KMP library for tensors #300
12
README.md
12
README.md
@ -236,6 +236,18 @@ One can still use generic algebras though.
|
||||
> **Maturity**: EXPERIMENTAL
|
||||
<hr/>
|
||||
|
||||
* ### [kmath-tensors](kmath-tensors)
|
||||
>
|
||||
>
|
||||
> **Maturity**: PROTOTYPE
|
||||
>
|
||||
> **Features:**
|
||||
> - [tensor algebra](kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/api/TensorAlgebra.kt) : Basic linear algebra operations on tensors (plus, dot, etc.)
|
||||
> - [tensor algebra with broadcasting](kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/algebras/BroadcastDoubleTensorAlgebra.kt) : Basic linear algebra operations implemented with broadcasting.
|
||||
> - [linear algebra operations](kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/api/LinearOpsTensorAlgebra.kt) : Advanced linear algebra operations like LU decomposition, SVD, etc.
|
||||
|
||||
<hr/>
|
||||
|
||||
* ### [kmath-viktor](kmath-viktor)
|
||||
>
|
||||
>
|
||||
|
@ -25,6 +25,7 @@ dependencies {
|
||||
implementation(project(":kmath-dimensions"))
|
||||
implementation(project(":kmath-ejml"))
|
||||
implementation(project(":kmath-nd4j"))
|
||||
implementation(project(":kmath-tensors"))
|
||||
|
||||
implementation(project(":kmath-for-real"))
|
||||
|
||||
|
@ -0,0 +1,46 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors
|
||||
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra
|
||||
|
||||
|
||||
// Dataset normalization
|
||||
|
||||
fun main() {
|
||||
|
||||
// work in context with broadcast methods
|
||||
BroadcastDoubleTensorAlgebra {
|
||||
// take dataset of 5-element vectors from normal distribution
|
||||
val dataset = randomNormal(intArrayOf(100, 5)) * 1.5 // all elements from N(0, 1.5)
|
||||
|
||||
dataset += fromArray(
|
||||
intArrayOf(5),
|
||||
doubleArrayOf(0.0, 1.0, 1.5, 3.0, 5.0) // rows means
|
||||
)
|
||||
|
||||
|
||||
// find out mean and standard deviation of each column
|
||||
val mean = dataset.mean(0, false)
|
||||
val std = dataset.std(0, false)
|
||||
|
||||
println("Mean:\n$mean")
|
||||
println("Standard deviation:\n$std")
|
||||
|
||||
// also we can calculate other statistic as minimum and maximum of rows
|
||||
println("Minimum:\n${dataset.min(0, false)}")
|
||||
println("Maximum:\n${dataset.max(0, false)}")
|
||||
|
||||
// now we can scale dataset with mean normalization
|
||||
val datasetScaled = (dataset - mean) / std
|
||||
|
||||
// find out mean and std of scaled dataset
|
||||
|
||||
println("Mean of scaled:\n${datasetScaled.mean(0, false)}")
|
||||
println("Mean of scaled:\n${datasetScaled.std(0, false)}")
|
||||
}
|
||||
}
|
@ -0,0 +1,97 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors
|
||||
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.tensors.core.DoubleTensor
|
||||
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra
|
||||
|
||||
// solving linear system with LUP decomposition
|
||||
|
||||
fun main () {
|
||||
|
||||
// work in context with linear operations
|
||||
BroadcastDoubleTensorAlgebra {
|
||||
|
||||
// set true value of x
|
||||
val trueX = fromArray(
|
||||
intArrayOf(4),
|
||||
doubleArrayOf(-2.0, 1.5, 6.8, -2.4)
|
||||
)
|
||||
|
||||
// and A matrix
|
||||
val a = fromArray(
|
||||
intArrayOf(4, 4),
|
||||
doubleArrayOf(
|
||||
0.5, 10.5, 4.5, 1.0,
|
||||
8.5, 0.9, 12.8, 0.1,
|
||||
5.56, 9.19, 7.62, 5.45,
|
||||
1.0, 2.0, -3.0, -2.5
|
||||
)
|
||||
)
|
||||
|
||||
// calculate y value
|
||||
val b = a dot trueX
|
||||
|
||||
// check out A and b
|
||||
println("A:\n$a")
|
||||
println("b:\n$b")
|
||||
|
||||
// solve `Ax = b` system using LUP decomposition
|
||||
|
||||
// get P, L, U such that PA = LU
|
||||
val (p, l, u) = a.lu()
|
||||
|
||||
// check that P is permutation matrix
|
||||
println("P:\n$p")
|
||||
// L is lower triangular matrix and U is upper triangular matrix
|
||||
println("L:\n$l")
|
||||
println("U:\n$u")
|
||||
// and PA = LU
|
||||
println("PA:\n${p dot a}")
|
||||
println("LU:\n${l dot u}")
|
||||
|
||||
/* Ax = b;
|
||||
PAx = Pb;
|
||||
LUx = Pb;
|
||||
let y = Ux, then
|
||||
Ly = Pb -- this system can be easily solved, since the matrix L is lower triangular;
|
||||
Ux = y can be solved the same way, since the matrix L is upper triangular
|
||||
*/
|
||||
|
||||
|
||||
|
||||
// this function returns solution x of a system lx = b, l should be lower triangular
|
||||
fun solveLT(l: DoubleTensor, b: DoubleTensor): DoubleTensor {
|
||||
val n = l.shape[0]
|
||||
val x = zeros(intArrayOf(n))
|
||||
for (i in 0 until n){
|
||||
x[intArrayOf(i)] = (b[intArrayOf(i)] - l[i].dot(x).value()) / l[intArrayOf(i, i)]
|
||||
}
|
||||
return x
|
||||
}
|
||||
|
||||
val y = solveLT(l, p dot b)
|
||||
|
||||
// solveLT(l, b) function can be easily adapted for upper triangular matrix by the permutation matrix revMat
|
||||
// create it by placing ones on side diagonal
|
||||
val revMat = u.zeroesLike()
|
||||
val n = revMat.shape[0]
|
||||
for (i in 0 until n) {
|
||||
revMat[intArrayOf(i, n - 1 - i)] = 1.0
|
||||
}
|
||||
|
||||
// solution of system ux = b, u should be upper triangular
|
||||
fun solveUT(u: DoubleTensor, b: DoubleTensor): DoubleTensor = revMat dot solveLT(
|
||||
revMat dot u dot revMat, revMat dot b
|
||||
)
|
||||
|
||||
val x = solveUT(u, y)
|
||||
|
||||
println("True x:\n$trueX")
|
||||
println("x founded with LU method:\n$x")
|
||||
}
|
||||
}
|
@ -0,0 +1,241 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors
|
||||
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.tensors.core.DoubleTensor
|
||||
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra
|
||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
|
||||
import space.kscience.kmath.tensors.core.toDoubleArray
|
||||
import kotlin.math.sqrt
|
||||
|
||||
const val seed = 100500L
|
||||
|
||||
// Simple feedforward neural network with backpropagation training
|
||||
|
||||
// interface of network layer
|
||||
interface Layer {
|
||||
fun forward(input: DoubleTensor): DoubleTensor
|
||||
fun backward(input: DoubleTensor, outputError: DoubleTensor): DoubleTensor
|
||||
}
|
||||
|
||||
// activation layer
|
||||
open class Activation(
|
||||
val activation: (DoubleTensor) -> DoubleTensor,
|
||||
val activationDer: (DoubleTensor) -> DoubleTensor
|
||||
) : Layer {
|
||||
override fun forward(input: DoubleTensor): DoubleTensor {
|
||||
return activation(input)
|
||||
}
|
||||
|
||||
override fun backward(input: DoubleTensor, outputError: DoubleTensor): DoubleTensor {
|
||||
return DoubleTensorAlgebra { outputError * activationDer(input) }
|
||||
}
|
||||
}
|
||||
|
||||
fun relu(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
|
||||
x.map { if (it > 0) it else 0.0 }
|
||||
}
|
||||
|
||||
fun reluDer(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
|
||||
x.map { if (it > 0) 1.0 else 0.0 }
|
||||
}
|
||||
|
||||
// activation layer with relu activator
|
||||
class ReLU : Activation(::relu, ::reluDer)
|
||||
|
||||
fun sigmoid(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
|
||||
1.0 / (1.0 + (-x).exp())
|
||||
}
|
||||
|
||||
fun sigmoidDer(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
|
||||
sigmoid(x) * (1.0 - sigmoid(x))
|
||||
}
|
||||
|
||||
// activation layer with sigmoid activator
|
||||
class Sigmoid : Activation(::sigmoid, ::sigmoidDer)
|
||||
|
||||
// dense layer
|
||||
class Dense(
|
||||
private val inputUnits: Int,
|
||||
private val outputUnits: Int,
|
||||
private val learningRate: Double = 0.1
|
||||
) : Layer {
|
||||
|
||||
private val weights: DoubleTensor = DoubleTensorAlgebra {
|
||||
randomNormal(
|
||||
intArrayOf(inputUnits, outputUnits),
|
||||
seed
|
||||
) * sqrt(2.0 / (inputUnits + outputUnits))
|
||||
}
|
||||
|
||||
private val bias: DoubleTensor = DoubleTensorAlgebra { zeros(intArrayOf(outputUnits)) }
|
||||
|
||||
override fun forward(input: DoubleTensor): DoubleTensor {
|
||||
return BroadcastDoubleTensorAlgebra { (input dot weights) + bias }
|
||||
}
|
||||
|
||||
override fun backward(input: DoubleTensor, outputError: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
|
||||
val gradInput = outputError dot weights.transpose()
|
||||
|
||||
val gradW = input.transpose() dot outputError
|
||||
val gradBias = outputError.mean(dim = 0, keepDim = false) * input.shape[0].toDouble()
|
||||
|
||||
weights -= learningRate * gradW
|
||||
bias -= learningRate * gradBias
|
||||
|
||||
gradInput
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// simple accuracy equal to the proportion of correct answers
|
||||
fun accuracy(yPred: DoubleTensor, yTrue: DoubleTensor): Double {
|
