Feature: Polynomials and rational functions #469
@ -0,0 +1,132 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.functions
|
||||
|
||||
import space.kscience.kmath.misc.PerformancePitfall
|
||||
import space.kscience.kmath.operations.Ring
|
||||
|
||||
/**
|
||||
* Represents piecewise-defined function.
|
||||
*
|
||||
* @param T the piece key type.
|
||||
* @param R the sub-function type.
|
||||
*/
|
||||
public fun interface Piecewise<in T, out R> {
|
||||
/**
|
||||
* Returns the appropriate sub-function for given piece key.
|
||||
*/
|
||||
public fun findPiece(arg: T): R?
|
||||
}
|
||||
|
||||
/**
|
||||
* Represents piecewise-defined function where all the sub-functions are polynomials.
|
||||
*
|
||||
* @property pieces An ordered list of range-polynomial pairs. The list does not in general guarantee that there are no
|
||||
* "holes" in it.
|
||||
*/
|
||||
public interface PiecewisePolynomial<T : Comparable<T>> : Piecewise<T, ListPolynomial<T>> {
|
||||
public val pieces: Collection<Pair<ClosedRange<T>, ListPolynomial<T>>>
|
||||
|
||||
override fun findPiece(arg: T): ListPolynomial<T>?
|
||||
}
|
||||
|
||||
/**
|
||||
* A generic piecewise without constraints on how pieces are placed
|
||||
*/
|
||||
@PerformancePitfall("findPiece method of resulting piecewise is slow")
|
||||
public fun <T : Comparable<T>> PiecewisePolynomial(
|
||||
pieces: Collection<Pair<ClosedRange<T>, ListPolynomial<T>>>,
|
||||
): PiecewisePolynomial<T> = object : PiecewisePolynomial<T> {
|
||||
override val pieces: Collection<Pair<ClosedRange<T>, ListPolynomial<T>>> = pieces
|
||||
|
||||
override fun findPiece(arg: T): ListPolynomial<T>? = pieces.firstOrNull { arg in it.first }?.second
|
||||
}
|
||||
|
||||
/**
|
||||
* An optimized piecewise that uses not separate pieces, but a range separated by delimiters.
|
||||
* The pieces search is logarithmic.
|
||||
*/
|
||||
private class OrderedPiecewisePolynomial<T : Comparable<T>>(
|
||||
override val pieces: List<Pair<ClosedRange<T>, ListPolynomial<T>>>,
|
||||
) : PiecewisePolynomial<T> {
|
||||
|
||||
override fun findPiece(arg: T): ListPolynomial<T>? {
|
||||
val index = pieces.binarySearch { (range, _) ->
|
||||
when {
|
||||
arg >= range.endInclusive -> -1
|
||||
arg < range.start -> +1
|
||||
else -> 0
|
||||
}
|
||||
}
|
||||
return if (index < 0) null else pieces[index].second
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* A [Piecewise] builder where all the pieces are ordered by the [Comparable] type instances.
|
||||
*
|
||||
* @param T the comparable piece key type.
|
||||
* @param delimiter the initial piecewise separator
|
||||
*/
|
||||
public class PiecewiseBuilder<T : Comparable<T>>(delimiter: T) {
|
||||
private val delimiters: MutableList<T> = arrayListOf(delimiter)
|
||||
private val pieces: MutableList<ListPolynomial<T>> = arrayListOf()
|
||||
|
||||
/**
|
||||
* Dynamically adds a piece to the right side (beyond maximum argument value of previous piece)
|
||||
*
|
||||
* @param right new rightmost position. If is less than current rightmost position, an error is thrown.
|
||||
* @param piece the sub-function.
|
||||
*/
|
||||
public fun putRight(right: T, piece: ListPolynomial<T>) {
|
||||
require(right > delimiters.last()) { "New delimiter should be to the right of old one" }
|
||||
delimiters += right
|
||||
pieces += piece
|
||||
}
|
||||
|
||||
/**
|
||||
* Dynamically adds a piece to the left side (beyond maximum argument value of previous piece)
|
||||
*
|
||||
* @param left the new leftmost position. If is less than current rightmost position, an error is thrown.
|
||||
* @param piece the sub-function.
