pre-0.0.3 #46

Merged
altavir merged 75 commits from dev into master 2019-02-20 13:05:39 +03:00
8 changed files with 78 additions and 12 deletions
Showing only changes of commit a2ef50ab47 - Show all commits

View File

@ -4,11 +4,16 @@ import org.apache.commons.math3.linear.*
import org.apache.commons.math3.linear.RealMatrix
import org.apache.commons.math3.linear.RealVector
inline class CMMatrix(val origin: RealMatrix) : Matrix<Double> {
class CMMatrix(val origin: RealMatrix, features: Set<MatrixFeature>? = null) : Matrix<Double> {
override val rowNum: Int get() = origin.rowDimension
override val colNum: Int get() = origin.columnDimension
override val features: Set<MatrixFeature> get() = emptySet()
override val features: Set<MatrixFeature> = features ?: sequence<MatrixFeature> {
if(origin is DiagonalMatrix) yield(DiagonalFeature)
}.toSet()
override fun suggestFeature(vararg features: MatrixFeature) =
CMMatrix(origin, this.features + features)
override fun get(i: Int, j: Int): Double = origin.getEntry(i, j)
}
@ -23,7 +28,7 @@ fun Matrix<Double>.toCM(): CMMatrix = if (this is CMMatrix) {
fun RealMatrix.toMatrix() = CMMatrix(this)
inline class CMVector(val origin: RealVector) : Point<Double> {
class CMVector(val origin: RealVector) : Point<Double> {
override val size: Int get() = origin.dimension
override fun get(index: Int): Double = origin.getEntry(index)

View File

@ -35,6 +35,9 @@ class BufferMatrix<T : Any>(
override val shape: IntArray get() = intArrayOf(rowNum, colNum)
override fun suggestFeature(vararg features: MatrixFeature) =
BufferMatrix(rowNum, colNum, buffer, this.features + features)
override fun get(index: IntArray): T = get(index[0], index[1])
override fun get(i: Int, j: Int): T = buffer[i * colNum + j]

View File

@ -8,20 +8,19 @@ import scientifik.kmath.structures.MutableBufferFactory
import scientifik.kmath.structures.NDStructure
import scientifik.kmath.structures.get
class LUPDecomposition<T : Comparable<T>>(
private val elementContext: Ring<T>,
internal val lu: NDStructure<T>,
val pivot: IntArray,
private val even: Boolean
) : DeterminantFeature<T> {
) : LUPDecompositionFeature<T>, DeterminantFeature<T> {
/**
* Returns the matrix L of the decomposition.
*
* L is a lower-triangular matrix with [Ring.one] in diagonal
*/
val l: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
override val l: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1], setOf(LFeature)) { i, j ->
when {
j < i -> lu[i, j]
j == i -> elementContext.one
@ -35,7 +34,7 @@ class LUPDecomposition<T : Comparable<T>>(
*
* U is an upper-triangular matrix including the diagonal
*/
val u: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
override val u: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1], setOf(UFeature)) { i, j ->
if (j >= i) lu[i, j] else elementContext.zero
}
@ -46,7 +45,7 @@ class LUPDecomposition<T : Comparable<T>>(
* P is a sparse matrix with exactly one element set to [Ring.one] in
* each row and each column, all other elements being set to [Ring.zero].
*/
val p: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
override val p: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
if (j == pivot[i]) elementContext.one else elementContext.zero
}

View File

@ -116,6 +116,14 @@ interface Matrix<T : Any> : NDStructure<T> {
val features: Set<MatrixFeature>
/**
* Suggest new feature for this matrix. The result is the new matrix that may or may not reuse existing data structure.
*
* The implementation does not guarantee to check that matrix actually have the feature, so one should be careful to
* add only those features that are valid.
*/
fun suggestFeature(vararg features: MatrixFeature): Matrix<T>
operator fun get(i: Int, j: Int): T
override fun get(index: IntArray): T = get(index[0], index[1])

View File

@ -12,7 +12,7 @@ interface MatrixFeature
object DiagonalFeature : MatrixFeature
/**
* Matix with this feature has all zero elements
* Matrix with this feature has all zero elements
*/
object ZeroFeature : MatrixFeature
@ -21,10 +21,42 @@ object ZeroFeature : MatrixFeature
*/
object UnitFeature : MatrixFeature
/**
* Inverted matrix feature
*/
interface InverseMatrixFeature<T : Any> : MatrixFeature {
val inverse: Matrix<T>
}
/**
* A determinant container
*/
interface DeterminantFeature<T : Any> : MatrixFeature {
val determinant: T
}
}
@Suppress("FunctionName")
fun <T: Any> DeterminantFeature(determinant: T) = object: DeterminantFeature<T>{
override val determinant: T = determinant
}
/**
* Lower triangular matrix
*/
object LFeature: MatrixFeature
/**
* Upper triangular feature
*/
object UFeature: MatrixFeature
/**
* TODO add documentation
*/
interface LUPDecompositionFeature<T : Any> : MatrixFeature {
val l: Matrix<T>
val u: Matrix<T>
val p: Matrix<T>
}
//TODO add sparse matrix feature

View File

@ -8,6 +8,9 @@ class VirtualMatrix<T : Any>(
) : Matrix<T> {
override fun get(i: Int, j: Int): T = generator(i, j)
override fun suggestFeature(vararg features: MatrixFeature) =
VirtualMatrix(rowNum, colNum, this.features + features, generator)
override fun equals(other: Any?): Boolean {
if (this === other) return true
if (other !is Matrix<*>) return false

View File

@ -15,6 +15,7 @@ class ShortNDRing(override val shape: IntArray) :
override val zero by lazy { produce { ShortRing.zero } }
override val one by lazy { produce { ShortRing.one } }
@Suppress("OVERRIDE_BY_INLINE")
override inline fun buildBuffer(size: Int, crossinline initializer: (Int) -> Short): Buffer<Short> =
ShortBuffer(ShortArray(size) { initializer(it) })

View File

@ -48,10 +48,25 @@ class KomaMatrixContext<T : Any>(val factory: MatrixFactory<koma.matrix.Matrix<T
KomaMatrix(a.toKoma().origin.inv())
}
inline class KomaMatrix<T : Any>(val origin: koma.matrix.Matrix<T>) : Matrix<T> {
class KomaMatrix<T : Any>(val origin: koma.matrix.Matrix<T>, features: Set<MatrixFeature>? = null) :
Matrix<T> {
override val rowNum: Int get() = origin.numRows()
override val colNum: Int get() = origin.numCols()
override val features: Set<MatrixFeature> get() = emptySet()
override val features: Set<MatrixFeature> = features ?: setOf(
object : DeterminantFeature<T> {
override val determinant: T get() = origin.det()
},
object : LUPDecompositionFeature<T> {
private val lup by lazy { origin.LU() }
override val l: Matrix<T> get() = KomaMatrix(lup.second)
override val u: Matrix<T> get() = KomaMatrix(lup.third)
override val p: Matrix<T> get() = KomaMatrix(lup.first)
}
)
override fun suggestFeature(vararg features: MatrixFeature): Matrix<T> =
KomaMatrix(this.origin, this.features + features)
override fun get(i: Int, j: Int): T = origin.getGeneric(i, j)
}