||||
check(yPred.shape contentEquals yTrue.shape)
|
||||
val n = yPred.shape[0]
|
||||
var correctCnt = 0
|
||||
for (i in 0 until n) {
|
||||
if (yPred[intArrayOf(i, 0)] == yTrue[intArrayOf(i, 0)]) {
|
||||
correctCnt += 1
|
||||
}
|
||||
}
|
||||
return correctCnt.toDouble() / n.toDouble()
|
||||
}
|
||||
|
||||
// neural network class
|
||||
class NeuralNetwork(private val layers: List<Layer>) {
|
||||
private fun softMaxLoss(yPred: DoubleTensor, yTrue: DoubleTensor): DoubleTensor = BroadcastDoubleTensorAlgebra {
|
||||
|
||||
val onesForAnswers = yPred.zeroesLike()
|
||||
yTrue.toDoubleArray().forEachIndexed { index, labelDouble ->
|
||||
val label = labelDouble.toInt()
|
||||
onesForAnswers[intArrayOf(index, label)] = 1.0
|
||||
}
|
||||
|
||||
val softmaxValue = yPred.exp() / yPred.exp().sum(dim = 1, keepDim = true)
|
||||
|
||||
(-onesForAnswers + softmaxValue) / (yPred.shape[0].toDouble())
|
||||
}
|
||||
|
||||
@OptIn(ExperimentalStdlibApi::class)
|
||||
private fun forward(x: DoubleTensor): List<DoubleTensor> {
|
||||
var input = x
|
||||
|
||||
return buildList {
|
||||
layers.forEach { layer ->
|
||||
val output = layer.forward(input)
|
||||
add(output)
|
||||
input = output
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@OptIn(ExperimentalStdlibApi::class)
|
||||
private fun train(xTrain: DoubleTensor, yTrain: DoubleTensor) {
|
||||
val layerInputs = buildList {
|
||||
add(xTrain)
|
||||
addAll(forward(xTrain))
|
||||
}
|
||||
|
||||
var lossGrad = softMaxLoss(layerInputs.last(), yTrain)
|
||||
|
||||
layers.zip(layerInputs).reversed().forEach { (layer, input) ->
|
||||
lossGrad = layer.backward(input, lossGrad)
|
||||
}
|
||||
}
|
||||
|
||||
fun fit(xTrain: DoubleTensor, yTrain: DoubleTensor, batchSize: Int, epochs: Int) = DoubleTensorAlgebra {
|
||||
fun iterBatch(x: DoubleTensor, y: DoubleTensor): Sequence<Pair<DoubleTensor, DoubleTensor>> = sequence {
|
||||
val n = x.shape[0]
|
||||
val shuffledIndices = (0 until n).shuffled()
|
||||
for (i in 0 until n step batchSize) {
|
||||
val excerptIndices = shuffledIndices.drop(i).take(batchSize).toIntArray()
|
||||
val batch = x.rowsByIndices(excerptIndices) to y.rowsByIndices(excerptIndices)
|
||||
yield(batch)
|
||||
}
|
||||
}
|
||||
|
||||
for (epoch in 0 until epochs) {
|
||||
println("Epoch ${epoch + 1}/$epochs")
|
||||
for ((xBatch, yBatch) in iterBatch(xTrain, yTrain)) {
|
||||
train(xBatch, yBatch)
|
||||
}
|
||||
println("Accuracy:${accuracy(yTrain, predict(xTrain).argMax(1, true))}")
|
||||
}
|
||||
}
|
||||
|
||||
fun predict(x: DoubleTensor): DoubleTensor {
|
||||
return forward(x).last()
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
@OptIn(ExperimentalStdlibApi::class)
|
||||
fun main() {
|
||||
BroadcastDoubleTensorAlgebra {
|
||||
val features = 5
|
||||
val sampleSize = 250
|
||||
val trainSize = 180
|
||||
val testSize = sampleSize - trainSize
|
||||
|
||||
// take sample of features from normal distribution
|
||||
val x = randomNormal(intArrayOf(sampleSize, features), seed) * 2.5
|
||||
|
||||
x += fromArray(
|
||||
intArrayOf(5),
|
||||
doubleArrayOf(0.0, -1.0, -2.5, -3.0, 5.5) // rows means
|
||||
)
|
||||
|
||||
|
||||
// define class like '1' if the sum of features > 0 and '0' otherwise
|
||||
val y = fromArray(
|
||||
intArrayOf(sampleSize, 1),
|
||||
DoubleArray(sampleSize) { i ->
|
||||
if (x[i].sum() > 0.0) {
|
||||
1.0
|
||||
} else {
|
||||
0.0
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
// split train ans test
|
||||
val trainIndices = (0 until trainSize).toList().toIntArray()
|
||||
val testIndices = (trainSize until sampleSize).toList().toIntArray()
|
||||
|
||||
val xTrain = x.rowsByIndices(trainIndices)
|
||||
val yTrain = y.rowsByIndices(trainIndices)
|
||||
|
||||
val xTest = x.rowsByIndices(testIndices)
|
||||
val yTest = y.rowsByIndices(testIndices)
|
||||
|
||||
// build model
|
||||
val layers = buildList {
|
||||
add(Dense(features, 64))
|
||||
add(ReLU())
|
||||
add(Dense(64, 16))
|
||||
add(ReLU())
|
||||
add(Dense(16, 2))
|
||||
add(Sigmoid())
|
||||
}
|
||||
val model = NeuralNetwork(layers)
|
||||
|
||||
// fit it with train data
|
||||
model.fit(xTrain, yTrain, batchSize = 20, epochs = 10)
|
||||
|
||||
// make prediction
|
||||
val prediction = model.predict(xTest)
|
||||
|
||||
// process raw prediction via argMax
|
||||
val predictionLabels = prediction.argMax(1, true)
|
||||
|
||||
// find out accuracy
|
||||
val acc = accuracy(yTest, predictionLabels)
|
||||
println("Test accuracy:$acc")
|
||||
|
||||
}
|
||||
}
|
@ -0,0 +1,68 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors
|
||||
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.tensors.core.DoubleTensor
|
||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
|
||||
|
||||
import kotlin.math.abs
|
||||
|
||||
// OLS estimator using SVD
|
||||
|
||||
fun main() {
|
||||
//seed for random
|
||||
val randSeed = 100500L
|
||||
|
||||
// work in context with linear operations
|
||||
DoubleTensorAlgebra {
|
||||
// take coefficient vector from normal distribution
|
||||
val alpha = randomNormal(
|
||||
intArrayOf(5),
|
||||
randSeed
|
||||
) + fromArray(
|
||||
intArrayOf(5),
|
||||
doubleArrayOf(1.0, 2.5, 3.4, 5.0, 10.1)
|
||||
)
|
||||
|
||||
println("Real alpha:\n$alpha")
|
||||
|
||||
// also take sample of size 20 from normal distribution for x
|
||||
val x = randomNormal(
|
||||
intArrayOf(20, 5),
|
||||
randSeed
|
||||
)
|
||||
|
||||
// calculate y and add gaussian noise (N(0, 0.05))
|
||||
val y = x dot alpha
|
||||
y += y.randomNormalLike(randSeed) * 0.05
|
||||
|
||||
// now restore the coefficient vector with OSL estimator with SVD
|
||||
val (u, singValues, v) = x.svd()
|
||||
|
||||
// we have to make sure the singular values of the matrix are not close to zero
|
||||
println("Singular values:\n$singValues")
|
||||
|
||||
|
||||
// inverse Sigma matrix can be restored from singular values with diagonalEmbedding function
|
||||
val sigma = diagonalEmbedding(singValues.map{ x -> if (abs(x) < 1e-3) 0.0 else 1.0/x })
|
||||
|
||||
val alphaOLS = v dot sigma dot u.transpose() dot y
|
||||
println("Estimated alpha:\n" +
|
||||
"$alphaOLS")
|
||||
|
||||
// figure out MSE of approximation
|
||||
fun mse(yTrue: DoubleTensor, yPred: DoubleTensor): Double {
|
||||
require(yTrue.shape.size == 1)
|
||||
require(yTrue.shape contentEquals yPred.shape)
|
||||
|
||||
val diff = yTrue - yPred
|
||||
return diff.dot(diff).sqrt().value()
|
||||
}
|
||||
|
||||
println("MSE: ${mse(alpha, alphaOLS)}")
|
||||
}
|
||||
}
|
78
examples/src/main/kotlin/space/kscience/kmath/tensors/PCA.kt
Normal file
78
examples/src/main/kotlin/space/kscience/kmath/tensors/PCA.kt
Normal file
@ -0,0 +1,78 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors
|
||||
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra
|
||||
|
||||
|
||||
// simple PCA
|
||||
|
||||
fun main(){
|
||||
val seed = 100500L
|
||||
|
||||
// work in context with broadcast methods
|
||||
BroadcastDoubleTensorAlgebra {
|
||||
|
||||
// assume x is range from 0 until 10
|
||||
val x = fromArray(
|
||||
intArrayOf(10),
|
||||
(0 until 10).toList().map { it.toDouble() }.toDoubleArray()
|
||||
)
|
||||
|
||||
// take y dependent on x with noise
|
||||
val y = 2.0 * x + (3.0 + x.randomNormalLike(seed) * 1.5)
|
||||
|
||||
println("x:\n$x")
|
||||
println("y:\n$y")
|
||||
|
||||
// stack them into single dataset
|
||||
val dataset = stack(listOf(x, y)).transpose()
|
||||
|
||||
// normalize both x and y
|
||||
val xMean = x.mean()
|
||||
val yMean = y.mean()
|
||||
|
||||
val xStd = x.std()
|
||||
val yStd = y.std()
|
||||
|
||||
val xScaled = (x - xMean) / xStd
|
||||
val yScaled = (y - yMean) / yStd
|
||||
|
||||
// save means ans standard deviations for further recovery
|
||||
val mean = fromArray(
|
||||
intArrayOf(2),
|
||||
doubleArrayOf(xMean, yMean)
|
||||
)
|
||||
println("Means:\n$mean")
|
||||
|
||||
val std = fromArray(
|
||||
intArrayOf(2),
|
||||
doubleArrayOf(xStd, yStd)
|
||||
)
|
||||
println("Standard deviations:\n$std")
|
||||
|
||||
// calculate the covariance matrix of scaled x and y
|
||||
val covMatrix = cov(listOf(xScaled, yScaled))
|
||||
println("Covariance matrix:\n$covMatrix")
|
||||
|
||||
// and find out eigenvector of it
|
||||
val (_, evecs) = covMatrix.symEig()
|
||||
val v = evecs[0]
|
||||
println("Eigenvector:\n$v")
|
||||
|
||||
// reduce dimension of dataset
|
||||
val datasetReduced = v dot stack(listOf(xScaled, yScaled))
|
||||
println("Reduced data:\n$datasetReduced")
|
||||
|
||||
// we can restore original data from reduced data.