|
||||
*/
|
||||
public fun putLeft(left: T, piece: ListPolynomial<T>) {
|
||||
require(left < delimiters.first()) { "New delimiter should be to the left of old one" }
|
||||
delimiters.add(0, left)
|
||||
pieces.add(0, piece)
|
||||
}
|
||||
|
||||
public fun build(): PiecewisePolynomial<T> = OrderedPiecewisePolynomial(delimiters.zipWithNext { l, r ->
|
||||
l..r
|
||||
}.zip(pieces))
|
||||
}
|
||||
|
||||
/**
|
||||
* A builder for [PiecewisePolynomial]
|
||||
*/
|
||||
public fun <T : Comparable<T>> PiecewisePolynomial(
|
||||
startingPoint: T,
|
||||
builder: PiecewiseBuilder<T>.() -> Unit,
|
||||
): PiecewisePolynomial<T> = PiecewiseBuilder(startingPoint).apply(builder).build()
|
||||
|
||||
/**
|
||||
* Return a value of polynomial function with given [ring] a given [arg] or null if argument is outside piecewise
|
||||
* definition.
|
||||
*/
|
||||
public fun <T : Comparable<T>, C : Ring<T>> PiecewisePolynomial<T>.substitute(ring: C, arg: T): T? =
|
||||
findPiece(arg)?.substitute(ring, arg)
|
||||
|
||||
/**
|
||||
* Convert this polynomial to a function returning nullable value (null if argument is outside piecewise range).
|
||||
*/
|
||||
public fun <T : Comparable<T>, C : Ring<T>> PiecewisePolynomial<T>.asFunction(ring: C): (T) -> T? = { substitute(ring, it) }
|
||||
|
||||
/**
|
||||
* Convert this polynomial to a function using [defaultValue] for arguments outside the piecewise range.
|
||||
*/
|
||||
public fun <T : Comparable<T>, C : Ring<T>> PiecewisePolynomial<T>.asFunction(ring: C, defaultValue: T): (T) -> T =
|
||||
{ substitute(ring, it) ?: defaultValue }
|
@ -0,0 +1,112 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.integration
|
||||
|
||||
import space.kscience.kmath.functions.PiecewisePolynomial
|
||||
import space.kscience.kmath.functions.integrate
|
||||
import space.kscience.kmath.functions.antiderivative
|
||||
import space.kscience.kmath.interpolation.PolynomialInterpolator
|
||||
import space.kscience.kmath.interpolation.SplineInterpolator
|
||||
import space.kscience.kmath.interpolation.interpolatePolynomials
|
||||
import space.kscience.kmath.misc.PerformancePitfall
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.operations.*
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.DoubleBuffer
|
||||
import space.kscience.kmath.structures.MutableBufferFactory
|
||||
|
||||
/**
|
||||
* Compute analytical indefinite integral of this [PiecewisePolynomial], keeping all intervals intact
|
||||
*/
|
||||
@OptIn(PerformancePitfall::class)
|
||||
@UnstableKMathAPI
|
||||
public fun <T : Comparable<T>> PiecewisePolynomial<T>.integrate(algebra: Field<T>): PiecewisePolynomial<T> =
|
||||
PiecewisePolynomial(pieces.map { it.first to it.second.antiderivative(algebra) })
|
||||
|
||||
/**
|
||||
* Compute definite integral of given [PiecewisePolynomial] piece by piece in a given [range]
|
||||
* Requires [UnivariateIntegrationNodes] or [IntegrationRange] and [IntegrandMaxCalls]
|
||||
*
|
||||
* TODO use context receiver for algebra
|
||||
*/
|
||||
@UnstableKMathAPI
|
||||
public fun <T : Comparable<T>> PiecewisePolynomial<T>.integrate(
|
||||
algebra: Field<T>, range: ClosedRange<T>,
|
||||
): T = algebra.sum(
|
||||
pieces.map { (region, poly) ->
|
||||
val intersectedRange = maxOf(range.start, region.start)..minOf(range.endInclusive, region.endInclusive)
|
||||
//Check if polynomial range is not used
|
||||
if (intersectedRange.start == intersectedRange.endInclusive) algebra.zero
|
||||
else poly.integrate(algebra, intersectedRange)
|
||||
}
|
||||
)
|
||||
|
||||
/**
|
||||
* A generic spline-interpolation-based analytic integration
|
||||
* * [IntegrationRange]—the univariate range of integration. By default, uses `0..1` interval.
