v0.3.0-dev-18 #459
@ -186,7 +186,9 @@ public abstract class TensorFlowAlgebra<T, TT : TType, A : Ring<T>> internal con
|
||||
}
|
||||
|
||||
override fun StructureND<T>.dot(other: StructureND<T>): TensorFlowOutput<T, TT> = biOp(other) { l, r ->
|
||||
ops.linalg.matMul(l, r)
|
||||
ops.linalg.matMul(
|
||||
if (l.asTensor().shape().numDimensions() == 1) ops.expandDims(l,ops.constant(0)) else l,
|
||||
if (r.asTensor().shape().numDimensions() == 1) ops.expandDims(r,ops.constant(-1)) else r)
|
||||
}
|
||||
|
||||
override fun diagonalEmbedding(
|
||||
|
@ -208,7 +208,7 @@ public interface TensorAlgebra<T, A : Ring<T>> : RingOpsND<T, A> {
|
||||
*
|
||||
* 3. If the first argument is 1-dimensional and the second argument is 2-dimensional,
|
||||
* a 1 is prepended to its dimension for the purpose of the matrix multiply.
|
||||
* After the matrix multiply, the prepended dimension is removed.
|
||||
* After the matrix multiply, depending on the implementation the prepended dimension might be removed.
|
||||
*
|
||||
* 4. If the first argument is 2-dimensional and the second argument is 1-dimensional,
|
||||
* the matrix-vector product is returned.
|
||||
|
Loading…
Reference in New Issue
Block a user