|
||||
// for example, find 7th element of dataset
|
||||
val n = 7
|
||||
val restored = (datasetReduced[n] dot v.view(intArrayOf(1, 2))) * std + mean
|
||||
println("Original value:\n${dataset[n]}")
|
||||
println("Restored value:\n$restored")
|
||||
}
|
||||
}
|
@ -750,7 +750,7 @@ public final class space/kscience/kmath/nd/BufferAlgebraNDKt {
|
||||
public static final fun ring (Lspace/kscience/kmath/nd/AlgebraND$Companion;Lspace/kscience/kmath/operations/Ring;Lkotlin/jvm/functions/Function2;[I)Lspace/kscience/kmath/nd/BufferedRingND;
|
||||
}
|
||||
|
||||
public final class space/kscience/kmath/nd/BufferND : space/kscience/kmath/nd/StructureND {
|
||||
public class space/kscience/kmath/nd/BufferND : space/kscience/kmath/nd/StructureND {
|
||||
public fun <init> (Lspace/kscience/kmath/nd/Strides;Lspace/kscience/kmath/structures/Buffer;)V
|
||||
public fun elements ()Lkotlin/sequences/Sequence;
|
||||
public fun get ([I)Ljava/lang/Object;
|
||||
@ -791,10 +791,9 @@ public final class space/kscience/kmath/nd/DefaultStrides : space/kscience/kmath
|
||||
public fun equals (Ljava/lang/Object;)Z
|
||||
public fun getLinearSize ()I
|
||||
public fun getShape ()[I
|
||||
public fun getStrides ()Ljava/util/List;
|
||||
public fun getStrides ()[I
|
||||
public fun hashCode ()I
|
||||
public fun index (I)[I
|
||||
public fun offset ([I)I
|
||||
}
|
||||
|
||||
public final class space/kscience/kmath/nd/DefaultStrides$Companion {
|
||||
@ -878,6 +877,22 @@ public abstract interface class space/kscience/kmath/nd/GroupND : space/kscience
|
||||
public final class space/kscience/kmath/nd/GroupND$Companion {
|
||||
}
|
||||
|
||||
public final class space/kscience/kmath/nd/MutableBufferND : space/kscience/kmath/nd/BufferND, space/kscience/kmath/nd/MutableStructureND {
|
||||
public fun <init> (Lspace/kscience/kmath/nd/Strides;Lspace/kscience/kmath/structures/MutableBuffer;)V
|
||||
public final fun getMutableBuffer ()Lspace/kscience/kmath/structures/MutableBuffer;
|
||||
public fun set ([ILjava/lang/Object;)V
|
||||
}
|
||||
|
||||
public abstract interface class space/kscience/kmath/nd/MutableStructure1D : space/kscience/kmath/nd/MutableStructureND, space/kscience/kmath/nd/Structure1D, space/kscience/kmath/structures/MutableBuffer {
|
||||
public fun set ([ILjava/lang/Object;)V
|
||||
}
|
||||
|
||||
public abstract interface class space/kscience/kmath/nd/MutableStructure2D : space/kscience/kmath/nd/MutableStructureND, space/kscience/kmath/nd/Structure2D {
|
||||
public fun getColumns ()Ljava/util/List;
|
||||
public fun getRows ()Ljava/util/List;
|
||||
public abstract fun set (IILjava/lang/Object;)V
|
||||
}
|
||||
|
||||
public abstract interface class space/kscience/kmath/nd/MutableStructureND : space/kscience/kmath/nd/StructureND {
|
||||
public abstract fun set ([ILjava/lang/Object;)V
|
||||
}
|
||||
@ -917,10 +932,10 @@ public final class space/kscience/kmath/nd/ShortRingNDKt {
|
||||
public abstract interface class space/kscience/kmath/nd/Strides {
|
||||
public abstract fun getLinearSize ()I
|
||||
public abstract fun getShape ()[I
|
||||
public abstract fun getStrides ()Ljava/util/List;
|
||||
public abstract fun getStrides ()[I
|
||||
public abstract fun index (I)[I
|
||||
public fun indices ()Lkotlin/sequences/Sequence;
|
||||
public abstract fun offset ([I)I
|
||||
public fun offset ([I)I
|
||||
}
|
||||
|
||||
public abstract interface class space/kscience/kmath/nd/Structure1D : space/kscience/kmath/nd/StructureND, space/kscience/kmath/structures/Buffer {
|
||||
@ -934,6 +949,7 @@ public final class space/kscience/kmath/nd/Structure1D$Companion {
|
||||
}
|
||||
|
||||
public final class space/kscience/kmath/nd/Structure1DKt {
|
||||
public static final fun as1D (Lspace/kscience/kmath/nd/MutableStructureND;)Lspace/kscience/kmath/nd/MutableStructure1D;
|
||||
public static final fun as1D (Lspace/kscience/kmath/nd/StructureND;)Lspace/kscience/kmath/nd/Structure1D;
|
||||
public static final fun asND (Lspace/kscience/kmath/structures/Buffer;)Lspace/kscience/kmath/nd/Structure1D;
|
||||
}
|
||||
@ -954,6 +970,7 @@ public final class space/kscience/kmath/nd/Structure2D$Companion {
|
||||
}
|
||||
|
||||
public final class space/kscience/kmath/nd/Structure2DKt {
|
||||
public static final fun as2D (Lspace/kscience/kmath/nd/MutableStructureND;)Lspace/kscience/kmath/nd/MutableStructure2D;
|
||||
public static final fun as2D (Lspace/kscience/kmath/nd/StructureND;)Lspace/kscience/kmath/nd/Structure2D;
|
||||
}
|
||||
|
||||
|
@ -19,6 +19,7 @@ import kotlin.reflect.KClass
|
||||
* @param T the type of items.
|
||||
*/
|
||||
public typealias Matrix<T> = Structure2D<T>
|
||||
public typealias MutableMatrix<T> = MutableStructure2D<T>
|
||||
|
||||
/**
|
||||
* Alias or using [Buffer] as a point/vector in a many-dimensional space.
|
||||
|
@ -7,6 +7,8 @@ package space.kscience.kmath.nd
|
||||
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.BufferFactory
|
||||
import space.kscience.kmath.structures.MutableBuffer
|
||||
import space.kscience.kmath.structures.MutableBufferFactory
|
||||
|
||||
/**
|
||||
* Represents [StructureND] over [Buffer].
|
||||
@ -15,7 +17,7 @@ import space.kscience.kmath.structures.BufferFactory
|
||||
* @param strides The strides to access elements of [Buffer] by linear indices.
