Jacobi eigenvalue algorithm #461
@ -15,10 +15,8 @@ import space.kscience.kmath.linear.invoke
|
||||
import space.kscience.kmath.linear.linearSpace
|
||||
import space.kscience.kmath.multik.multikAlgebra
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.tensorflow.produceWithTF
|
||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
|
||||
import space.kscience.kmath.tensors.core.tensorAlgebra
|
||||
import kotlin.random.Random
|
||||
|
||||
@ -36,9 +34,6 @@ internal class DotBenchmark {
|
||||
random.nextDouble()
|
||||
}
|
||||
|
||||
val tensor1 = DoubleTensorAlgebra.randomNormal(shape = intArrayOf(dim, dim), 12224)
|
||||
val tensor2 = DoubleTensorAlgebra.randomNormal(shape = intArrayOf(dim, dim), 12225)
|
||||
|
||||
val cmMatrix1 = CMLinearSpace { matrix1.toCM() }
|
||||
val cmMatrix2 = CMLinearSpace { matrix2.toCM() }
|
||||
|
||||
@ -51,7 +46,7 @@ internal class DotBenchmark {
|
||||
fun tfDot(blackhole: Blackhole) {
|
||||
blackhole.consume(
|
||||
DoubleField.produceWithTF {
|
||||
tensor1 dot tensor2
|
||||
matrix1 dot matrix1
|
||||
}
|
||||
)
|
||||
}
|
||||
@ -95,9 +90,4 @@ internal class DotBenchmark {
|
||||
fun doubleDot(blackhole: Blackhole) = with(DoubleField.linearSpace) {
|
||||
blackhole.consume(matrix1 dot matrix2)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun doubleTensorDot(blackhole: Blackhole) = DoubleTensorAlgebra.invoke {
|
||||
blackhole.consume(tensor1 dot tensor2)
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user