||||
|
* @see Comparable.compareTo
|
||||||
|
*/
|
||||||
|
public operator fun compareTo(other: BigInt): Int = (numerator).compareTo(denominator * other)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compares the instance to [other] as [Comparable.compareTo].
|
||||||
|
*
|
||||||
|
* [Int] values are also checked as Rational ones.
|
||||||
|
*
|
||||||
|
* @see Comparable.compareTo
|
||||||
|
*/
|
||||||
|
public operator fun compareTo(other: Int): Int = (numerator).compareTo(denominator * other.toBigInt())
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compares the instance to [other] as [Comparable.compareTo].
|
||||||
|
*
|
||||||
|
* [Long] values are also checked as Rational ones.
|
||||||
|
*
|
||||||
|
* @see Comparable.compareTo
|
||||||
|
*/
|
||||||
|
public operator fun compareTo(other: Long): Int = (numerator).compareTo(denominator * other.toBigInt())
|
||||||
|
|
||||||
|
public override fun hashCode(): Int = 31 * numerator.hashCode() + denominator.hashCode()
|
||||||
|
|
||||||
|
// /** Creates a range from this value to the specified [other] value. */
|
||||||
|
// operator fun rangeTo(other: JBInt) = ClosedRationalRange(this, other.toRational())
|
||||||
|
// /** Creates a range from this value to the specified [other] value. */
|
||||||
|
// operator fun rangeTo(other: Rational) = ClosedRationalRange(this, other)
|
||||||
|
// /** Creates a range from this value to the specified [other] value. */
|
||||||
|
// operator fun rangeTo(other: Int) = ClosedRationalRange(this, other.toRational())
|
||||||
|
// /** Creates a range from this value to the specified [other] value. */
|
||||||
|
// operator fun rangeTo(other: Long) = ClosedRationalRange(this, other.toRational())
|
||||||
|
|
||||||
|
public fun toRational(): Rational = this
|
||||||
|
|
||||||
|
public fun toBigInt(): BigInt = numerator / denominator
|
||||||
|
|
||||||
|
// public fun toInt(): Int = (numerator / denominator).toInt()
|
||||||
|
//
|
||||||
|
// public fun toLong(): Long = (numerator / denominator).toLong()
|
||||||
|
//
|
||||||
|
// public fun toDouble(): Double = (numerator.toDouble() / denominator.toDouble())
|
||||||
|
//
|
||||||
|
// public fun toFloat(): Float = (numerator.toFloat() / denominator.toFloat())
|
||||||
|
|
||||||
|
public override fun toString(): String = if (denominator == I1) "$numerator" else "$numerator/$denominator"
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Algebraic structure for rational numbers.
|
||||||
|
*/
|
||||||
|
@Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE")
|
||||||
|
@OptIn(UnstableKMathAPI::class)
|
||||||
|
public object RationalField : Field<Rational>, NumbersAddOps<Rational> {
|
||||||
|
override inline val zero: Rational get() = Rational.ZERO
|
||||||
|
override inline val one: Rational get() = Rational.ONE
|
||||||
|
|
||||||
|
override inline fun number(value: Number): Rational = Rational(value.toLong())
|
||||||
|
|
||||||
|
override inline fun add(left: Rational, right: Rational): Rational = left + right
|
||||||
|
override inline fun multiply(left: Rational, right: Rational): Rational = left * right
|
||||||
|
override inline fun divide(left: Rational, right: Rational): Rational = left / right
|
||||||
|
override inline fun scale(a: Rational, value: Double): Rational = a * number(value)
|
||||||
|
|
||||||
|
override inline fun Rational.unaryMinus(): Rational = -this
|
||||||
|
override inline fun Rational.plus(arg: Rational): Rational = this + arg
|
||||||
|
override inline fun Rational.minus(arg: Rational): Rational = this - arg
|
||||||
|
override inline fun Rational.times(arg: Rational): Rational = this * arg
|
||||||
|
override inline fun Rational.div(arg: Rational): Rational = this / arg
|
||||||
|
}
|
@ -0,0 +1,113 @@
|
|||||||
|
/*
|
||||||
|
* Copyright 2018-2021 KMath contributors.
