neural network! #320

Merged
AndreiKingsley merged 1 commits from andrew into feature/tensor-algebra 2021-05-07 08:43:16 +03:00
4 changed files with 266 additions and 2 deletions

View File

@ -0,0 +1,245 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.algebras.BroadcastDoubleTensorAlgebra
import space.kscience.kmath.tensors.core.algebras.DoubleAnalyticTensorAlgebra
import space.kscience.kmath.tensors.core.algebras.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.toDoubleArray
import kotlin.math.sqrt
const val seed = 100500L
// Simple feedforward neural network with backpropagation training
// interface of network layer
interface Layer {
fun forward(input: DoubleTensor): DoubleTensor
fun backward(input: DoubleTensor, outputError: DoubleTensor): DoubleTensor
}
// activation layer
open class Activation(
val activation: (DoubleTensor) -> DoubleTensor,
val activationDer: (DoubleTensor) -> DoubleTensor
) : Layer {
override fun forward(input: DoubleTensor): DoubleTensor {
return activation(input)
}
override fun backward(input: DoubleTensor, outputError: DoubleTensor): DoubleTensor {
return DoubleTensorAlgebra { outputError * activationDer(input) }
}
}
fun relu(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
x.map { if (it > 0) it else 0.0 }
}
fun reluDer(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
x.map { if (it > 0) 1.0 else 0.0 }
}
// activation layer with relu activator
class ReLU : Activation(::relu, ::reluDer)
fun sigmoid(x: DoubleTensor): DoubleTensor = DoubleAnalyticTensorAlgebra {
1.0 / (1.0 + (-x).exp())
}
fun sigmoidDer(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
sigmoid(x) * (1.0 - sigmoid(x))
}
// activation layer with sigmoid activator
class Sigmoid : Activation(::sigmoid, ::sigmoidDer)
// dense layer
class Dense(
private val inputUnits: Int,
private val outputUnits: Int,
private val learningRate: Double = 0.1
) : Layer {
private val weights: DoubleTensor = DoubleTensorAlgebra {
randomNormal(
intArrayOf(inputUnits, outputUnits),
seed
) * sqrt(2.0 / (inputUnits + outputUnits))
}
private val bias: DoubleTensor = DoubleTensorAlgebra { zeros(intArrayOf(outputUnits)) }
override fun forward(input: DoubleTensor): DoubleTensor {
return BroadcastDoubleTensorAlgebra { (input dot weights) + bias }
}
override fun backward(input: DoubleTensor, outputError: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
val gradInput = outputError dot weights.transpose()
val gradW = input.transpose() dot outputError
val gradBias = DoubleAnalyticTensorAlgebra {
outputError.mean(dim = 0, keepDim = false) * input.shape[0].toDouble()
}
weights -= learningRate * gradW
bias -= learningRate * gradBias
gradInput
}
}
// simple accuracy equal to the proportion of correct answers
fun accuracy(yPred: DoubleTensor, yTrue: DoubleTensor): Double {
check(yPred.shape contentEquals yTrue.shape)
val n = yPred.shape[0]
var correctCnt = 0
for (i in 0 until n) {
if (yPred[intArrayOf(i, 0)] == yTrue[intArrayOf(i, 0)]) {
correctCnt += 1
}
}
return correctCnt.toDouble() / n.toDouble()
}
// neural network class
class NeuralNetwork(private val layers: List<Layer>) {
private fun softMaxLoss(yPred: DoubleTensor, yTrue: DoubleTensor): DoubleTensor = DoubleAnalyticTensorAlgebra {
val onesForAnswers = yPred.zeroesLike()
yTrue.toDoubleArray().forEachIndexed { index, labelDouble ->
val label = labelDouble.toInt()
onesForAnswers[intArrayOf(index, label)] = 1.0
}
val softmaxValue = BroadcastDoubleTensorAlgebra { yPred.exp() / yPred.exp().sum(dim = 1, keepDim = true) }
(-onesForAnswers + softmaxValue) / (yPred.shape[0].toDouble())
}
@OptIn(ExperimentalStdlibApi::class)
private fun forward(x: DoubleTensor): List<DoubleTensor> {
var input = x
return buildList {
layers.forEach { layer ->
val output = layer.forward(input)
add(output)
input = output
}
}
}
@OptIn(ExperimentalStdlibApi::class)
private fun train(xTrain: DoubleTensor, yTrain: DoubleTensor) {
val layerInputs = buildList {
add(xTrain)
addAll(forward(xTrain))
}
var lossGrad = softMaxLoss(layerInputs.last(), yTrain)
layers.zip(layerInputs).reversed().forEach { (layer, input) ->
lossGrad = layer.backward(input, lossGrad)
}
}
fun fit(xTrain: DoubleTensor, yTrain: DoubleTensor, batchSize: Int, epochs: Int) = DoubleTensorAlgebra {
fun iterBatch(x: DoubleTensor, y: DoubleTensor): Sequence<Pair<DoubleTensor, DoubleTensor>> = sequence {
val n = x.shape[0]
val shuffledIndices = (0 until n).shuffled()
for (i in 0 until n step batchSize) {
val excerptIndices = shuffledIndices.drop(i).take(batchSize).toIntArray()
val batch = x.rowsByIndices(excerptIndices) to y.rowsByIndices(excerptIndices)
yield(batch)
}
}
for (epoch in 0 until epochs) {
println("Epoch ${epoch + 1}/$epochs")
for ((xBatch, yBatch) in iterBatch(xTrain, yTrain)) {
train(xBatch, yBatch)
}
println("Accuracy:${accuracy(yTrain, predict(xTrain).argMax(1, true))}")
}
}
fun predict(x: DoubleTensor): DoubleTensor {
return forward(x).last()
}
}
@OptIn(ExperimentalStdlibApi::class)
fun main() {
DoubleTensorAlgebra {
val features = 5
val sampleSize = 250
val trainSize = 180
val testSize = sampleSize - trainSize
// take sample of features from normal distribution
val x = randomNormal(intArrayOf(sampleSize, features), seed) * 2.5
BroadcastDoubleTensorAlgebra {
x += fromArray(
intArrayOf(5),
doubleArrayOf(0.0, -1.0, -2.5, -3.0, 5.5) // rows means
)
}
// define class like '1' if the sum of features > 0 and '0' otherwise
val y = fromArray(
intArrayOf(sampleSize, 1),
DoubleArray(sampleSize) { i ->
if (x[i].sum() > 0.0) {
1.0
} else {
0.0
}
}
)
// split train ans test
val trainIndices = (0 until trainSize).toList().toIntArray()
val testIndices = (trainSize until sampleSize).toList().toIntArray()
val xTrain = x.rowsByIndices(trainIndices)
val yTrain = y.rowsByIndices(trainIndices)
val xTest = x.rowsByIndices(testIndices)
val yTest = y.rowsByIndices(testIndices)
// build model
val layers = buildList {
add(Dense(features, 64))
add(ReLU())
add(Dense(64, 16))
add(ReLU())
add(Dense(16, 2))
add(Sigmoid())
}
val model = NeuralNetwork(layers)
// fit it with train data
model.fit(xTrain, yTrain, batchSize = 20, epochs = 10)
// make prediction
val prediction = model.predict(xTest)
// process raw prediction via argMax
val predictionLabels = prediction.argMax(1, true)
// find out accuracy
val acc = accuracy(yTest, predictionLabels)
println("Test accuracy:$acc")
}
}

