v0.3.0-dev-9 #324
@ -2,7 +2,7 @@ package space.kscience.kmath.tensors.core
|
||||
|
||||
import kotlin.math.max
|
||||
|
||||
internal inline fun multiIndexBroadCasting(tensor: DoubleTensor, resTensor: DoubleTensor, linearSize: Int) {
|
||||
internal fun multiIndexBroadCasting(tensor: DoubleTensor, resTensor: DoubleTensor, linearSize: Int) {
|
||||
for (linearIndex in 0 until linearSize) {
|
||||
val totalMultiIndex = resTensor.linearStructure.index(linearIndex)
|
||||
val curMultiIndex = tensor.shape.copyOf()
|
||||
@ -23,7 +23,7 @@ internal inline fun multiIndexBroadCasting(tensor: DoubleTensor, resTensor: Doub
|
||||
}
|
||||
}
|
||||
|
||||
internal inline fun broadcastShapes(vararg shapes: IntArray): IntArray {
|
||||
internal fun broadcastShapes(vararg shapes: IntArray): IntArray {
|
||||
var totalDim = 0
|
||||
for (shape in shapes) {
|
||||
totalDim = max(totalDim, shape.size)
|
||||
@ -51,7 +51,7 @@ internal inline fun broadcastShapes(vararg shapes: IntArray): IntArray {
|
||||
return totalShape
|
||||
}
|
||||
|
||||
internal inline fun broadcastTo(tensor: DoubleTensor, newShape: IntArray): DoubleTensor {
|
||||
internal fun broadcastTo(tensor: DoubleTensor, newShape: IntArray): DoubleTensor {
|
||||
if (tensor.shape.size > newShape.size) {
|
||||
throw RuntimeException("Tensor is not compatible with the new shape")
|
||||
}
|
||||
@ -71,7 +71,7 @@ internal inline fun broadcastTo(tensor: DoubleTensor, newShape: IntArray): Doubl
|
||||
return resTensor
|
||||
}
|
||||
|
||||
internal inline fun broadcastTensors(vararg tensors: DoubleTensor): List<DoubleTensor> {
|
||||
internal fun broadcastTensors(vararg tensors: DoubleTensor): List<DoubleTensor> {
|
||||
val totalShape = broadcastShapes(*(tensors.map { it.shape }).toTypedArray())
|
||||
val n = totalShape.reduce { acc, i -> acc * i }
|
||||
|
||||
@ -85,7 +85,7 @@ internal inline fun broadcastTensors(vararg tensors: DoubleTensor): List<DoubleT
|
||||
return res
|
||||
}
|
||||
|
||||
internal inline fun broadcastOuterTensors(vararg tensors: DoubleTensor): List<DoubleTensor> {
|
||||
internal fun broadcastOuterTensors(vararg tensors: DoubleTensor): List<DoubleTensor> {
|
||||
val onlyTwoDims = tensors.asSequence().onEach {
|
||||
require(it.shape.size >= 2) {
|
||||
throw RuntimeException("Tensors must have at least 2 dimensions")
|
||||
@ -99,7 +99,7 @@ internal inline fun broadcastOuterTensors(vararg tensors: DoubleTensor): List<Do
|
||||
val totalShape = broadcastShapes(*(tensors.map { it.shape.sliceArray(0..it.shape.size - 3) }).toTypedArray())
|
||||
val n = totalShape.reduce { acc, i -> acc * i }
|
||||
|
||||
val res = ArrayList<DoubleTensor>(0)
|
||||
return buildList {
|
||||
for (tensor in tensors) {
|
||||
val matrixShape = tensor.shape.sliceArray(tensor.shape.size - 2 until tensor.shape.size).copyOf()
|
||||
val matrixSize = matrixShape[0] * matrixShape[1]
|
||||
@ -137,8 +137,7 @@ internal inline fun broadcastOuterTensors(vararg tensors: DoubleTensor): List<Do
|
||||
newTensor.mutableBuffer.array()[newTensor.bufferStart + curLinearIndex]
|
||||
}
|
||||
}
|
||||
res += resTensor
|
||||
add(resTensor)
|
||||
}
|
||||
}
|
||||
|
||||
return res
|
||||
}
|
