Andrew #316
@ -1,116 +1,48 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.nd.MutableBufferND
|
||||
import space.kscience.kmath.structures.*
|
||||
import space.kscience.kmath.tensors.api.Tensor
|
||||
import space.kscience.kmath.tensors.core.algebras.TensorLinearStructure
|
||||
|
||||
|
||||
public open class BufferedTensor<T>(
|
||||
/**
|
||||
* [Tensor] implementation provided with [MutableBuffer]
|
||||
*/
|
||||
public open class BufferedTensor<T> internal constructor(
|
||||
override val shape: IntArray,
|
||||
internal val mutableBuffer: MutableBuffer<T>,
|
||||
internal val bufferStart: Int
|
||||
) : Tensor<T> {
|
||||
|
||||
/**
|
||||
* [TensorLinearStructure] with the same shape
|
||||
*/
|
||||
public val linearStructure: TensorLinearStructure
|
||||
get() = TensorLinearStructure(shape)
|
||||
|
||||
/**
|
||||
* Number of elements in tensor
|
||||
*/
|
||||
public val numElements: Int
|
||||
get() = linearStructure.linearSize
|
||||
|
||||
/**
|
||||
* @param index [IntArray] with size equal to tensor dimension
|
||||
* @return the element by multidimensional index
|
||||
*/
|
||||
override fun get(index: IntArray): T = mutableBuffer[bufferStart + linearStructure.offset(index)]
|
||||
|
||||
/**
|
||||
* @param index the [IntArray] with size equal to tensor dimension
|
||||
* @param value the value to set
|
||||
*/
|
||||
override fun set(index: IntArray, value: T) {
|
||||
mutableBuffer[bufferStart + linearStructure.offset(index)] = value
|
||||
}
|
||||
|
||||
/**
|
||||
* @return the sequence of pairs multidimensional indices and values
|
||||
*/
|
||||
override fun elements(): Sequence<Pair<IntArray, T>> = linearStructure.indices().map {
|
||||
it to this[it]
|
||||
}
|
||||
}
|
||||
|
||||
public class IntTensor internal constructor(
|
||||
shape: IntArray,
|
||||
buffer: IntArray,
|
||||
offset: Int = 0
|
||||
) : BufferedTensor<Int>(shape, IntBuffer(buffer), offset)
|
||||
|
||||
public class DoubleTensor internal constructor(
|
||||
shape: IntArray,
|
||||
buffer: DoubleArray,
|
||||
offset: Int = 0
|
||||
) : BufferedTensor<Double>(shape, DoubleBuffer(buffer), offset) {
|
||||
override fun toString(): String = toPrettyString()
|
||||
}
|
||||
|
||||
internal fun BufferedTensor<Int>.asTensor(): IntTensor =
|
||||
IntTensor(this.shape, this.mutableBuffer.array(), this.bufferStart)
|
||||
|
||||
internal fun BufferedTensor<Double>.asTensor(): DoubleTensor =
|
||||
DoubleTensor(this.shape, this.mutableBuffer.array(), this.bufferStart)
|
||||
|
||||
internal fun <T> Tensor<T>.copyToBufferedTensor(): BufferedTensor<T> =
|
||||
BufferedTensor(
|
||||
this.shape,
|
||||
TensorLinearStructure(this.shape).indices().map(this::get).toMutableList().asMutableBuffer(), 0
|
||||
)
|
||||
|
||||
internal fun <T> Tensor<T>.toBufferedTensor(): BufferedTensor<T> = when (this) {
|
||||
is BufferedTensor<T> -> this
|
||||
is MutableBufferND<T> -> if (this.strides.strides contentEquals TensorLinearStructure(this.shape).strides)
|
||||
BufferedTensor(this.shape, this.mutableBuffer, 0) else this.copyToBufferedTensor()
|
||||
else -> this.copyToBufferedTensor()
|
||||
}
|
||||
|
||||
internal val Tensor<Double>.tensor: DoubleTensor
|
||||
get() = when (this) {
|
||||
is DoubleTensor -> this
|
||||
else -> this.toBufferedTensor().asTensor()
|
||||
}
|
||||
|
||||
internal val Tensor<Int>.tensor: IntTensor
|
||||
get() = when (this) {
|
||||
is IntTensor -> this
|
||||
else -> this.toBufferedTensor().asTensor()
|
||||
}
|
||||
|
||||
public fun Tensor<Double>.toDoubleTensor(): DoubleTensor = this.tensor
|
||||
public fun Tensor<Int>.toIntTensor(): IntTensor = this.tensor
|
||||
|
||||
public fun Array<DoubleArray>.toDoubleTensor(): DoubleTensor {
|
||||
val n = size
|
||||
check(n > 0) { "An empty array cannot be casted to tensor" }
|
||||
val m = first().size
|
||||
check(m > 0) { "Inner arrays must have at least 1 argument" }
|
||||
check(all { size == m }) { "Inner arrays must be the same size" }
|
||||
|
||||
val shape = intArrayOf(n, m)
|
||||
val buffer = this.flatMap { arr -> arr.map { it } }.toDoubleArray()
|
||||
|
||||
return DoubleTensor(shape, buffer, 0)