View File

@ -10,11 +10,14 @@ import space.kscience.kmath.tensors.core.algebras.BroadcastDoubleTensorAlgebra
import space.kscience.kmath.tensors.core.algebras.DoubleAnalyticTensorAlgebra import space.kscience.kmath.tensors.core.algebras.DoubleAnalyticTensorAlgebra
import space.kscience.kmath.tensors.core.algebras.DoubleLinearOpsTensorAlgebra import space.kscience.kmath.tensors.core.algebras.DoubleLinearOpsTensorAlgebra
const val seed = 100500L
// simple PCA // simple PCA
fun main(){ fun main(){
val seed = 100500L
// work in context with analytic methods
DoubleAnalyticTensorAlgebra { DoubleAnalyticTensorAlgebra {
// assume x is range from 0 until 10 // assume x is range from 0 until 10

View File

@ -305,5 +305,16 @@ public interface TensorAlgebra<T>: Algebra<Tensor<T>> {
*/ */
public fun Tensor<T>.max(dim: Int, keepDim: Boolean): Tensor<T> public fun Tensor<T>.max(dim: Int, keepDim: Boolean): Tensor<T>
/**
* Returns the index of maximum value of each row of the input tensor in the given dimension [dim].
*
* If [keepDim] is true, the output tensor is of the same size as
* input except in the dimension [dim] where it is of size 1.
* Otherwise, [dim] is squeezed, resulting in the output tensor having 1 fewer dimension.
*
* @param dim the dimension to reduce.
* @param keepDim whether the output tensor has [dim] retained or not.
* @return the the index of maximum value of each row of the input tensor in the given dimension [dim].
*/
public fun Tensor<T>.argMax(dim: Int, keepDim: Boolean): Tensor<T>
} }

View File

@ -561,4 +561,9 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
override fun Tensor<Double>.max(dim: Int, keepDim: Boolean): DoubleTensor = override fun Tensor<Double>.max(dim: Int, keepDim: Boolean): DoubleTensor =
foldDim({ x -> x.maxOrNull()!! }, dim, keepDim) foldDim({ x -> x.maxOrNull()!! }, dim, keepDim)
override fun Tensor<Double>.argMax(dim: Int, keepDim: Boolean): DoubleTensor =
foldDim({ x ->
x.withIndex().maxByOrNull { it.value }?.index!!.toDouble()
}, dim, keepDim)
} }