|
||||
* @param buffer The underlying buffer.
|
||||
*/
|
||||
public class BufferND<T>(
|
||||
public open class BufferND<T>(
|
||||
public val strides: Strides,
|
||||
public val buffer: Buffer<T>,
|
||||
) : StructureND<T> {
|
||||
@ -51,3 +53,34 @@ public inline fun <T, reified R : Any> StructureND<T>.mapToBuffer(
|
||||
BufferND(strides, factory.invoke(strides.linearSize) { transform(get(strides.index(it))) })
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Represents [MutableStructureND] over [MutableBuffer].
|
||||
*
|
||||
* @param T the type of items.
|
||||
* @param strides The strides to access elements of [MutableBuffer] by linear indices.
|
||||
* @param mutableBuffer The underlying buffer.
|
||||
*/
|
||||
public class MutableBufferND<T>(
|
||||
strides: Strides,
|
||||
public val mutableBuffer: MutableBuffer<T>,
|
||||
) : MutableStructureND<T>, BufferND<T>(strides, mutableBuffer) {
|
||||
override fun set(index: IntArray, value: T) {
|
||||
mutableBuffer[strides.offset(index)] = value
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Transform structure to a new structure using provided [MutableBufferFactory] and optimizing if argument is [MutableBufferND]
|
||||
*/
|
||||
public inline fun <T, reified R : Any> MutableStructureND<T>.mapToMutableBuffer(
|
||||
factory: MutableBufferFactory<R> = MutableBuffer.Companion::auto,
|
||||
crossinline transform: (T) -> R,
|
||||
): MutableBufferND<R> {
|
||||
return if (this is MutableBufferND<T>)
|
||||
MutableBufferND(this.strides, factory.invoke(strides.linearSize) { transform(mutableBuffer[it]) })
|
||||
else {
|
||||
val strides = DefaultStrides(shape)
|
||||
MutableBufferND(strides, factory.invoke(strides.linearSize) { transform(get(strides.index(it))) })
|
||||
}
|
||||
}
|
@ -6,6 +6,8 @@
|
||||
package space.kscience.kmath.nd
|
||||
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.MutableBuffer
|
||||
import space.kscience.kmath.structures.asMutableBuffer
|
||||
import space.kscience.kmath.structures.asSequence
|
||||
import kotlin.jvm.JvmInline
|
||||
|
||||
@ -25,6 +27,16 @@ public interface Structure1D<T> : StructureND<T>, Buffer<T> {
|
||||
public companion object
|
||||
}
|
||||
|
||||
/**
|
||||
* A mutable structure that is guaranteed to be one-dimensional
|
||||
*/
|
||||
public interface MutableStructure1D<T> : Structure1D<T>, MutableStructureND<T>, MutableBuffer<T> {
|
||||
public override operator fun set(index: IntArray, value: T) {
|
||||
require(index.size == 1) { "Index dimension mismatch. Expected 1 but found ${index.size}" }
|
||||
set(index[0], value)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* A 1D wrapper for nd-structure
|
||||
*/
|
||||
@ -37,6 +49,23 @@ private value class Structure1DWrapper<T>(val structure: StructureND<T>) : Struc
|
||||
override fun elements(): Sequence<Pair<IntArray, T>> = structure.elements()
|
||||
}
|
||||
|
||||
/**
|
||||
* A 1D wrapper for a mutable nd-structure
|
||||
*/
|
||||
private class MutableStructure1DWrapper<T>(val structure: MutableStructureND<T>) : MutableStructure1D<T> {
|
||||
override val shape: IntArray get() = structure.shape
|
||||
override val size: Int get() = structure.shape[0]
|
||||
override fun elements(): Sequence<Pair<IntArray, T>> = structure.elements()
|
||||
|
||||
override fun get(index: Int): T = structure[index]
|
||||
override fun set(index: Int, value: T) {
|
||||
structure[intArrayOf(index)] = value
|
||||
}
|
||||
|
||||
override fun copy(): MutableBuffer<T> =
|
||||
structure.elements().map { it.second }.toMutableList().asMutableBuffer()
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* A structure wrapper for buffer
|
||||
@ -52,6 +81,21 @@ private value class Buffer1DWrapper<T>(val buffer: Buffer<T>) : Structure1D<T> {
|
||||
override operator fun get(index: Int): T = buffer[index]
|
||||
}
|
||||
|
||||
internal class MutableBuffer1DWrapper<T>(val buffer: MutableBuffer<T>) : MutableStructure1D<T> {
|
||||
override val shape: IntArray get() = intArrayOf(buffer.size)
|
||||
override val size: Int get() = buffer.size
|
||||
|
||||
override fun elements(): Sequence<Pair<IntArray, T>> =
|
||||
buffer.asSequence().mapIndexed { index, value -> intArrayOf(index) to value }
|
||||
|
||||
override operator fun get(index: Int): T = buffer[index]
|
||||
override fun set(index: Int, value: T) {
|
||||
buffer[index] = value
|
||||
}
|
||||
|
||||
override fun copy(): MutableBuffer<T> = buffer.copy()
|
||||
}
|
||||
|
||||
/**
|
||||
* Represent a [StructureND] as [Structure1D]. Throw error in case of dimension mismatch
|
||||
*/
|
||||
@ -62,6 +106,11 @@ public fun <T> StructureND<T>.as1D(): Structure1D<T> = this as? Structure1D<T> ?
|
||||
}
|
||||
} else error("Can't create 1d-structure from ${shape.size}d-structure")
|
||||
|
||||
public fun <T> MutableStructureND<T>.as1D(): MutableStructure1D<T> =
|
||||
this as? MutableStructure1D<T> ?: if (shape.size == 1) {
|
||||
MutableStructure1DWrapper(this)
|
||||
} else error("Can't create 1d-structure from ${shape.size}d-structure")
|
||||
|
||||
/**
|
||||
* Represent this buffer as 1D structure
|
||||
*/
|
||||
@ -75,3 +124,4 @@ internal fun <T : Any> Structure1D<T>.unwrap(): Buffer<T> = when {
|
||||
this is Structure1DWrapper && structure is BufferND<T> -> structure.buffer
|
||||
else -> this
|
||||
}
|
||||
|
||||
|
@ -8,6 +8,7 @@ package space.kscience.kmath.nd
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.VirtualBuffer
|
||||
import space.kscience.kmath.structures.MutableListBuffer
|
||||
import kotlin.jvm.JvmInline
|
||||
import kotlin.reflect.KClass
|
||||
|
||||
@ -63,6 +64,32 @@ public interface Structure2D<T> : StructureND<T> {
|
||||
public companion object
|
||||
}
|
||||
|
||||
/**
|
||||
* Represents mutable [Structure2D].
|
||||
*/
|
||||
public interface MutableStructure2D<T> : Structure2D<T>, MutableStructureND<T> {
|
||||
/**
|
||||
* Inserts an item at the specified indices.
|
||||
*
|
||||
* @param i the first index.
|
||||
* @param j the second index.
|
||||
* @param value the value.
|
||||
*/
|
||||
public operator fun set(i: Int, j: Int, value: T)
|
||||
|
||||
/**
|
||||
* The buffer of rows of this structure. It gets elements from the structure dynamically.
|
||||
*/
|
||||
override val rows: List<MutableStructure1D<T>>
|
||||
get() = List(rowNum) { i -> MutableBuffer1DWrapper(MutableListBuffer(colNum) { j -> get(i, j) })}
|
||||
|
||||
/**
|
||||
* The buffer of columns of this structure. It gets elements from the structure dynamically.
|
||||
*/
|
||||
override val columns: List<MutableStructure1D<T>>
|
||||
get() = List(colNum) { j -> MutableBuffer1DWrapper(MutableListBuffer(rowNum) { i -> get(i, j) }) }
|
||||
}
|
||||
|
||||
/**
|
||||
* A 2D wrapper for nd-structure
|
||||
*/
|
||||
@ -81,6 +108,33 @@ private value class Structure2DWrapper<T>(val structure: StructureND<T>) : Struc
|
||||
override fun elements(): Sequence<Pair<IntArray, T>> = structure.elements()
|
||||
}
|
||||
|
||||
/**
|
||||
* A 2D wrapper for a mutable nd-structure
|
||||
*/
|
||||
private class MutableStructure2DWrapper<T>(val structure: MutableStructureND<T>): MutableStructure2D<T>
|
||||
{
|
||||
override val shape: IntArray get() = structure.shape
|
||||
|
||||
override val rowNum: Int get() = shape[0]
|
||||
override val colNum: Int get() = shape[1]
|
||||
|
||||
override operator fun get(i: Int, j: Int): T = structure[i, j]
|
||||
|
||||
override fun set(index: IntArray, value: T) {
|
||||
structure[index] = value
|
||||
}
|
||||
|
||||
override operator fun set(i: Int, j: Int, value: T){
|
||||
structure[intArrayOf(i, j)] = value
|
||||
}
|
||||
|
||||
override fun elements(): Sequence<Pair<IntArray, T>> = structure.elements()
|
||||
|
||||
override fun equals(other: Any?): Boolean = false
|
||||
|
||||
override fun hashCode(): Int = 0
|
||||
}
|
||||
|
||||
/**
|
||||
* Represent a [StructureND] as [Structure1D]. Throw error in case of dimension mismatch
|
||||
*/
|
||||
@ -89,9 +143,18 @@ public fun <T> StructureND<T>.as2D(): Structure2D<T> = this as? Structure2D<T> ?