|
||||
}
|
||||
|
||||
|
||||
public fun Array<IntArray>.toIntTensor(): IntTensor {
|
||||
val n = size
|
||||
check(n > 0) { "An empty array cannot be casted to tensor" }
|
||||
val m = first().size
|
||||
check(m > 0) { "Inner arrays must have at least 1 argument" }
|
||||
check(all { size == m }) { "Inner arrays must be the same size" }
|
||||
|
||||
val shape = intArrayOf(n, m)
|
||||
val buffer = this.flatMap { arr -> arr.map { it } }.toIntArray()
|
||||
|
||||
return IntTensor(shape, buffer, 0)
|
||||
}
|
||||
|
||||
public fun DoubleTensor.toDoubleArray(): DoubleArray {
|
||||
return DoubleArray(numElements) { i ->
|
||||
mutableBuffer[bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
public fun IntTensor.toIntArray(): IntArray {
|
||||
return IntArray(numElements) { i ->
|
||||
mutableBuffer[bufferStart + i]
|
||||
}
|
||||
}
|
@ -0,0 +1,19 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.structures.DoubleBuffer
|
||||
|
||||
/**
|
||||
* Default [BufferedTensor] implementation for [Double] values
|
||||
*/
|
||||
public class DoubleTensor internal constructor(
|
||||
shape: IntArray,
|
||||
buffer: DoubleArray,
|
||||
offset: Int = 0
|
||||
) : BufferedTensor<Double>(shape, DoubleBuffer(buffer), offset) {
|
||||
override fun toString(): String = toPrettyString()
|
||||
}
|
@ -0,0 +1,17 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.structures.IntBuffer
|
||||
|
||||
/**
|
||||
* Default [BufferedTensor] implementation for [Int] values
|
||||
*/
|
||||
public class IntTensor internal constructor(
|
||||
shape: IntArray,
|
||||
buffer: IntArray,
|
||||
offset: Int = 0
|
||||
) : BufferedTensor<Int>(shape, IntBuffer(buffer), offset)
|
@ -0,0 +1,36 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.tensors.api.Tensor
|
||||
|
||||
/**
|
||||
* Casts [Tensor<Double>] to [DoubleTensor]
|
||||
*/
|
||||
public fun Tensor<Double>.toDoubleTensor(): DoubleTensor = this.tensor
|
||||
|
||||
/**
|
||||
* Casts [Tensor<Int>] to [IntTensor]
|
||||
*/
|
||||
public fun Tensor<Int>.toIntTensor(): IntTensor = this.tensor
|
||||
|
||||
/**
|
||||
* @return [DoubleArray] of tensor elements
|
||||
*/
|
||||
public fun DoubleTensor.toDoubleArray(): DoubleArray {
|
||||
return DoubleArray(numElements) { i ->
|
||||
mutableBuffer[bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @return [IntArray] of tensor elements
|
||||
*/
|
||||
public fun IntTensor.toIntArray(): IntArray {
|
||||
return IntArray(numElements) { i ->
|
||||
mutableBuffer[bufferStart + i]
|
||||
}
|
||||
}
|
@ -0,0 +1,42 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.nd.MutableBufferND
|
||||
import space.kscience.kmath.structures.asMutableBuffer
|
||||
import space.kscience.kmath.tensors.api.Tensor
|
||||
import space.kscience.kmath.tensors.core.algebras.TensorLinearStructure
|
||||
|
||||
internal fun BufferedTensor<Int>.asTensor(): IntTensor =
|
||||
IntTensor(this.shape, this.mutableBuffer.array(), this.bufferStart)
|
||||
|
||||
internal fun BufferedTensor<Double>.asTensor(): DoubleTensor =
|
||||
DoubleTensor(this.shape, this.mutableBuffer.array(), this.bufferStart)
|
||||
|
||||
internal fun <T> Tensor<T>.copyToBufferedTensor(): BufferedTensor<T> =
|
||||
BufferedTensor(
|
||||
this.shape,
|
||||
TensorLinearStructure(this.shape).indices().map(this::get).toMutableList().asMutableBuffer(), 0
|
||||
)
|
||||
|
||||
internal fun <T> Tensor<T>.toBufferedTensor(): BufferedTensor<T> = when (this) {
|
||||
is BufferedTensor<T> -> this
|
||||
is MutableBufferND<T> -> if (this.strides.strides contentEquals TensorLinearStructure(this.shape).strides)
|
||||
BufferedTensor(this.shape, this.mutableBuffer, 0) else this.copyToBufferedTensor()
|
||||
else -> this.copyToBufferedTensor()
|
||||
}
|
||||
|
||||
internal val Tensor<Double>.tensor: DoubleTensor
|
||||
get() = when (this) {
|
||||
is DoubleTensor -> this
|
||||
else -> this.toBufferedTensor().asTensor()
|
||||
}
|
||||
|
||||
internal val Tensor<Int>.tensor: IntTensor
|
||||
get() = when (this) {
|
||||
is IntTensor -> this
|
||||
else -> this.toBufferedTensor().asTensor()
|
||||
}
|
Loading…
Reference in New Issue
Block a user