|
||||||
|
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||||
|
*/
|
||||||
|
|
||||||
|
package space.kscience.kmath.test.misc
|
||||||
|
|
||||||
|
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||||
|
import space.kscience.kmath.operations.*
|
||||||
|
|
||||||
|
class RationalWithMemorization private constructor(
|
||||||
|
val value: Rational,
|
||||||
|
override val memory : OperationsMemory
|
||||||
|
): WithMemorization {
|
||||||
|
public companion object {
|
||||||
|
/**
|
||||||
|
* Constant containing the zero (the additive identity) of the [Rational] field.
|
||||||
|
*/
|
||||||
|
public val ZERO: RationalWithMemorization = RationalWithMemorization(Rational.ZERO, object : Endpoint {})
|
||||||
|
/**
|
||||||
|
* Constant containing the one (the multiplicative identity) of the [Rational] field.
|
||||||
|
*/
|
||||||
|
public val ONE: RationalWithMemorization = RationalWithMemorization(Rational.ONE, object : Endpoint {})
|
||||||
|
}
|
||||||
|
public constructor(numerator: BigInt, denominator: BigInt) : this(Rational(numerator, denominator), object : Endpoint {})
|
||||||
|
public constructor(numerator: Int, denominator: BigInt) : this(Rational(numerator, denominator), object : Endpoint {})
|
||||||
|
public constructor(numerator: Long, denominator: BigInt) : this(Rational(numerator, denominator), object : Endpoint {})
|
||||||
|
public constructor(numerator: BigInt, denominator: Int) : this(Rational(numerator, denominator), object : Endpoint {})
|
||||||
|
public constructor(numerator: BigInt, denominator: Long) : this(Rational(numerator, denominator), object : Endpoint {})
|
||||||
|
public constructor(numerator: Int, denominator: Int) : this(Rational(numerator, denominator), object : Endpoint {})
|
||||||
|
public constructor(numerator: Int, denominator: Long) : this(Rational(numerator, denominator), object : Endpoint {})
|
||||||
|
public constructor(numerator: Long, denominator: Int) : this(Rational(numerator, denominator), object : Endpoint {})
|
||||||
|
public constructor(numerator: Long, denominator: Long) : this(Rational(numerator, denominator), object : Endpoint {})
|
||||||
|
public constructor(numerator: BigInt) : this(Rational(numerator), object : Endpoint {})
|
||||||
|
public constructor(numerator: Int) : this(Rational(numerator), object : Endpoint {})
|
||||||
|
public constructor(numerator: Long) : this(Rational(numerator), object : Endpoint {})
|
||||||
|
|
||||||
|
public operator fun unaryPlus(): RationalWithMemorization = this
|
||||||
|
public operator fun unaryMinus(): RationalWithMemorization = RationalWithMemorization(
|
||||||
|
-value,
|
||||||
|
object : Negation {
|
||||||
|
override val negated: OperationsMemory = memory
|
||||||
|
}
|
||||||
|
)
|
||||||
|
public operator fun plus(other: RationalWithMemorization): RationalWithMemorization = RationalWithMemorization(
|
||||||
|
value + other.value,
|
||||||
|
object : Sum {
|
||||||
|
override val augend: OperationsMemory = memory
|
||||||
|
override val addend: OperationsMemory = other.memory
|
||||||
|
}
|
||||||
|
)
|
||||||
|
public operator fun minus(other: RationalWithMemorization): RationalWithMemorization = RationalWithMemorization(
|
||||||
|
value - other.value,
|
||||||
|
object : Difference {
|
||||||
|
override val minuend: OperationsMemory = memory
|
||||||
|
override val subtrahend: OperationsMemory = other.memory
|
||||||
|
}
|
||||||
|
)
|
||||||
|
public operator fun times(other: RationalWithMemorization): RationalWithMemorization = RationalWithMemorization(
|
||||||
|
value * other.value,
|
||||||
|
object : Product {
|
||||||
|
override val multiplicand: OperationsMemory = memory
|
||||||
|