|
||||
* * [IntegrandMaxCalls]—the maximum number of function calls during integration. For non-iterative rules, always uses
|
||||
* the maximum number of points. By default, uses 10 points.
|
||||
*/
|
||||
@UnstableKMathAPI
|
||||
public class SplineIntegrator<T : Comparable<T>>(
|
||||
public val algebra: Field<T>,
|
||||
public val bufferFactory: MutableBufferFactory<T>,
|
||||
) : UnivariateIntegrator<T> {
|
||||
override fun process(integrand: UnivariateIntegrand<T>): UnivariateIntegrand<T> = algebra {
|
||||
val range = integrand.getFeature<IntegrationRange>()?.range ?: 0.0..1.0
|
||||
|
||||
val interpolator: PolynomialInterpolator<T> = SplineInterpolator(algebra, bufferFactory)
|
||||
|
||||
val nodes: Buffer<Double> = integrand.getFeature<UnivariateIntegrationNodes>()?.nodes ?: run {
|
||||
val numPoints = integrand.getFeature<IntegrandMaxCalls>()?.maxCalls ?: 100
|
||||
val step = (range.endInclusive - range.start) / (numPoints - 1)
|
||||
DoubleBuffer(numPoints) { i -> range.start + i * step }
|
||||
}
|
||||
|
||||
val values = nodes.map(bufferFactory) { integrand.function(it) }
|
||||
val polynomials = interpolator.interpolatePolynomials(
|
||||
nodes.map(bufferFactory) { number(it) },
|
||||
values
|
||||
)
|
||||
val res = polynomials.integrate(algebra, number(range.start)..number(range.endInclusive))
|
||||
integrand + IntegrandValue(res) + IntegrandCallsPerformed(integrand.calls + nodes.size)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* A simplified double-based spline-interpolation-based analytic integration
|
||||
* * [IntegrationRange]—the univariate range of integration. By default, uses `0.0..1.0` interval.
|
||||
* * [IntegrandMaxCalls]—the maximum number of function calls during integration. For non-iterative rules, always
|
||||
* uses the maximum number of points. By default, uses 10 points.
|
||||
*/
|
||||
@UnstableKMathAPI
|
||||
public object DoubleSplineIntegrator : UnivariateIntegrator<Double> {
|
||||
override fun process(integrand: UnivariateIntegrand<Double>): UnivariateIntegrand<Double> {
|
||||
val range = integrand.getFeature<IntegrationRange>()?.range ?: 0.0..1.0
|
||||
val interpolator: PolynomialInterpolator<Double> = SplineInterpolator(DoubleField, ::DoubleBuffer)
|
||||
|
||||
val nodes: Buffer<Double> = integrand.getFeature<UnivariateIntegrationNodes>()?.nodes ?: run {
|
||||
val numPoints = integrand.getFeature<IntegrandMaxCalls>()?.maxCalls ?: 100
|
||||
val step = (range.endInclusive - range.start) / (numPoints - 1)
|
||||
DoubleBuffer(numPoints) { i -> range.start + i * step }
|
||||
}
|
||||
|
||||
val values = nodes.map { integrand.function(it) }
|
||||
val polynomials = interpolator.interpolatePolynomials(nodes, values)
|
||||
val res = polynomials.integrate(DoubleField, range)
|
||||
return integrand + IntegrandValue(res) + IntegrandCallsPerformed(integrand.calls + nodes.size)
|
||||
}
|
||||
}
|
||||
|
||||
@Suppress("unused")
|
||||
@UnstableKMathAPI
|
||||
public inline val DoubleField.splineIntegrator: UnivariateIntegrator<Double>
|
||||
get() = DoubleSplineIntegrator
|
@ -0,0 +1,92 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
@file:OptIn(UnstableKMathAPI::class)
|
||||
|
||||
package space.kscience.kmath.interpolation
|
||||
|
||||
import space.kscience.kmath.data.XYColumnarData
|
||||
import space.kscience.kmath.functions.PiecewisePolynomial
|
||||
import space.kscience.kmath.functions.asFunction
|
||||
import space.kscience.kmath.functions.substitute
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.operations.Ring
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.asBuffer
|
||||
|
||||
/**
|
||||
* And interpolator for data with x column type [X], y column type [Y].