@ -5,38 +5,38 @@ import space.kscience.kmath.tensors.core.algebras.DoubleLinearOpsTensorAlgebra
|
||||
import space.kscience.kmath.tensors.core.algebras.DoubleTensorAlgebra
|
||||
|
||||
|
||||
internal inline fun checkEmptyShape(shape: IntArray): Unit =
|
||||
internal fun checkEmptyShape(shape: IntArray): Unit =
|
||||
check(shape.isNotEmpty()) {
|
||||
"Illegal empty shape provided"
|
||||
}
|
||||
|
||||
internal inline fun checkEmptyDoubleBuffer(buffer: DoubleArray): Unit =
|
||||
internal fun checkEmptyDoubleBuffer(buffer: DoubleArray): Unit =
|
||||
check(buffer.isNotEmpty()) {
|
||||
"Illegal empty buffer provided"
|
||||
}
|
||||
|
||||
internal inline fun checkBufferShapeConsistency(shape: IntArray, buffer: DoubleArray): Unit =
|
||||
internal fun checkBufferShapeConsistency(shape: IntArray, buffer: DoubleArray): Unit =
|
||||
check(buffer.size == shape.reduce(Int::times)) {
|
||||
"Inconsistent shape ${shape.toList()} for buffer of size ${buffer.size} provided"
|
||||
}
|
||||
|
||||
|
||||
internal inline fun <T> checkShapesCompatible(a: TensorStructure<T>, b: TensorStructure<T>): Unit =
|
||||
internal fun <T> checkShapesCompatible(a: TensorStructure<T>, b: TensorStructure<T>): Unit =
|
||||
check(a.shape contentEquals b.shape) {
|
||||
"Incompatible shapes ${a.shape.toList()} and ${b.shape.toList()} "
|
||||
}
|
||||
|
||||
|
||||
internal inline fun checkTranspose(dim: Int, i: Int, j: Int): Unit =
|
||||
internal fun checkTranspose(dim: Int, i: Int, j: Int): Unit =
|
||||
check((i < dim) and (j < dim)) {
|
||||
"Cannot transpose $i to $j for a tensor of dim $dim"
|
||||
}
|
||||
|
||||
internal inline fun <T> checkView(a: TensorStructure<T>, shape: IntArray): Unit =
|
||||
internal fun <T> checkView(a: TensorStructure<T>, shape: IntArray): Unit =
|
||||
check(a.shape.reduce(Int::times) == shape.reduce(Int::times))
|
||||
|
||||
|
||||
internal inline fun checkSquareMatrix(shape: IntArray): Unit {
|
||||
internal fun checkSquareMatrix(shape: IntArray): Unit {
|
||||
val n = shape.size
|
||||
check(n >= 2) {
|
||||
"Expected tensor with 2 or more dimensions, got size $n instead"
|
||||
@ -46,14 +46,14 @@ internal inline fun checkSquareMatrix(shape: IntArray): Unit {
|
||||
}
|
||||
}
|
||||
|
||||
internal inline fun DoubleTensorAlgebra.checkSymmetric(
|
||||
internal fun DoubleTensorAlgebra.checkSymmetric(
|
||||
tensor: TensorStructure<Double>, epsilon: Double = 1e-6
|
||||
): Unit =
|
||||
check(tensor.eq(tensor.transpose(), epsilon)) {
|
||||
"Tensor is not symmetric about the last 2 dimensions at precision $epsilon"
|
||||
}
|
||||
|
||||
internal inline fun DoubleLinearOpsTensorAlgebra.checkPositiveDefinite(
|
||||
internal fun DoubleLinearOpsTensorAlgebra.checkPositiveDefinite(
|
||||
tensor: DoubleTensor, epsilon: Double = 1e-6
|
||||
): Unit {
|
||||
checkSymmetric(tensor, epsilon)
|
||||
|
@ -13,7 +13,7 @@ import kotlin.math.sign
|
||||
import kotlin.math.sqrt
|
||||
|
||||
|
||||
internal inline fun <T> BufferedTensor<T>.vectorSequence(): Sequence<BufferedTensor<T>> = sequence {
|
||||
internal fun <T> BufferedTensor<T>.vectorSequence(): Sequence<BufferedTensor<T>> = sequence {
|
||||
val n = shape.size
|
||||