|
||||
else -> error("Can't create 2d-structure from ${shape.size}d-structure")
|
||||
}
|
||||
|
||||
public fun <T> MutableStructureND<T>.as2D(): MutableStructure2D<T> = this as? MutableStructure2D<T> ?: when (shape.size) {
|
||||
2 -> MutableStructure2DWrapper(this)
|
||||
else -> error("Can't create 2d-structure from ${shape.size}d-structure")
|
||||
}
|
||||
|
||||
/**
|
||||
* Expose inner [StructureND] if possible
|
||||
*/
|
||||
internal fun <T> Structure2D<T>.unwrap(): StructureND<T> =
|
||||
if (this is Structure2DWrapper) structure
|
||||
else this
|
||||
|
||||
internal fun <T> MutableStructure2D<T>.unwrap(): MutableStructureND<T> =
|
||||
if (this is MutableStructure2DWrapper) structure else this
|
||||
|
||||
|
@ -184,12 +184,15 @@ public interface Strides {
|
||||
/**
|
||||
* Array strides
|
||||
*/
|
||||
public val strides: List<Int>
|
||||
public val strides: IntArray
|
||||
|
||||
/**
|
||||
* Get linear index from multidimensional index
|
||||
*/
|
||||
public fun offset(index: IntArray): Int
|
||||
public fun offset(index: IntArray): Int = index.mapIndexed { i, value ->
|
||||
if (value < 0 || value >= shape[i]) throw IndexOutOfBoundsException("Index $value out of shape bounds: (0,${this.shape[i]})")
|
||||
value * strides[i]
|
||||
}.sum()
|
||||
|
||||
/**
|
||||
* Get multidimensional from linear
|
||||
@ -221,7 +224,7 @@ public class DefaultStrides private constructor(override val shape: IntArray) :
|
||||
/**
|
||||
* Strides for memory access
|
||||
*/
|
||||
override val strides: List<Int> by lazy {
|
||||
override val strides: IntArray by lazy {
|
||||
sequence {
|
||||
var current = 1
|
||||
yield(1)
|
||||
@ -230,14 +233,9 @@ public class DefaultStrides private constructor(override val shape: IntArray) :
|
||||
current *= it
|
||||
yield(current)
|
||||
}
|
||||
}.toList()
|
||||
}.toList().toIntArray()
|
||||
}
|
||||
|
||||
override fun offset(index: IntArray): Int = index.mapIndexed { i, value ->
|
||||
if (value < 0 || value >= shape[i]) throw IndexOutOfBoundsException("Index $value out of shape bounds: (0,${this.shape[i]})")
|
||||
value * strides[i]
|
||||
}.sum()
|
||||
|
||||
override fun index(offset: Int): IntArray {
|
||||
val res = IntArray(shape.size)
|
||||
var current = offset
|
||||
|
@ -232,7 +232,7 @@ public value class MutableListBuffer<T>(public val list: MutableList<T>) : Mutab
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns an [ListBuffer] that wraps the original list.
|
||||
* Returns an [MutableListBuffer] that wraps the original list.
|
||||
*/
|
||||
public fun <T> MutableList<T>.asMutableBuffer(): MutableListBuffer<T> = MutableListBuffer(this)
|
||||
|
||||
|
40
kmath-tensors/README.md
Normal file
40
kmath-tensors/README.md
Normal file
@ -0,0 +1,40 @@
|
||||
# Module kmath-tensors
|
||||
|
||||
Common operations on tensors, the API consists of:
|
||||
|
||||
- [TensorAlgebra](src/commonMain/kotlin/space/kscience/kmath/tensors/api/TensorAlgebra.kt) : Basic algebra operations on tensors (plus, dot, etc.)
|
||||
- [TensorPartialDivisionAlgebra](src/commonMain/kotlin/space/kscience/kmath/tensors/api/TensorPartialDivisionAlgebra.kt) : Emulates an algebra over a field
|
||||
- [LinearOpsTensorAlgebra](src/commonMain/kotlin/space/kscience/kmath/tensors/api/LinearOpsTensorAlgebra.kt) : Linear algebra operations including LU, QR, Cholesky LL and SVD decompositions
|
||||
- [AnalyticTensorAlgebra](src/commonMain/kotlin/space/kscience/kmath/tensors/api/AnalyticTensorAlgebra.kt) : Element-wise analytic operations
|
||||
|
||||
The library offers a multiplatform implementation for this interface over the `Double`'s. As a highlight, the user can find:
|
||||
- [BroadcastDoubleTensorAlgebra](src/commonMain/kotlin/space/kscience/kmath/tensors/core/algebras/BroadcastDoubleTensorAlgebra.kt) : Basic algebra operations implemented with broadcasting.
|
||||
- [DoubleLinearOpsTensorAlgebra](src/commonMain/kotlin/space/kscience/kmath/tensors/core/algebras/DoubleLinearOpsTensorAlgebra.kt) : Contains the power method for SVD and the spectrum of symmetric matrices.
|
||||
## Artifact:
|
||||
|
||||
The Maven coordinates of this project are `space.kscience:kmath-tensors:0.3.0-dev-7`.
|
||||
|
||||
**Gradle:**
|
||||
```gradle
|
||||
repositories {
|
||||
maven { url 'https://repo.kotlin.link' }
|
||||
maven { url 'https://dl.bintray.com/hotkeytlt/maven' }
|
||||
maven { url "https://dl.bintray.com/kotlin/kotlin-eap" } // include for builds based on kotlin-eap
|
||||
}
|
||||
|
||||
dependencies {
|
||||
implementation 'space.kscience:kmath-tensors:0.3.0-dev-7'
|
||||
}
|
||||
```
|
||||
**Gradle Kotlin DSL:**
|
||||
```kotlin
|
||||
repositories {
|
||||
maven("https://repo.kotlin.link")
|
||||
maven("https://dl.bintray.com/kotlin/kotlin-eap") // include for builds based on kotlin-eap
|
||||
maven("https://dl.bintray.com/hotkeytlt/maven") // required for a
|
||||
}
|
||||
|
||||
dependencies {
|
||||
implementation("space.kscience:kmath-tensors:0.3.0-dev-7")
|
||||
}
|
||||
```
|
43
kmath-tensors/build.gradle.kts
Normal file
43
kmath-tensors/build.gradle.kts
Normal file
@ -0,0 +1,43 @@
|
||||
plugins {
|
||||
id("ru.mipt.npm.gradle.mpp")
|
||||
}
|
||||
|
||||
kotlin.sourceSets {
|
||||
all {
|
||||
languageSettings.useExperimentalAnnotation("space.kscience.kmath.misc.UnstableKMathAPI")
|
||||
}
|
||||
commonMain {
|
||||
dependencies {
|
||||
api(project(":kmath-core"))
|
||||
api(project(":kmath-stat"))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
tasks.dokkaHtml {
|
||||
dependsOn(tasks.build)
|
||||
}
|
||||
|
||||
readme {
|
||||
maturity = ru.mipt.npm.gradle.Maturity.PROTOTYPE
|
||||
propertyByTemplate("artifact", rootProject.file("docs/templates/ARTIFACT-TEMPLATE.md"))
|
||||
|
||||
feature(
|
||||
id = "tensor algebra",
|
||||
description = "Basic linear algebra operations on tensors (plus, dot, etc.)",
|
||||
ref = "src/commonMain/kotlin/space/kscience/kmath/tensors/api/TensorAlgebra.kt"
|
||||
)
|
||||
|
||||
feature(
|
||||
id = "tensor algebra with broadcasting",
|
||||
description = "Basic linear algebra operations implemented with broadcasting.",
|
||||
ref = "src/commonMain/kotlin/space/kscience/kmath/tensors/core/algebras/BroadcastDoubleTensorAlgebra.kt"
|
||||
)
|
||||
|
||||
feature(
|
||||
id = "linear algebra operations",
|
||||
description = "Advanced linear algebra operations like LU decomposition, SVD, etc.",
|
||||
ref = "src/commonMain/kotlin/space/kscience/kmath/tensors/api/LinearOpsTensorAlgebra.kt"
|
||||
)
|
||||
|
||||
}
|
7
kmath-tensors/docs/README-TEMPLATE.md
Normal file
7
kmath-tensors/docs/README-TEMPLATE.md
Normal file
@ -0,0 +1,7 @@
|
||||
# Module kmath-tensors
|
||||
|
||||
Common linear algebra operations on tensors.
|
||||
|
||||
${features}
|
||||
|
||||
${artifact}
|
@ -0,0 +1,131 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.api
|
||||
|
||||
|
||||
/**
|
||||
* Analytic operations on [Tensor].
|
||||
*
|
||||
* @param T the type of items closed under analytic functions in the tensors.