|
||||
*/
|
||||
public fun interface Interpolator<T, in X : T, Y : T> {
|
||||
public fun interpolate(points: XYColumnarData<T, X, Y>): (X) -> Y
|
||||
}
|
||||
|
||||
/**
|
||||
* And interpolator returning [PiecewisePolynomial] function
|
||||
*/
|
||||
public interface PolynomialInterpolator<T : Comparable<T>> : Interpolator<T, T, T> {
|
||||
public val algebra: Ring<T>
|
||||
|
||||
public fun getDefaultValue(): T = error("Out of bounds")
|
||||
|
||||
public fun interpolatePolynomials(points: XYColumnarData<T, T, T>): PiecewisePolynomial<T>
|
||||
|
||||
override fun interpolate(points: XYColumnarData<T, T, T>): (T) -> T = { x ->
|
||||
interpolatePolynomials(points).substitute(algebra, x) ?: getDefaultValue()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public fun <T : Comparable<T>> PolynomialInterpolator<T>.interpolatePolynomials(
|
||||
x: Buffer<T>,
|
||||
y: Buffer<T>,
|
||||
): PiecewisePolynomial<T> {
|
||||
val pointSet = XYColumnarData.of(x, y)
|
||||
return interpolatePolynomials(pointSet)
|
||||
}
|
||||
|
||||
public fun <T : Comparable<T>> PolynomialInterpolator<T>.interpolatePolynomials(
|
||||
data: Map<T, T>,
|
||||
): PiecewisePolynomial<T> {
|
||||
val pointSet = XYColumnarData.of(data.keys.toList().asBuffer(), data.values.toList().asBuffer())
|
||||
return interpolatePolynomials(pointSet)
|
||||
}
|
||||
|
||||
public fun <T : Comparable<T>> PolynomialInterpolator<T>.interpolatePolynomials(
|
||||
data: List<Pair<T, T>>,
|
||||
): PiecewisePolynomial<T> {
|
||||
val pointSet = XYColumnarData.of(data.map { it.first }.asBuffer(), data.map { it.second }.asBuffer())
|
||||
return interpolatePolynomials(pointSet)
|
||||
}
|
||||
|
||||
public fun <T : Comparable<T>> PolynomialInterpolator<T>.interpolate(
|
||||
x: Buffer<T>,
|
||||
y: Buffer<T>,
|
||||
): (T) -> T? = interpolatePolynomials(x, y).asFunction(algebra)
|
||||
|
||||
public fun <T : Comparable<T>> PolynomialInterpolator<T>.interpolate(
|
||||
data: Map<T, T>,
|
||||
): (T) -> T? = interpolatePolynomials(data).asFunction(algebra)
|
||||
|
||||
public fun <T : Comparable<T>> PolynomialInterpolator<T>.interpolate(
|
||||
data: List<Pair<T, T>>,
|
||||
): (T) -> T? = interpolatePolynomials(data).asFunction(algebra)
|
||||
|
||||
|
||||
public fun <T : Comparable<T>> PolynomialInterpolator<T>.interpolate(
|
||||
x: Buffer<T>,
|
||||
y: Buffer<T>,
|
||||
defaultValue: T,
|
||||
): (T) -> T = interpolatePolynomials(x, y).asFunction(algebra, defaultValue)
|
||||
|
||||
public fun <T : Comparable<T>> PolynomialInterpolator<T>.interpolate(
|
||||
data: Map<T, T>,
|
||||
defaultValue: T,
|
||||
): (T) -> T = interpolatePolynomials(data).asFunction(algebra, defaultValue)
|
||||
|
||||
public fun <T : Comparable<T>> PolynomialInterpolator<T>.interpolate(
|
||||
data: List<Pair<T, T>>,
|
||||
defaultValue: T,
|
||||
): (T) -> T = interpolatePolynomials(data).asFunction(algebra, defaultValue)
|
@ -0,0 +1,43 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.interpolation
|
||||
|
||||
import space.kscience.kmath.data.XYColumnarData
|
||||
import space.kscience.kmath.functions.PiecewisePolynomial
|
||||
import space.kscience.kmath.functions.ListPolynomial
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.operations.Field
|
||||
import space.kscience.kmath.operations.invoke
|
||||
|
||||
@OptIn(UnstableKMathAPI::class)
|
||||
internal fun <T : Comparable<T>> insureSorted(points: XYColumnarData<*, T, *>) {
|
||||
for (i in 0 until points.size - 1)
|
||||
require(points.x[i + 1] > points.x[i]) { "Input data is not sorted at index $i" }
|
||||