val vectorOffset = shape[n - 1]
|
||||
val vectorShape = intArrayOf(shape.last())
|
||||
@ -23,9 +23,9 @@ internal inline fun <T> BufferedTensor<T>.vectorSequence(): Sequence<BufferedTen
|
||||
}
|
||||
}
|
||||
|
||||
internal inline fun <T> BufferedTensor<T>.matrixSequence(): Sequence<BufferedTensor<T>> = sequence {
|
||||
check(shape.size >= 2) { "todo" }
|
||||
internal fun <T> BufferedTensor<T>.matrixSequence(): Sequence<BufferedTensor<T>> = sequence {
|
||||
val n = shape.size
|
||||
check(n >= 2) { "Expected tensor with 2 or more dimensions, got size $n" }
|
||||
val matrixOffset = shape[n - 1] * shape[n - 2]
|
||||
val matrixShape = intArrayOf(shape[n - 2], shape[n - 1])
|
||||
for (offset in 0 until numElements step matrixOffset) {
|
||||
@ -46,8 +46,7 @@ internal inline fun <T> BufferedTensor<T>.forEachMatrix(matrixAction: (BufferedT
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
internal inline fun dotHelper(
|
||||
internal fun dotHelper(
|
||||
a: MutableStructure2D<Double>,
|
||||
b: MutableStructure2D<Double>,
|
||||
res: MutableStructure2D<Double>,
|
||||
@ -64,10 +63,11 @@ internal inline fun dotHelper(
|
||||
}
|
||||
}
|
||||
|
||||
internal inline fun luHelper(
|
||||
internal fun luHelper(
|
||||
lu: MutableStructure2D<Double>,
|
||||
pivots: MutableStructure1D<Int>,
|
||||
epsilon: Double): Boolean {
|
||||
epsilon: Double
|
||||
): Boolean {
|
||||
|
||||
val m = lu.rowNum
|
||||
|
||||
@ -114,7 +114,7 @@ internal inline fun luHelper(
|
||||
return false
|
||||
}
|
||||
|
||||
internal inline fun <T> BufferedTensor<T>.setUpPivots(): IntTensor {
|
||||
internal fun <T> BufferedTensor<T>.setUpPivots(): IntTensor {
|
||||
val n = this.shape.size
|
||||
val m = this.shape.last()
|
||||
val pivotsShape = IntArray(n - 1) { i -> this.shape[i] }
|
||||
@ -126,9 +126,10 @@ internal inline fun <T> BufferedTensor<T>.setUpPivots(): IntTensor {
|
||||
)
|
||||
}
|
||||
|
||||
internal inline fun DoubleLinearOpsTensorAlgebra.computeLU(
|
||||
internal fun DoubleLinearOpsTensorAlgebra.computeLU(
|
||||
tensor: DoubleTensor,
|
||||
epsilon: Double): Pair<DoubleTensor, IntTensor>? {
|
||||
epsilon: Double
|
||||
): Pair<DoubleTensor, IntTensor>? {
|
||||
|
||||
checkSquareMatrix(tensor.shape)
|
||||
val luTensor = tensor.copy()
|
||||
@ -141,7 +142,7 @@ internal inline fun DoubleLinearOpsTensorAlgebra.computeLU(
|
||||
return Pair(luTensor, pivotsTensor)
|
||||
}
|
||||
|
||||
internal inline fun pivInit(
|
||||
internal fun pivInit(
|
||||
p: MutableStructure2D<Double>,
|
||||
pivot: MutableStructure1D<Int>,
|
||||
n: Int
|
||||
@ -151,7 +152,7 @@ internal inline fun pivInit(
|
||||
}
|
||||
}
|
||||
|
||||
internal inline fun luPivotHelper(
|
||||
internal fun luPivotHelper(
|
||||
l: MutableStructure2D<Double>,
|
||||
u: MutableStructure2D<Double>,
|
||||
lu: MutableStructure2D<Double>,
|
||||
@ -172,7 +173,7 @@ internal inline fun luPivotHelper(
|
||||
}
|
||||
}
|
||||
|
||||
internal inline fun choleskyHelper(
|
||||
internal fun choleskyHelper(
|
||||
a: MutableStructure2D<Double>,
|
||||
l: MutableStructure2D<Double>,
|
||||
n: Int
|
||||
@ -193,7 +194,7 @@ internal inline fun choleskyHelper(
|
||||
}
|
||||
}
|
||||
|
||||
