v0.3.0-dev-9 #324
@ -49,13 +49,13 @@ public interface LinearOpsTensorAlgebra<T> :
|
|||||||
/**
|
/**
|
||||||
* QR decomposition.
|
* QR decomposition.
|
||||||
*
|
*
|
||||||
* Computes the QR decomposition of a matrix or a batch of matrices, and returns a namedtuple `(Q, R)` of tensors.
|
* Computes the QR decomposition of a matrix or a batch of matrices, and returns a pair `(Q, R)` of tensors.
|
||||||
* Given a tensor `input`, return tensors (Q, R) satisfying ``input = Q * R``,
|
* Given a tensor `input`, return tensors (Q, R) satisfying ``input = Q * R``,
|
||||||
* with `Q` being an orthogonal matrix or batch of orthogonal matrices
|
* with `Q` being an orthogonal matrix or batch of orthogonal matrices
|
||||||
* and `R` being an upper triangular matrix or batch of upper triangular matrices.
|
* and `R` being an upper triangular matrix or batch of upper triangular matrices.
|
||||||
* For more information: https://pytorch.org/docs/stable/linalg.html#torch.linalg.qr
|
* For more information: https://pytorch.org/docs/stable/linalg.html#torch.linalg.qr
|
||||||
*
|
*
|
||||||
* @return tuple of Q and R tensors.
|
* @return pair of Q and R tensors.
|
||||||
*/
|
*/
|
||||||
public fun TensorStructure<T>.qr(): Pair<TensorStructure<T>, TensorStructure<T>>
|
public fun TensorStructure<T>.qr(): Pair<TensorStructure<T>, TensorStructure<T>>
|
||||||
|
|
||||||
@ -82,7 +82,7 @@ public interface LinearOpsTensorAlgebra<T> :
|
|||||||
* Singular Value Decomposition.
|
* Singular Value Decomposition.
|
||||||
*
|
*
|
||||||
* Computes the singular value decomposition of either a matrix or batch of matrices `input`.
|
* Computes the singular value decomposition of either a matrix or batch of matrices `input`.
|
||||||
* The singular value decomposition is represented as a namedtuple `(U, S, V)`,
|
* The singular value decomposition is represented as a triple `(U, S, V)`,
|
||||||
* such that ``input = U.dot(diagonalEmbedding(S).dot(V.T))``.
|
* such that ``input = U.dot(diagonalEmbedding(S).dot(V.T))``.
|
||||||
* If input is a batch of tensors, then U, S, and Vh are also batched with the same batch dimensions as input.
|
* If input is a batch of tensors, then U, S, and Vh are also batched with the same batch dimensions as input.
|
||||||
* For more information: https://pytorch.org/docs/stable/linalg.html#torch.linalg.svd
|
* For more information: https://pytorch.org/docs/stable/linalg.html#torch.linalg.svd
|
||||||
@ -93,10 +93,10 @@ public interface LinearOpsTensorAlgebra<T> :
|
|||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns eigenvalues and eigenvectors of a real symmetric matrix input or a batch of real symmetric matrices,
|
* Returns eigenvalues and eigenvectors of a real symmetric matrix input or a batch of real symmetric matrices,
|
||||||
* represented by a namedtuple (eigenvalues, eigenvectors).
|
* represented by a pair (eigenvalues, eigenvectors).
|
||||||
* For more information: https://pytorch.org/docs/stable/generated/torch.symeig.html
|
* For more information: https://pytorch.org/docs/stable/generated/torch.symeig.html
|
||||||
*
|
*
|
||||||
* @return a namedtuple (eigenvalues, eigenvectors)
|
* @return a pair (eigenvalues, eigenvectors)
|
||||||
*/
|
*/
|
||||||
public fun TensorStructure<T>.symEig(): Pair<TensorStructure<T>, TensorStructure<T>>
|
public fun TensorStructure<T>.symEig(): Pair<TensorStructure<T>, TensorStructure<T>>
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user