|
||||
*/
|
||||
public interface AnalyticTensorAlgebra<T> : TensorPartialDivisionAlgebra<T> {
|
||||
|
||||
/**
|
||||
* @return the mean of all elements in the input tensor.
|
||||
*/
|
||||
public fun Tensor<T>.mean(): T
|
||||
|
||||
/**
|
||||
* Returns the mean of each row of the input tensor in the given dimension [dim].
|
||||
*
|
||||
* If [keepDim] is true, the output tensor is of the same size as
|
||||
* input except in the dimension [dim] where it is of size 1.
|
||||
* Otherwise, [dim] is squeezed, resulting in the output tensor having 1 fewer dimension.
|
||||
*
|
||||
* @param dim the dimension to reduce.
|
||||
* @param keepDim whether the output tensor has [dim] retained or not.
|
||||
* @return the mean of each row of the input tensor in the given dimension [dim].
|
||||
*/
|
||||
public fun Tensor<T>.mean(dim: Int, keepDim: Boolean): Tensor<T>
|
||||
|
||||
/**
|
||||
* @return the standard deviation of all elements in the input tensor.
|
||||
*/
|
||||
public fun Tensor<T>.std(): T
|
||||
|
||||
/**
|
||||
* Returns the standard deviation of each row of the input tensor in the given dimension [dim].
|
||||
*
|
||||
* If [keepDim] is true, the output tensor is of the same size as
|
||||
* input except in the dimension [dim] where it is of size 1.
|
||||
* Otherwise, [dim] is squeezed, resulting in the output tensor having 1 fewer dimension.
|
||||
*
|
||||
* @param dim the dimension to reduce.
|
||||
* @param keepDim whether the output tensor has [dim] retained or not.
|
||||
* @return the standard deviation of each row of the input tensor in the given dimension [dim].
|
||||
*/
|
||||
public fun Tensor<T>.std(dim: Int, keepDim: Boolean): Tensor<T>
|
||||
|
||||
/**
|
||||
* @return the variance of all elements in the input tensor.
|
||||
*/
|
||||
public fun Tensor<T>.variance(): T
|
||||
|
||||
/**
|
||||
* Returns the variance of each row of the input tensor in the given dimension [dim].
|
||||
*
|
||||
* If [keepDim] is true, the output tensor is of the same size as
|
||||
* input except in the dimension [dim] where it is of size 1.
|
||||
* Otherwise, [dim] is squeezed, resulting in the output tensor having 1 fewer dimension.
|
||||
*
|
||||
* @param dim the dimension to reduce.
|
||||
* @param keepDim whether the output tensor has [dim] retained or not.
|
||||
* @return the variance of each row of the input tensor in the given dimension [dim].
|
||||
*/
|
||||
public fun Tensor<T>.variance(dim: Int, keepDim: Boolean): Tensor<T>
|
||||
|
||||
/**
|
||||
* Returns the covariance matrix M of given vectors.
|
||||
*
|
||||
* M[i, j] contains covariance of i-th and j-th given vectors
|
||||
*
|
||||
* @param tensors the [List] of 1-dimensional tensors with same shape
|
||||
* @return the covariance matrix
|
||||
*/
|
||||
public fun cov(tensors: List<Tensor<T>>): Tensor<T>
|
||||
|
||||
//For information: https://pytorch.org/docs/stable/generated/torch.exp.html
|
||||
public fun Tensor<T>.exp(): Tensor<T>
|
||||
|
||||
//For information: https://pytorch.org/docs/stable/generated/torch.log.html
|
||||
public fun Tensor<T>.ln(): Tensor<T>
|
||||
|
||||
//For information: https://pytorch.org/docs/stable/generated/torch.sqrt.html
|
||||
public fun Tensor<T>.sqrt(): Tensor<T>
|
||||
|
||||
//For information: https://pytorch.org/docs/stable/generated/torch.acos.html#torch.cos
|
||||
public fun Tensor<T>.cos(): Tensor<T>
|
||||
|
||||
//For information: https://pytorch.org/docs/stable/generated/torch.acos.html#torch.acos
|
||||
public fun Tensor<T>.acos(): Tensor<T>
|
||||
|
||||
//For information: https://pytorch.org/docs/stable/generated/torch.acosh.html#torch.cosh
|
||||
public fun Tensor<T>.cosh(): Tensor<T>
|
||||
|
||||
//For information: https://pytorch.org/docs/stable/generated/torch.acosh.html#torch.acosh
|
||||
public fun Tensor<T>.acosh(): Tensor<T>
|
||||
|
||||
//For information: https://pytorch.org/docs/stable/generated/torch.asin.html#torch.sin
|
||||
public fun Tensor<T>.sin(): Tensor<T>
|
||||
|
||||
//For information: https://pytorch.org/docs/stable/generated/torch.asin.html#torch.asin
|
||||
public fun Tensor<T>.asin(): Tensor<T>
|
||||
|
||||
//For information: https://pytorch.org/docs/stable/generated/torch.asin.html#torch.sinh
|
||||
public fun Tensor<T>.sinh(): Tensor<T>
|
||||
|
||||
//For information: https://pytorch.org/docs/stable/generated/torch.asin.html#torch.asinh
|
||||
public fun Tensor<T>.asinh(): Tensor<T>
|
||||
|
||||
//For information: https://pytorch.org/docs/stable/generated/torch.atan.html#torch.tan
|
||||
public fun Tensor<T>.tan(): Tensor<T>
|
||||
|
||||
//https://pytorch.org/docs/stable/generated/torch.atan.html#torch.atan
|
||||
public fun Tensor<T>.atan(): Tensor<T>
|
||||
|
||||
//For information: https://pytorch.org/docs/stable/generated/torch.atanh.html#torch.tanh
|
||||
public fun Tensor<T>.tanh(): Tensor<T>
|
||||
|
||||
//For information: https://pytorch.org/docs/stable/generated/torch.atanh.html#torch.atanh
|
||||
public fun Tensor<T>.atanh(): Tensor<T>
|
||||
|
||||
//For information: https://pytorch.org/docs/stable/generated/torch.ceil.html#torch.ceil
|
||||
public fun Tensor<T>.ceil(): Tensor<T>
|
||||
|
||||
//For information: https://pytorch.org/docs/stable/generated/torch.floor.html#torch.floor
|
||||
public fun Tensor<T>.floor(): Tensor<T>
|
||||
|
||||
}
|
@ -0,0 +1,97 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.api
|
||||
|
||||
/**
|
||||
* Common linear algebra operations. Operates on [Tensor].
|
||||
*
|
||||
* @param T the type of items closed under division in the tensors.
|
||||
*/
|
||||
public interface LinearOpsTensorAlgebra<T> : TensorPartialDivisionAlgebra<T> {
|
||||
|
||||
/**
|
||||
* Computes the determinant of a square matrix input, or of each square matrix in a batched input.
|
||||
* For more information: https://pytorch.org/docs/stable/linalg.html#torch.linalg.det
|
||||
*
|
||||
* @return the determinant.
|
||||
*/
|
||||
public fun Tensor<T>.det(): Tensor<T>
|
||||
|
||||
/**
|
||||
* Computes the multiplicative inverse matrix of a square matrix input, or of each square matrix in a batched input.
|
||||
* Given a square matrix `A`, return the matrix `AInv` satisfying
|
||||
* `A dot AInv = AInv dot A = eye(a.shape[0])`.
|
||||
* For more information: https://pytorch.org/docs/stable/linalg.html#torch.linalg.inv
|
||||
*
|
||||
* @return the multiplicative inverse of a matrix.
|
||||
*/
|
||||
public fun Tensor<T>.inv(): Tensor<T>
|
||||
|
||||
/**
|
||||
* Cholesky decomposition.
|
||||
*
|
||||
* Computes the Cholesky decomposition of a Hermitian (or symmetric for real-valued matrices)
|
||||
* positive-definite matrix or the Cholesky decompositions for a batch of such matrices.
|
||||
* Each decomposition has the form:
|
||||
* Given a tensor `input`, return the tensor `L` satisfying `input = L dot L.H`,
|
||||
* where L is a lower-triangular matrix and L.H is the conjugate transpose of L,
|
||||
* which is just a transpose for the case of real-valued input matrices.
|
||||
* For more information: https://pytorch.org/docs/stable/linalg.html#torch.linalg.cholesky
|
||||
*
|
||||
* @return the batch of L matrices.
|
||||
*/
|
||||
public fun Tensor<T>.cholesky(): Tensor<T>
|
||||
|
||||
/**
|
||||
* QR decomposition.
|
||||
*
|
||||
* Computes the QR decomposition of a matrix or a batch of matrices, and returns a pair `(Q, R)` of tensors.
|
||||
* Given a tensor `input`, return tensors (Q, R) satisfying ``input = Q dot R``,
|
||||
* with `Q` being an orthogonal matrix or batch of orthogonal matrices
|
||||
* and `R` being an upper triangular matrix or batch of upper triangular matrices.
|
||||
* For more information: https://pytorch.org/docs/stable/linalg.html#torch.linalg.qr
|
||||
*
|
||||
* @return pair of Q and R tensors.