override val multiplier: OperationsMemory = other.memory
|
||||||
|
}
|
||||||
|
)
|
||||||
|
public operator fun div(other: RationalWithMemorization): RationalWithMemorization = RationalWithMemorization(
|
||||||
|
value / other.value,
|
||||||
|
object : Quotient {
|
||||||
|
override val dividend: OperationsMemory = memory
|
||||||
|
override val divisor: OperationsMemory = other.memory
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
public override fun equals(other: Any?): Boolean =
|
||||||
|
other is RationalWithMemorization && value == other.value
|
||||||
|
|
||||||
|
public override fun hashCode(): Int = value.hashCode()
|
||||||
|
|
||||||
|
public override fun toString(): String = value.toString()
|
||||||
|
}
|
||||||
|
|
||||||
|
@Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE")
|
||||||
|
public object RationalWithMemorizationRing : Ring<RationalWithMemorization> {
|
||||||
|
override inline val zero: RationalWithMemorization get() = RationalWithMemorization.ZERO
|
||||||
|
override inline val one: RationalWithMemorization get() = RationalWithMemorization.ONE
|
||||||
|
|
||||||
|
override inline fun add(left: RationalWithMemorization, right: RationalWithMemorization): RationalWithMemorization = left + right
|
||||||
|
override inline fun multiply(left: RationalWithMemorization, right: RationalWithMemorization): RationalWithMemorization = left * right
|
||||||
|
|
||||||
|
override inline fun RationalWithMemorization.unaryMinus(): RationalWithMemorization = -this
|
||||||
|
override inline fun RationalWithMemorization.plus(arg: RationalWithMemorization): RationalWithMemorization = this + arg
|
||||||
|
override inline fun RationalWithMemorization.minus(arg: RationalWithMemorization): RationalWithMemorization = this - arg
|
||||||
|
override inline fun RationalWithMemorization.times(arg: RationalWithMemorization): RationalWithMemorization = this * arg
|
||||||
|
}
|
||||||
|
|
||||||
|
@Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE")
|
||||||
|
public object RationalWithMemorizationField : Field<RationalWithMemorization> {
|
||||||
|
override inline val zero: RationalWithMemorization get() = RationalWithMemorization.ZERO
|
||||||
|
override inline val one: RationalWithMemorization get() = RationalWithMemorization.ONE
|
||||||
|
|
||||||
|
override inline fun number(value: Number): RationalWithMemorization = RationalWithMemorization(value.toLong())
|
||||||
|
|
||||||
|
override inline fun add(left: RationalWithMemorization, right: RationalWithMemorization): RationalWithMemorization = left + right
|
||||||
|
override inline fun multiply(left: RationalWithMemorization, right: RationalWithMemorization): RationalWithMemorization = left * right
|
||||||
|
override inline fun divide(left: RationalWithMemorization, right: RationalWithMemorization): RationalWithMemorization = left / right
|
||||||
|
override inline fun scale(a: RationalWithMemorization, value: Double): RationalWithMemorization = a * number(value)
|
||||||
|
|
||||||
|
override inline fun RationalWithMemorization.unaryMinus(): RationalWithMemorization = -this
|
||||||
|
override inline fun RationalWithMemorization.plus(arg: RationalWithMemorization): RationalWithMemorization = this + arg
|
||||||
|
override inline fun RationalWithMemorization.minus(arg: RationalWithMemorization): RationalWithMemorization = this - arg
|
||||||
|
override inline fun RationalWithMemorization.times(arg: RationalWithMemorization): RationalWithMemorization = this * arg
|
||||||
|
override inline fun RationalWithMemorization.div(arg: RationalWithMemorization): RationalWithMemorization = this / arg
|
||||||
|
}
|
@ -0,0 +1,51 @@
|
|||||||
|
/*
|
||||||
|
* Copyright 2018-2021 KMath contributors.
