fix sequences + array casting #306
@ -49,6 +49,7 @@ public class DoubleTensor internal constructor(
|
|||||||
|
|
||||||
internal fun BufferedTensor<Int>.asTensor(): IntTensor =
|
internal fun BufferedTensor<Int>.asTensor(): IntTensor =
|
||||||
IntTensor(this.shape, this.mutableBuffer.array(), this.bufferStart)
|
IntTensor(this.shape, this.mutableBuffer.array(), this.bufferStart)
|
||||||
|
|
||||||
internal fun BufferedTensor<Double>.asTensor(): DoubleTensor =
|
internal fun BufferedTensor<Double>.asTensor(): DoubleTensor =
|
||||||
DoubleTensor(this.shape, this.mutableBuffer.array(), this.bufferStart)
|
DoubleTensor(this.shape, this.mutableBuffer.array(), this.bufferStart)
|
||||||
|
|
||||||
@ -78,4 +79,39 @@ internal val TensorStructure<Int>.tensor: IntTensor
|
|||||||
}
|
}
|
||||||
|
|
||||||
public fun TensorStructure<Double>.toDoubleTensor(): DoubleTensor = this.tensor
|
public fun TensorStructure<Double>.toDoubleTensor(): DoubleTensor = this.tensor
|
||||||
public fun TensorStructure<Int>.toIntTensor(): IntTensor = this.tensor
|
public fun TensorStructure<Int>.toIntTensor(): IntTensor = this.tensor
|
||||||
|
|
||||||
|
public fun Array<DoubleArray>.toDoubleTensor(): DoubleTensor {
|
||||||
|
val n = size
|
||||||
|
check(n > 0) { "An empty array cannot be casted to tensor" }
|
||||||
|
val m = first().size
|
||||||
|
check(m > 0) { "Inner arrays must have at least 1 argument" }
|
||||||
|
check(all { size == m }) { "Inner arrays must be the same size" }
|
||||||
|
|
||||||
|
val shape = intArrayOf(n, m)
|
||||||
|
val buffer = this.flatMap { arr -> arr.map { it } }.toDoubleArray()
|
||||||
|
|
||||||
|
return DoubleTensor(shape, buffer, 0)
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
public fun Array<IntArray>.toIntTensor(): IntTensor {
|
||||||
|
val n = size
|
||||||
|
check(n > 0) { "An empty array cannot be casted to tensor" }
|
||||||
|
val m = first().size
|
||||||
|
check(m > 0) { "Inner arrays must have at least 1 argument" }
|
||||||
|
check(all { size == m }) { "Inner arrays must be the same size" }
|
||||||
|
|
||||||
|
val shape = intArrayOf(n, m)
|
||||||
|
val buffer = this.flatMap { arr -> arr.map { it } }.toIntArray()
|
||||||
|
|
||||||
|
return IntTensor(shape, buffer, 0)
|
||||||
|
}
|
||||||
|
|
||||||
|
public fun DoubleTensor.toDoubleArray(): DoubleArray {
|
||||||
|
return tensor.mutableBuffer.array().drop(bufferStart).take(numElements).toDoubleArray()
|
||||||
|
}
|
||||||
|
|
||||||
|
public fun IntTensor.toIntArray(): IntArray {
|
||||||
|
return tensor.mutableBuffer.array().drop(bufferStart).take(numElements).toIntArray()
|
||||||
|
}
|
@ -382,7 +382,11 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
|
|||||||
return false
|
return false
|
||||||
}
|
}
|
||||||
for (i in 0 until n) {
|
for (i in 0 until n) {
|
||||||
if (!eqFunction(tensor.mutableBuffer[tensor.bufferStart + i], other.tensor.mutableBuffer[other.tensor.bufferStart + i])) {
|
if (!eqFunction(
|
||||||
|
tensor.mutableBuffer[tensor.bufferStart + i],
|
||||||
|
other.tensor.mutableBuffer[other.tensor.bufferStart + i]
|
||||||
|
)
|
||||||
|
) {
|
||||||
return false
|
return false
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -395,4 +399,20 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
|
|||||||
public fun TensorStructure<Double>.randNormalLike(seed: Long = 0): DoubleTensor =
|
public fun TensorStructure<Double>.randNormalLike(seed: Long = 0): DoubleTensor =
|
||||||
DoubleTensor(tensor.shape, getRandomNormals(tensor.shape.reduce(Int::times), seed))
|
DoubleTensor(tensor.shape, getRandomNormals(tensor.shape.reduce(Int::times), seed))
|
||||||
|
|
||||||
|
// stack tensors by axis 0
|
||||||
|
public fun stack(tensors: List<DoubleTensor>): DoubleTensor {
|
||||||
|
val shape = tensors.firstOrNull()?.shape
|
||||||
|
check(shape != null) { "Collection must have at least 1 element" }
|
||||||
|
check(tensors.all { it.shape contentEquals shape }) {"Stacking tensors must have same shapes"}
|
||||||
|
val resShape = intArrayOf(tensors.size) + shape
|
||||||
|
val resBuffer = tensors.flatMap {
|
||||||
|
it.tensor.mutableBuffer.array().drop(it.bufferStart).take(it.numElements)
|
||||||
|
}.toDoubleArray()
|
||||||
|
return DoubleTensor(resShape, resBuffer, 0)
|
||||||
|
}
|
||||||
|
|
||||||
|
// build tensor from this rows by given indices
|
||||||
|
public fun TensorStructure<Double>.rowsByIndices(indices: IntArray): DoubleTensor {
|
||||||
|
return stack(indices.map { this[it] })
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
@ -18,7 +18,7 @@ internal fun <T> BufferedTensor<T>.vectorSequence(): Sequence<BufferedTensor<T>>
|
|||||||
val vectorOffset = shape[n - 1]
|
val vectorOffset = shape[n - 1]
|
||||||
val vectorShape = intArrayOf(shape.last())
|
val vectorShape = intArrayOf(shape.last())
|
||||||
for (offset in 0 until numElements step vectorOffset) {
|
for (offset in 0 until numElements step vectorOffset) {
|
||||||
val vector = BufferedTensor(vectorShape, mutableBuffer, offset)
|
val vector = BufferedTensor(vectorShape, mutableBuffer, bufferStart + offset)
|
||||||
yield(vector)
|
yield(vector)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -29,7 +29,7 @@ internal fun <T> BufferedTensor<T>.matrixSequence(): Sequence<BufferedTensor<T>>
|
|||||||
val matrixOffset = shape[n - 1] * shape[n - 2]
|
val matrixOffset = shape[n - 1] * shape[n - 2]
|
||||||
val matrixShape = intArrayOf(shape[n - 2], shape[n - 1])
|
val matrixShape = intArrayOf(shape[n - 2], shape[n - 1])
|
||||||
for (offset in 0 until numElements step matrixOffset) {
|
for (offset in 0 until numElements step matrixOffset) {
|
||||||
val matrix = BufferedTensor(matrixShape, mutableBuffer, offset)
|
val matrix = BufferedTensor(matrixShape, mutableBuffer, bufferStart + offset)
|
||||||
yield(matrix)
|
yield(matrix)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user