}
|
||||
|
||||
/**
|
||||
* Reference JVM implementation: https://github.com/apache/commons-math/blob/master/src/main/java/org/apache/commons/math4/analysis/interpolation/LinearInterpolator.java
|
||||
*/
|
||||
public class LinearInterpolator<T : Comparable<T>>(override val algebra: Field<T>) : PolynomialInterpolator<T> {
|
||||
|
||||
@OptIn(UnstableKMathAPI::class)
|
||||
override fun interpolatePolynomials(points: XYColumnarData<T, T, T>): PiecewisePolynomial<T> = algebra {
|
||||
require(points.size > 0) { "Point array should not be empty" }
|
||||
insureSorted(points)
|
||||
|
||||
PiecewisePolynomial(points.x[0]) {
|
||||
for (i in 0 until points.size - 1) {
|
||||
val slope = (points.y[i + 1] - points.y[i]) / (points.x[i + 1] - points.x[i])
|
||||
val const = points.y[i] - slope * points.x[i]
|
||||
val polynomial = ListPolynomial(const, slope)
|
||||
putRight(points.x[i + 1], polynomial)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public val <T : Comparable<T>> Field<T>.linearInterpolator: LinearInterpolator<T>
|
||||
get() = LinearInterpolator(this)
|
@ -0,0 +1,88 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.interpolation
|
||||
|
||||
import space.kscience.kmath.data.XYColumnarData
|
||||
import space.kscience.kmath.functions.PiecewisePolynomial
|
||||
import space.kscience.kmath.functions.ListPolynomial
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import space.kscience.kmath.operations.Field
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.structures.DoubleBuffer
|
||||
import space.kscience.kmath.structures.MutableBufferFactory
|
||||
|
||||
/**
|
||||
* Generic spline interpolator. Not recommended for performance critical places, use platform-specific and type
|
||||
* specific ones.
|
||||
*
|
||||
* Based on
|
||||
* https://github.com/apache/commons-math/blob/eb57d6d457002a0bb5336d789a3381a24599affe/src/main/java/org/apache/commons/math4/analysis/interpolation/SplineInterpolator.java
|
||||
*/
|
||||
public class SplineInterpolator<T : Comparable<T>>(
|
||||
override val algebra: Field<T>,
|
||||
public val bufferFactory: MutableBufferFactory<T>,
|
||||
) : PolynomialInterpolator<T> {
|
||||
//TODO possibly optimize zeroed buffers
|
||||
|
||||
@OptIn(UnstableKMathAPI::class)
|
||||
override fun interpolatePolynomials(points: XYColumnarData<T, T, T>): PiecewisePolynomial<T> = algebra {
|
||||
require(points.size >= 3) { "Can't use spline interpolator with less than 3 points" }
|
||||
insureSorted(points)
|
||||
// Number of intervals. The number of data points is n + 1.
|
||||
val n = points.size - 1
|
||||
// Differences between knot points
|
||||
val h = bufferFactory(n) { i -> points.x[i + 1] - points.x[i] }
|
||||
val mu = bufferFactory(n) { zero }
|
||||
val z = bufferFactory(n + 1) { zero }
|
||||
|
||||
for (i in 1 until n) {
|
||||
val g = 2.0 * (points.x[i + 1] - points.x[i - 1]) - h[i - 1] * mu[i - 1]
|
||||
mu[i] = h[i] / g
|
||||
z[i] =
|
||||
((points.y[i + 1] * h[i - 1] - points.y[i] * (points.x[i + 1] - points.x[i - 1]) + points.y[i - 1] * h[i]) * 3.0 /
|
||||
(h[i - 1] * h[i]) - h[i - 1] * z[i - 1]) / g
|
||||
}
|
||||
|
||||
// cubic spline coefficients -- b is linear, c quadratic, d is cubic (original y's are constants)
|
||||
|
||||
PiecewisePolynomial(points.x[points.size - 1]) {
|
||||
var cOld = zero
|
||||
|
||||
for (j in n - 1 downTo 0) {
|
||||
val c = z[j] - mu[j] * cOld
|
||||
val a = points.y[j]
|
||||
val b = (points.y[j + 1] - points.y[j]) / h[j] - h[j] * (cOld + 2.0 * c) / 3.0
|
||||
val d = (cOld - c) / (3.0 * h[j])
|
||||
val x0 = points.x[j]