internal inline fun luMatrixDet(lu: MutableStructure2D<Double>, pivots: MutableStructure1D<Int>): Double {
|
||||
internal fun luMatrixDet(lu: MutableStructure2D<Double>, pivots: MutableStructure1D<Int>): Double {
|
||||
if (lu[0, 0] == 0.0) {
|
||||
return 0.0
|
||||
}
|
||||
@ -202,7 +203,7 @@ internal inline fun luMatrixDet(lu: MutableStructure2D<Double>, pivots: MutableS
|
||||
return (0 until m).asSequence().map { lu[it, it] }.fold(sign) { left, right -> left * right }
|
||||
}
|
||||
|
||||
internal inline fun luMatrixInv(
|
||||
internal fun luMatrixInv(
|
||||
lu: MutableStructure2D<Double>,
|
||||
pivots: MutableStructure1D<Int>,
|
||||
invMatrix: MutableStructure2D<Double>
|
||||
@ -229,7 +230,7 @@ internal inline fun luMatrixInv(
|
||||
}
|
||||
}
|
||||
|
||||
internal inline fun DoubleLinearOpsTensorAlgebra.qrHelper(
|
||||
internal fun DoubleLinearOpsTensorAlgebra.qrHelper(
|
||||
matrix: DoubleTensor,
|
||||
q: DoubleTensor,
|
||||
r: MutableStructure2D<Double>
|
||||
@ -259,7 +260,7 @@ internal inline fun DoubleLinearOpsTensorAlgebra.qrHelper(
|
||||
}
|
||||
}
|
||||
|
||||
internal inline fun DoubleLinearOpsTensorAlgebra.svd1d(a: DoubleTensor, epsilon: Double = 1e-10): DoubleTensor {
|
||||
internal fun DoubleLinearOpsTensorAlgebra.svd1d(a: DoubleTensor, epsilon: Double = 1e-10): DoubleTensor {
|
||||
val (n, m) = a.shape
|
||||
var v: DoubleTensor
|
||||
val b: DoubleTensor
|
||||
@ -283,7 +284,7 @@ internal inline fun DoubleLinearOpsTensorAlgebra.svd1d(a: DoubleTensor, epsilon:
|
||||
}
|
||||
}
|
||||
|
||||
internal inline fun DoubleLinearOpsTensorAlgebra.svdHelper(
|
||||
internal fun DoubleLinearOpsTensorAlgebra.svdHelper(
|
||||
matrix: DoubleTensor,
|
||||
USV: Pair<BufferedTensor<Double>, Pair<BufferedTensor<Double>, BufferedTensor<Double>>>,
|
||||
m: Int, n: Int, epsilon: Double
|
||||
@ -335,7 +336,7 @@ internal inline fun DoubleLinearOpsTensorAlgebra.svdHelper(
|
||||
}
|
||||
}
|
||||
|
||||
internal inline fun cleanSymHelper(matrix: MutableStructure2D<Double>, n: Int) {
|
||||
internal fun cleanSymHelper(matrix: MutableStructure2D<Double>, n: Int) {
|
||||
for (i in 0 until n)
|
||||
for (j in 0 until n) {
|
||||
if (i == j) {
|
||||
|
@ -23,19 +23,19 @@ internal fun Buffer<Double>.array(): DoubleArray = when (this) {
|
||||
else -> this.toDoubleArray()
|
||||
}
|
||||
|
||||
internal inline fun getRandomNormals(n: Int, seed: Long): DoubleArray {
|
||||
internal fun getRandomNormals(n: Int, seed: Long): DoubleArray {
|
||||
val distribution = GaussianSampler(0.0, 1.0)
|
||||
val generator = RandomGenerator.default(seed)
|
||||
return distribution.sample(generator).nextBufferBlocking(n).toDoubleArray()
|
||||
}
|
||||
|
||||
internal inline fun getRandomUnitVector(n: Int, seed: Long): DoubleArray {
|
||||
internal fun getRandomUnitVector(n: Int, seed: Long): DoubleArray {
|
||||
val unnorm = getRandomNormals(n, seed)
|
||||
val norm = sqrt(unnorm.map { it * it }.sum())
|
||||
return unnorm.map { it / norm }.toDoubleArray()
|
||||
}
|
||||
|
||||
internal inline fun minusIndexFrom(n: Int, i: Int) : Int = if (i >= 0) i else {
|
||||
internal fun minusIndexFrom(n: Int, i: Int): Int = if (i >= 0) i else {
|
||||
