v0.3.0-dev-9 #324

Merged
altavir merged 265 commits from dev into master 2021-05-08 17:16:29 +03:00
2 changed files with 69 additions and 0 deletions
Showing only changes of commit 30ca333c04 - Show all commits

View File

@ -28,6 +28,7 @@ dependencies {
implementation(project(":kmath-dimensions")) implementation(project(":kmath-dimensions"))
implementation(project(":kmath-ejml")) implementation(project(":kmath-ejml"))
implementation(project(":kmath-nd4j")) implementation(project(":kmath-nd4j"))
implementation(project(":kmath-tensors"))
implementation(project(":kmath-for-real")) implementation(project(":kmath-for-real"))

View File

@ -0,0 +1,68 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.algebras.DoubleAnalyticTensorAlgebra
import space.kscience.kmath.tensors.core.algebras.DoubleLinearOpsTensorAlgebra
// OLS estimator using SVD
fun main() {
//seed for random
val randSeed = 100500L
// work in context with linear operations
DoubleLinearOpsTensorAlgebra {
// take coefficient vector from normal distribution
val alpha = randNormal(
intArrayOf(5),
randSeed
) + fromArray(
intArrayOf(5),
doubleArrayOf(1.0, 2.5, 3.4, 5.0, 10.1)
)
println("Real alpha:\n" +
"$alpha")
// also take sample of size 20 from normal distribution for x TODO rename
val x = randNormal(
intArrayOf(20, 5),
randSeed
)
// calculate y and add gaussian noise (N(0, 0.05)) TODO rename
val y = x dot alpha
y += y.randNormalLike(randSeed) * 0.05
// now restore the coefficient vector with OSL estimator with SVD
val (u, singValues, v) = x.svd()
// we have to make sure the singular values of the matrix are not close to zero
println("Singular values:\n" +
"$singValues")
// TODO something with Boolean tensors
// inverse Sigma matrix can be restored from singular values with diagonalEmbedding function
val sigma = diagonalEmbedding(1.0/singValues)
val alphaOLS = v dot sigma dot u.transpose() dot y
println("Estimated alpha:\n" +
"$alphaOLS")
// figure out MSE of approximation
fun mse(yTrue: DoubleTensor, yPred: DoubleTensor): Double = DoubleAnalyticTensorAlgebra{
require(yTrue.shape.size == 1)
require(yTrue.shape contentEquals yPred.shape)
val diff = yTrue - yPred
diff.dot(diff).sqrt().value()
}
println("MSE: ${mse(alpha, alphaOLS)}")
}
}