|
||||
val x02 = x0 * x0
|
||||
val x03 = x02 * x0
|
||||
//Shift coefficients to represent absolute polynomial instead of one with an offset
|
||||
val polynomial = ListPolynomial(
|
||||
a - b * x0 + c * x02 - d * x03,
|
||||
b - 2 * c * x0 + 3 * d * x02,
|
||||
c - 3 * d * x0,
|
||||
d
|
||||
)
|
||||
cOld = c
|
||||
putLeft(x0, polynomial)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public fun <T : Comparable<T>> Field<T>.splineInterpolator(
|
||||
bufferFactory: MutableBufferFactory<T>,
|
||||
): SplineInterpolator<T> = SplineInterpolator(this, bufferFactory)
|
||||
|
||||
public val DoubleField.splineInterpolator: SplineInterpolator<Double>
|
||||
get() = SplineInterpolator(this, ::DoubleBuffer)
|
@ -0,0 +1,48 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.integration
|
||||
|
||||
import space.kscience.kmath.functions.ListPolynomial
|
||||
import space.kscience.kmath.functions.integrate
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import kotlin.math.PI
|
||||
import kotlin.math.sin
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertEquals
|
||||
|
||||
@OptIn(UnstableKMathAPI::class)
|
||||
class SplineIntegralTest {
|
||||
|
||||
@Test
|
||||
fun integratePolynomial(){
|
||||
val polynomial = ListPolynomial(1.0, 2.0, 3.0)
|
||||
val integral = polynomial.integrate(DoubleField,1.0..2.0)
|
||||
assertEquals(11.0, integral, 0.001)
|
||||
}
|
||||
|
||||
@Test
|
||||
fun gaussSin() {
|
||||
val res = DoubleField.splineIntegrator.integrate(0.0..2 * PI, IntegrandMaxCalls(5)) { x ->
|
||||
sin(x)
|
||||
}
|
||||
assertEquals(0.0, res.value, 1e-2)
|
||||
}
|
||||
|
||||
@Test
|
||||
fun gaussUniform() {
|
||||
val res = DoubleField.splineIntegrator.integrate(35.0..100.0, IntegrandMaxCalls(20)) { x ->
|
||||
if(x in 30.0..50.0){
|
||||
1.0
|
||||
} else {
|
||||
0.0
|
||||
}
|
||||
}
|
||||
assertEquals(15.0, res.value, 0.5)
|
||||
}
|
||||
|
||||
|
||||
}
|
@ -0,0 +1,29 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.interpolation
|
||||
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertEquals
|
||||
|
||||
internal class LinearInterpolatorTest {
|
||||
@Test
|
||||
fun testInterpolation() {
|
||||
val data = listOf(
|
||||
0.0 to 0.0,
|
||||
1.0 to 1.0,
|
||||
2.0 to 3.0,
|
||||
3.0 to 4.0
|
||||
)
|
||||
|
||||
//val polynomial: PiecewisePolynomial<Double> = DoubleField.linearInterpolator.interpolatePolynomials(data)
|
||||
val function = DoubleField.linearInterpolator.interpolate(data)
|
||||
assertEquals(null, function(-1.0))
|
||||
assertEquals(0.5, function(0.5))
|
||||
assertEquals(2.0, function(1.5))
|
||||
assertEquals(3.0, function(2.0))
|
||||
}
|
||||
}
|
@ -0,0 +1,36 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.interpolation
|
||||
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import kotlin.math.PI
|
||||
import kotlin.math.sin
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertEquals
|
||||
|
||||
internal class SplineInterpolatorTest {
|
||||
@Test
|
||||
fun testInterpolation() {
|
||||
val data = (0..10).map {
|
||||
val x = it.toDouble() / 5 * PI
|
||||
x to sin(x)
|
||||
}
|
||||
|
||||
//val polynomial: PiecewisePolynomial<Double> = DoubleField.splineInterpolator.interpolatePolynomials(data)
|
||||
|
||||
val function = DoubleField.splineInterpolator.interpolate(data, Double.NaN)
|
||||
|
||||
assertEquals(Double.NaN, function(-1.0))
|
||||
assertEquals(sin(0.5), function(0.5), 0.1)
|
||||
assertEquals(sin(1.5), function(1.5), 0.1)
|
||||
assertEquals(sin(2.0), function(2.0), 0.1)
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user