|
||||
*/
|
||||
public fun Tensor<T>.qr(): Pair<Tensor<T>, Tensor<T>>
|
||||
|
||||
/**
|
||||
* LUP decomposition
|
||||
*
|
||||
* Computes the LUP decomposition of a matrix or a batch of matrices.
|
||||
* Given a tensor `input`, return tensors (P, L, U) satisfying `P dot input = L dot U`,
|
||||
* with `P` being a permutation matrix or batch of matrices,
|
||||
* `L` being a lower triangular matrix or batch of matrices,
|
||||
* `U` being an upper triangular matrix or batch of matrices.
|
||||
*
|
||||
* * @return triple of P, L and U tensors
|
||||
*/
|
||||
public fun Tensor<T>.lu(): Triple<Tensor<T>, Tensor<T>, Tensor<T>>
|
||||
|
||||
/**
|
||||
* Singular Value Decomposition.
|
||||
*
|
||||
* Computes the singular value decomposition of either a matrix or batch of matrices `input`.
|
||||
* The singular value decomposition is represented as a triple `(U, S, V)`,
|
||||
* such that `input = U dot diagonalEmbedding(S) dot V.H`,
|
||||
* where V.H is the conjugate transpose of V.
|
||||
* If input is a batch of tensors, then U, S, and Vh are also batched with the same batch dimensions as input.
|
||||
* For more information: https://pytorch.org/docs/stable/linalg.html#torch.linalg.svd
|
||||
*
|
||||
* @return triple `(U, S, V)`.
|
||||
*/
|
||||
public fun Tensor<T>.svd(): Triple<Tensor<T>, Tensor<T>, Tensor<T>>
|
||||
|
||||
/**
|
||||
* Returns eigenvalues and eigenvectors of a real symmetric matrix input or a batch of real symmetric matrices,
|
||||
* represented by a pair (eigenvalues, eigenvectors).
|
||||
* For more information: https://pytorch.org/docs/stable/generated/torch.symeig.html
|
||||
*
|
||||
* @return a pair (eigenvalues, eigenvectors)
|
||||
*/
|
||||
public fun Tensor<T>.symEig(): Pair<Tensor<T>, Tensor<T>>
|
||||
|
||||
}
|
@ -0,0 +1,5 @@
|
||||
package space.kscience.kmath.tensors.api
|
||||
|
||||
import space.kscience.kmath.nd.MutableStructureND
|
||||
|
||||
public typealias Tensor<T> = MutableStructureND<T>
|
@ -0,0 +1,327 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.api
|
||||
|
||||
import space.kscience.kmath.operations.Algebra
|
||||
|
||||
/**
|
||||
* Algebra over a ring on [Tensor].
|
||||
* For more information: https://proofwiki.org/wiki/Definition:Algebra_over_Ring
|
||||
*
|
||||
* @param T the type of items in the tensors.
|
||||
*/
|
||||
public interface TensorAlgebra<T>: Algebra<Tensor<T>> {
|
||||
|
||||
/**
|
||||
* Returns a single tensor value of unit dimension if tensor shape equals to [1].
|
||||
*
|
||||
* @return a nullable value of a potentially scalar tensor.
|
||||
*/
|
||||
public fun Tensor<T>.valueOrNull(): T?
|
||||
|
||||
/**
|
||||
* Returns a single tensor value of unit dimension. The tensor shape must be equal to [1].
|
||||
*
|
||||
* @return the value of a scalar tensor.
|
||||
*/
|
||||
public fun Tensor<T>.value(): T
|
||||
|
||||
/**
|
||||
* Each element of the tensor [other] is added to this value.
|
||||
* The resulting tensor is returned.
|
||||
*
|
||||
* @param other tensor to be added.
|
||||
* @return the sum of this value and tensor [other].
|
||||
*/
|
||||
public operator fun T.plus(other: Tensor<T>): Tensor<T>
|
||||
|
||||
/**
|
||||
* Adds the scalar [value] to each element of this tensor and returns a new resulting tensor.
|
||||
*
|
||||
* @param value the number to be added to each element of this tensor.
|
||||
* @return the sum of this tensor and [value].
|
||||
*/
|
||||
public operator fun Tensor<T>.plus(value: T): Tensor<T>
|
||||
|
||||
/**
|
||||
* Each element of the tensor [other] is added to each element of this tensor.
|
||||
* The resulting tensor is returned.
|
||||
*
|
||||
* @param other tensor to be added.
|
||||
* @return the sum of this tensor and [other].
|
||||
*/
|
||||
public operator fun Tensor<T>.plus(other: Tensor<T>): Tensor<T>
|
||||
|
||||
/**
|
||||
* Adds the scalar [value] to each element of this tensor.
|
||||
*
|
||||
* @param value the number to be added to each element of this tensor.
|
||||
*/
|
||||
public operator fun Tensor<T>.plusAssign(value: T): Unit
|
||||
|
||||
/**
|
||||
* Each element of the tensor [other] is added to each element of this tensor.
|
||||
*
|
||||
* @param other tensor to be added.
|
||||
*/
|
||||
public operator fun Tensor<T>.plusAssign(other: Tensor<T>): Unit
|
||||
|
||||
|
||||
/**
|
||||
* Each element of the tensor [other] is subtracted from this value.
|
||||
* The resulting tensor is returned.
|
||||
*
|
||||
* @param other tensor to be subtracted.
|
||||
* @return the difference between this value and tensor [other].
|
||||
*/
|
||||
public operator fun T.minus(other: Tensor<T>): Tensor<T>
|
||||
|
||||
/**
|
||||
* Subtracts the scalar [value] from each element of this tensor and returns a new resulting tensor.
|
||||
*
|
||||
* @param value the number to be subtracted from each element of this tensor.
|
||||
* @return the difference between this tensor and [value].
|
||||
*/
|
||||
public operator fun Tensor<T>.minus(value: T): Tensor<T>
|
||||
|
||||
/**
|
||||
* Each element of the tensor [other] is subtracted from each element of this tensor.
|
||||
* The resulting tensor is returned.
|
||||
*
|
||||
* @param other tensor to be subtracted.
|
||||
* @return the difference between this tensor and [other].
|
||||
*/
|
||||
public operator fun Tensor<T>.minus(other: Tensor<T>): Tensor<T>
|
||||
|
||||
/**
|
||||
* Subtracts the scalar [value] from each element of this tensor.
|
||||
*
|
||||
* @param value the number to be subtracted from each element of this tensor.
|
||||
*/
|
||||
public operator fun Tensor<T>.minusAssign(value: T): Unit
|
||||
|
||||
/**
|
||||
* Each element of the tensor [other] is subtracted from each element of this tensor.
|
||||
*
|
||||
* @param other tensor to be subtracted.
|
||||
*/
|
||||
public operator fun Tensor<T>.minusAssign(other: Tensor<T>): Unit
|
||||
|
||||
|
||||
/**
|
||||
* Each element of the tensor [other] is multiplied by this value.
|
||||
* The resulting tensor is returned.
|
||||
*
|
||||
* @param other tensor to be multiplied.
|
||||
* @return the product of this value and tensor [other].
|
||||
*/
|
||||
public operator fun T.times(other: Tensor<T>): Tensor<T>
|
||||
|
||||
/**
|
||||
* Multiplies the scalar [value] by each element of this tensor and returns a new resulting tensor.
|
||||
*
|
||||
* @param value the number to be multiplied by each element of this tensor.
|
||||
* @return the product of this tensor and [value].
|
||||
*/
|
||||
public operator fun Tensor<T>.times(value: T): Tensor<T>
|
||||
|
||||
/**
|
||||
* Each element of the tensor [other] is multiplied by each element of this tensor.
|
||||
* The resulting tensor is returned.
|
||||
*
|
||||
* @param other tensor to be multiplied.
|
||||
* @return the product of this tensor and [other].
|
||||
*/
|
||||
public operator fun Tensor<T>.times(other: Tensor<T>): Tensor<T>
|
||||
|
||||
/**
|
||||
* Multiplies the scalar [value] by each element of this tensor.
|
||||
*
|
||||
* @param value the number to be multiplied by each element of this tensor.
|
||||
*/
|
||||
public operator fun Tensor<T>.timesAssign(value: T): Unit
|
||||
|
||||
/**
|
||||
* Each element of the tensor [other] is multiplied by each element of this tensor.
|
||||
*
|
||||
* @param other tensor to be multiplied.
|
||||
*/
|
||||
public operator fun Tensor<T>.timesAssign(other: Tensor<T>): Unit
|
||||
|
||||
/**
|
||||
* Numerical negative, element-wise.
|
||||
*
|
||||
* @return tensor negation of the original tensor.
|
||||
*/
|
||||
public operator fun Tensor<T>.unaryMinus(): Tensor<T>
|
||||
|
||||
/**
|
||||
* Returns the tensor at index i
|
||||
* For more information: https://pytorch.org/cppdocs/notes/tensor_indexing.html
|
||||
*
|
||||
* @param i index of the extractable tensor
|
||||
* @return subtensor of the original tensor with index [i]
|
||||
*/
|
||||
public operator fun Tensor<T>.get(i: Int): Tensor<T>
|
||||
|
||||
/**
|
||||
* Returns a tensor that is a transposed version of this tensor. The given dimensions [i] and [j] are swapped.