val ii = n + i
|
||||
check(ii >= 0) {
|
||||
"Out of bound index $i for tensor of dim $n"
|
||||
@ -43,15 +43,16 @@ internal inline fun minusIndexFrom(n: Int, i: Int) : Int = if (i >= 0) i else {
|
||||
ii
|
||||
}
|
||||
|
||||
internal inline fun <T> BufferedTensor<T>.minusIndex(i: Int): Int = minusIndexFrom(this.dimension, i)
|
||||
internal fun <T> BufferedTensor<T>.minusIndex(i: Int): Int = minusIndexFrom(this.dimension, i)
|
||||
|
||||
internal inline fun format(value: Double, digits: Int = 4): String {
|
||||
internal fun format(value: Double, digits: Int = 4): String {
|
||||
val ten = 10.0
|
||||
val approxOrder = if (value == 0.0) 0 else ceil(log10(abs(value))).toInt()
|
||||
val order = if (
|
||||
((value % ten) == 0.0) or
|
||||
(value == 1.0) or
|
||||
((1/value) % ten == 0.0)) approxOrder else approxOrder - 1
|
||||
((1 / value) % ten == 0.0)
|
||||
) approxOrder else approxOrder - 1
|
||||
val lead = value / ten.pow(order)
|
||||
val leadDisplay = round(lead * ten.pow(digits)) / ten.pow(digits)
|
||||
val orderDisplay = if (order == 0) "" else if (order > 0) "E+$order" else "E$order"
|
||||
@ -63,7 +64,7 @@ internal inline fun format(value: Double, digits: Int = 4): String {
|
||||
return "$res$endSpace"
|
||||
}
|
||||
|
||||
internal inline fun DoubleTensor.toPrettyString(): String = buildString {
|
||||
internal fun DoubleTensor.toPrettyString(): String = buildString {
|
||||
var offset = 0
|
||||
val shape = this@toPrettyString.shape
|
||||
val linearStructure = this@toPrettyString.linearStructure
|
||||
@ -72,32 +73,36 @@ internal inline fun DoubleTensor.toPrettyString(): String = buildString {
|
||||
append(initString)
|
||||
var charOffset = 3
|
||||
for (vector in vectorSequence()) {
|
||||
append(" ".repeat(charOffset))
|
||||
repeat(charOffset) { append(' ') }
|
||||
val index = linearStructure.index(offset)
|
||||
for (ind in index.reversed()) {
|
||||
if (ind != 0) {
|
||||
break
|
||||
}
|
||||
append("[")
|
||||
append('[')
|
||||
charOffset += 1
|
||||
}
|
||||
|
||||
val values = vector.as1D().toMutableList().map(::format)
|
||||
|
||||
append(values.joinToString(", "))
|
||||
append("]")
|
||||
values.joinTo(this, separator = ", ")
|
||||
|
||||
append(']')
|
||||
charOffset -= 1
|
||||
for ((ind, maxInd) in index.reversed().zip(shape.reversed()).drop(1)){
|
||||
|
||||
index.reversed().zip(shape.reversed()).drop(1).forEach { (ind, maxInd) ->
|
||||
if (ind != maxInd - 1) {
|
||||
break
|
||||
return@forEach
|
||||
}
|
||||
append("]")
|
||||
append(']')
|
||||
charOffset -= 1
|
||||
}
|
||||
|
||||
offset += vectorSize
|
||||
if (this@toPrettyString.numElements == offset) {
|
||||
break
|
||||
}
|
||||
|
||||
append(",\n")
|
||||
}
|
||||
append("\n)")
|
||||
|
@ -182,7 +182,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
|
||||
}
|
||||
|
||||
|
||||
private inline fun DoubleLinearOpsTensorAlgebra.testSVDFor(tensor: DoubleTensor, epsilon: Double = 1e-10): Unit {
|
||||
private fun DoubleLinearOpsTensorAlgebra.testSVDFor(tensor: DoubleTensor, epsilon: Double = 1e-10): Unit {
|
||||
val svd = tensor.svd()
|
||||
|
||||
val tensorSVD = svd.first
|
||||
|
Loading…
Reference in New Issue
Block a user