Feature: Polynomials and rational functions #469
@ -49,6 +49,41 @@ public inline fun <C, A, R> A.scalablePolynomial(block: ScalablePolynomialSpace<
|
|||||||
return ScalablePolynomialSpace(this).block()
|
return ScalablePolynomialSpace(this).block()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Suppress("NOTHING_TO_INLINE")
|
||||||
|
internal inline fun <C> iadd(
|
||||||
|
ring: Ring<C>,
|
||||||
|
augend: MutableList<C>,
|
||||||
|
addend: List<C>,
|
||||||
|
degree: Int
|
||||||
|
) = ring {
|
||||||
|
for (deg in 0 .. degree) augend[deg] += addend[deg]
|
||||||
|
}
|
||||||
|
|
||||||
|
@Suppress("NOTHING_TO_INLINE")
|
||||||
|
internal inline fun <C> addTo(
|
||||||
|
ring: Ring<C>,
|
||||||
|
augend: List<C>,
|
||||||
|
addend: List<C>,
|
||||||
|
degree: Int,
|
||||||
|
target: MutableList<C>
|
||||||
|
) = ring {
|
||||||
|
for (deg in 0 .. degree) target[deg] = augend[deg] + addend[deg]
|
||||||
|
}
|
||||||
|
|
||||||
|
@Suppress("NOTHING_TO_INLINE")
|
||||||
|
internal inline fun <C> multiplyAddingTo(
|
||||||
|
ring: Ring<C>,
|
||||||
|
multiplicand: List<C>,
|
||||||
|
multiplicandDegree: Int,
|
||||||
|
multiplier: List<C>,
|
||||||
|
multiplierDegree: Int,
|
||||||
|
target: MutableList<C>
|
||||||
|
) = ring {
|
||||||
|
for (d in 0 .. multiplicandDegree + multiplierDegree)
|
||||||
|
for (k in max(0, d - multiplierDegree)..min(multiplicandDegree, d))
|
||||||
|
target[d] += multiplicand[k] * multiplier[d - k]
|
||||||
|
}
|
||||||
|
|
||||||
// TODO: May be apply Horner's method too?
|
// TODO: May be apply Horner's method too?
|
||||||
/**
|
/**
|
||||||
* Evaluates the value of the given double polynomial for given double argument.
|
* Evaluates the value of the given double polynomial for given double argument.
|
||||||
@ -80,19 +115,21 @@ public fun <C> Polynomial<C>.substitute(ring: Ring<C>, arg: Polynomial<C>) : Pol
|
|||||||
val argDegree = arg.degree
|
val argDegree = arg.degree
|
||||||
if (argDegree == -1) return coefficients[0].asPolynomial()
|
if (argDegree == -1) return coefficients[0].asPolynomial()
|
||||||
val constantZero = constantZero
|
val constantZero = constantZero
|
||||||
val resultCoefs: MutableList<C> = MutableList(thisDegree + argDegree + 1) { constantZero }
|
val resultCoefs: MutableList<C> = MutableList(thisDegree * argDegree + 1) { constantZero }
|
||||||
val resultCoefsUpdate: MutableList<C> = MutableList(thisDegree + argDegree + 1) { constantZero }
|
val resultCoefsUpdate: MutableList<C> = MutableList(thisDegree * argDegree + 1) { constantZero }
|
||||||
var resultDegree = 0
|
var resultDegree = 0
|
||||||
for (deg in thisDegree downTo 0) {
|
for (deg in thisDegree downTo 0) {
|
||||||
resultCoefsUpdate[0] = coefficients[deg]
|
resultCoefsUpdate[0] = coefficients[deg]
|
||||||
for (updateDeg in 0 .. resultDegree + argDegree) {
|
multiplyAddingTo(
|
||||||
var newC = resultCoefsUpdate[updateDeg]
|
ring=ring,
|
||||||
for (deg1 in max(0, updateDeg - argDegree)..min(resultDegree, updateDeg))
|
multiplicand = resultCoefs,
|
||||||
newC += resultCoefs[deg1] * arg.coefficients[updateDeg - deg1]
|
multiplicandDegree = resultDegree,
|
||||||
resultCoefsUpdate[updateDeg] = newC
|
multiplier = arg.coefficients,
|
||||||
}
|
multiplierDegree = argDegree,
|
||||||
|
target = resultCoefsUpdate
|
||||||
|
)
|
||||||
resultDegree += argDegree
|
resultDegree += argDegree
|
||||||
for (updateDeg in 0 .. resultDegree + argDegree) {
|
for (updateDeg in 0 .. resultDegree) {
|
||||||
resultCoefs[updateDeg] = resultCoefsUpdate[updateDeg]
|
resultCoefs[updateDeg] = resultCoefsUpdate[updateDeg]
|
||||||
resultCoefsUpdate[updateDeg] = constantZero
|
resultCoefsUpdate[updateDeg] = constantZero
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user