|
||||||
|
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||||
|
*/
|
||||||
|
|
||||||
|
package space.kscience.kmath.test.misc
|
||||||
|
|
||||||
|
sealed interface OperationsMemory
|
||||||
|
|
||||||
|
interface Endpoint: OperationsMemory
|
||||||
|
|
||||||
|
interface Negation: OperationsMemory {
|
||||||
|
val negated: OperationsMemory
|
||||||
|
}
|
||||||
|
|
||||||
|
interface Sum: OperationsMemory {
|
||||||
|
val augend: OperationsMemory
|
||||||
|
val addend: OperationsMemory
|
||||||
|
}
|
||||||
|
|
||||||
|
interface Difference: OperationsMemory {
|
||||||
|
val minuend: OperationsMemory
|
||||||
|
val subtrahend: OperationsMemory
|
||||||
|
}
|
||||||
|
|
||||||
|
interface Product: OperationsMemory {
|
||||||
|
val multiplicand: OperationsMemory
|
||||||
|
val multiplier: OperationsMemory
|
||||||
|
}
|
||||||
|
|
||||||
|
interface Quotient: OperationsMemory {
|
||||||
|
val dividend: OperationsMemory
|
||||||
|
val divisor: OperationsMemory
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
fun equalMemories(one: OperationsMemory, other: OperationsMemory) : Boolean =
|
||||||
|
when(one) {
|
||||||
|
is Negation -> other is Negation && equalMemories(one.negated, other.negated)
|
||||||
|
is Sum -> other is Sum && equalMemories(one.augend, other.augend) && equalMemories(one.addend, other.addend)
|
||||||
|
is Difference -> other is Difference && equalMemories(one.minuend, other.minuend) && equalMemories(one.subtrahend, other.subtrahend)
|
||||||
|
is Product -> other is Product && equalMemories(one.multiplicand, other.multiplicand) && equalMemories(one.multiplier, other.multiplier)
|
||||||
|
is Quotient -> other is Quotient && equalMemories(one.dividend, other.dividend) && equalMemories(one.divisor, other.divisor)
|
||||||
|
is Endpoint -> one === other
|
||||||
|
}
|
||||||
|
|
||||||
|
interface WithMemorization {
|
||||||
|
val memory: OperationsMemory
|
||||||
|
}
|
||||||
|
|
||||||
|
fun equalMemories(one: WithMemorization, other: WithMemorization) : Boolean = equalMemories(one.memory, other.memory)
|
@ -0,0 +1,25 @@
|
|||||||
|
/*
|
||||||
|
* Copyright 2018-2021 KMath contributors.
|
||||||
|
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||||
|
*/
|
||||||
|
|
||||||
|
package space.kscience.kmath.test.misc
|
||||||
|
|
||||||
|
import space.kscience.kmath.operations.*
|
||||||
|
import space.kscience.kmath.operations.BigInt.Companion.ZERO as I0
|
||||||
|
|
||||||
|
// TODO: Move to corresponding module "kmath-number-theory"
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Computes [Greatest Common Divisor](https://en.wikipedia.org/wiki/Greatest_common_divisor) of [a] and [b].
|
||||||
|
*
|
||||||
|
* It's computed by [Euclidean algorithm](https://en.wikipedia.org/wiki/Greatest_common_divisor#Euclidean_algorithm).
|
||||||
|
* Hence, its time complexity is $$O(\log(a+b))$$ (see [Wolfram MathWorld](https://mathworld.wolfram.com/EuclideanAlgorithm.html)).
|
||||||
|
*/
|
||||||
|
public tailrec fun gcd(a: BigInt, b: BigInt): BigInt = if (a == I0) abs(b) else gcd(b % a, a)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Computes [Greatest Common Divisor](https://en.wikipedia.org/wiki/Greatest_common_divisor) of the [values].
|
||||||
|
*/
|
||||||
|
public fun gcd(vararg values: BigInt): BigInt = values.reduce(::gcd)
|
||||||
|
public fun gcd(values: Iterable<BigInt>): BigInt = values.reduce(::gcd)
|
Loading…
Reference in New Issue
Block a user