|
||||
* For more information: https://pytorch.org/docs/stable/generated/torch.transpose.html
|
||||
*
|
||||
* @param i the first dimension to be transposed
|
||||
* @param j the second dimension to be transposed
|
||||
* @return transposed tensor
|
||||
*/
|
||||
public fun Tensor<T>.transpose(i: Int = -2, j: Int = -1): Tensor<T>
|
||||
|
||||
/**
|
||||
* Returns a new tensor with the same data as the self tensor but of a different shape.
|
||||
* The returned tensor shares the same data and must have the same number of elements, but may have a different size
|
||||
* For more information: https://pytorch.org/docs/stable/tensor_view.html
|
||||
*
|
||||
* @param shape the desired size
|
||||
* @return tensor with new shape
|
||||
*/
|
||||
public fun Tensor<T>.view(shape: IntArray): Tensor<T>
|
||||
|
||||
/**
|
||||
* View this tensor as the same size as [other].
|
||||
* ``this.viewAs(other) is equivalent to this.view(other.shape)``.
|
||||
* For more information: https://pytorch.org/cppdocs/notes/tensor_indexing.html
|
||||
*
|
||||
* @param other the result tensor has the same size as other.
|
||||
* @return the result tensor with the same size as other.
|
||||
*/
|
||||
public fun Tensor<T>.viewAs(other: Tensor<T>): Tensor<T>
|
||||
|
||||
/**
|
||||
* Matrix product of two tensors.
|
||||
*
|
||||
* The behavior depends on the dimensionality of the tensors as follows:
|
||||
* 1. If both tensors are 1-dimensional, the dot product (scalar) is returned.
|
||||
*
|
||||
* 2. If both arguments are 2-dimensional, the matrix-matrix product is returned.
|
||||
*
|
||||
* 3. If the first argument is 1-dimensional and the second argument is 2-dimensional,
|
||||
* a 1 is prepended to its dimension for the purpose of the matrix multiply.
|
||||
* After the matrix multiply, the prepended dimension is removed.
|
||||
*
|
||||
* 4. If the first argument is 2-dimensional and the second argument is 1-dimensional,
|
||||
* the matrix-vector product is returned.
|
||||
*
|
||||
* 5. If both arguments are at least 1-dimensional and at least one argument is N-dimensional (where N > 2),
|
||||
* then a batched matrix multiply is returned. If the first argument is 1-dimensional,
|
||||
* a 1 is prepended to its dimension for the purpose of the batched matrix multiply and removed after.
|
||||
* If the second argument is 1-dimensional, a 1 is appended to its dimension for the purpose of the batched matrix
|
||||
* multiple and removed after.
|
||||
* The non-matrix (i.e. batch) dimensions are broadcasted (and thus must be broadcastable).
|
||||
* For example, if `input` is a (j × 1 × n × n) tensor and `other` is a
|
||||
* (k × n × n) tensor, out will be a (j × k × n × n) tensor.
|
||||
*
|
||||
* For more information: https://pytorch.org/docs/stable/generated/torch.matmul.html
|
||||
*
|
||||
* @param other tensor to be multiplied
|
||||
* @return mathematical product of two tensors
|
||||
*/
|
||||
public infix fun Tensor<T>.dot(other: Tensor<T>): Tensor<T>
|
||||
|
||||
/**
|
||||
* Creates a tensor whose diagonals of certain 2D planes (specified by [dim1] and [dim2])
|
||||
* are filled by [diagonalEntries].
|
||||
* To facilitate creating batched diagonal matrices,
|
||||
* the 2D planes formed by the last two dimensions of the returned tensor are chosen by default.
|
||||
*
|
||||
* The argument [offset] controls which diagonal to consider:
|
||||
* 1. If [offset] = 0, it is the main diagonal.
|
||||
* 1. If [offset] > 0, it is above the main diagonal.
|
||||
* 1. If [offset] < 0, it is below the main diagonal.
|
||||
*
|
||||
* The size of the new matrix will be calculated
|
||||
* to make the specified diagonal of the size of the last input dimension.
|
||||
* For more information: https://pytorch.org/docs/stable/generated/torch.diag_embed.html
|
||||
*
|
||||
* @param diagonalEntries the input tensor. Must be at least 1-dimensional.
|
||||
* @param offset which diagonal to consider. Default: 0 (main diagonal).
|
||||
* @param dim1 first dimension with respect to which to take diagonal. Default: -2.
|
||||
* @param dim2 second dimension with respect to which to take diagonal. Default: -1.
|
||||
*
|
||||
* @return tensor whose diagonals of certain 2D planes (specified by [dim1] and [dim2])
|
||||
* are filled by [diagonalEntries]
|
||||
*/
|
||||
public fun diagonalEmbedding(
|
||||
diagonalEntries: Tensor<T>,
|
||||
offset: Int = 0,
|
||||
dim1: Int = -2,
|
||||
dim2: Int = -1
|
||||
): Tensor<T>
|
||||
|
||||
/**
|
||||
* @return the sum of all elements in the input tensor.
|
||||
*/
|
||||
public fun Tensor<T>.sum(): T
|
||||
|
||||
/**
|
||||
* Returns the sum of each row of the input tensor in the given dimension [dim].
|
||||
*
|
||||
* If [keepDim] is true, the output tensor is of the same size as
|
||||
* input except in the dimension [dim] where it is of size 1.
|
||||
* Otherwise, [dim] is squeezed, resulting in the output tensor having 1 fewer dimension.
|
||||
*
|
||||
* @param dim the dimension to reduce.
|
||||
* @param keepDim whether the output tensor has [dim] retained or not.
|
||||
* @return the sum of each row of the input tensor in the given dimension [dim].
|
||||
*/
|
||||
public fun Tensor<T>.sum(dim: Int, keepDim: Boolean): Tensor<T>
|
||||
|
||||
/**
|
||||
* @return the minimum value of all elements in the input tensor.
|
||||
*/
|
||||
public fun Tensor<T>.min(): T
|
||||
|
||||
/**
|
||||
* Returns the minimum value of each row of the input tensor in the given dimension [dim].
|
||||
*
|
||||
* If [keepDim] is true, the output tensor is of the same size as
|
||||
* input except in the dimension [dim] where it is of size 1.
|
||||
* Otherwise, [dim] is squeezed, resulting in the output tensor having 1 fewer dimension.
|
||||
*
|
||||
* @param dim the dimension to reduce.
|
||||
* @param keepDim whether the output tensor has [dim] retained or not.
|
||||
* @return the minimum value of each row of the input tensor in the given dimension [dim].
|
||||
*/
|
||||
public fun Tensor<T>.min(dim: Int, keepDim: Boolean): Tensor<T>
|
||||
|
||||
/**
|
||||
* Returns the maximum value of all elements in the input tensor.
|
||||
*/
|
||||
public fun Tensor<T>.max(): T
|
||||
|
||||
/**
|
||||
* Returns the maximum value of each row of the input tensor in the given dimension [dim].
|
||||
*
|
||||
* If [keepDim] is true, the output tensor is of the same size as
|
||||
* input except in the dimension [dim] where it is of size 1.
|
||||
* Otherwise, [dim] is squeezed, resulting in the output tensor having 1 fewer dimension.
|
||||
*
|
||||
* @param dim the dimension to reduce.
|
||||
* @param keepDim whether the output tensor has [dim] retained or not.
|
||||
* @return the maximum value of each row of the input tensor in the given dimension [dim].
|
||||
*/
|
||||
public fun Tensor<T>.max(dim: Int, keepDim: Boolean): Tensor<T>
|
||||
|
||||
/**
|
||||
* Returns the index of maximum value of each row of the input tensor in the given dimension [dim].
|
||||
*
|
||||
* If [keepDim] is true, the output tensor is of the same size as
|
||||
* input except in the dimension [dim] where it is of size 1.
|
||||
* Otherwise, [dim] is squeezed, resulting in the output tensor having 1 fewer dimension.
|
||||
*
|
||||
* @param dim the dimension to reduce.
|
||||
* @param keepDim whether the output tensor has [dim] retained or not.
|
||||
* @return the the index of maximum value of each row of the input tensor in the given dimension [dim].
|
||||
*/
|
||||
public fun Tensor<T>.argMax(dim: Int, keepDim: Boolean): Tensor<T>
|
||||
}
|
@ -0,0 +1,55 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.api
|
||||
|
||||
/**
|
||||
* Algebra over a field with partial division on [Tensor].
|
||||
* For more information: https://proofwiki.org/wiki/Definition:Division_Algebra
|
||||
*
|
||||
* @param T the type of items closed under division in the tensors.
|
||||
*/
|
||||
public interface TensorPartialDivisionAlgebra<T> : TensorAlgebra<T> {
|
||||
|
||||
/**
|
||||
* Each element of the tensor [other] is divided by this value.
|
||||
* The resulting tensor is returned.
|
||||
*
|
||||
* @param other tensor to divide by.
|
||||
* @return the division of this value by the tensor [other].
|
||||
*/
|
||||
public operator fun T.div(other: Tensor<T>): Tensor<T>
|
||||
|
||||
/**
|
||||
* Divide by the scalar [value] each element of this tensor returns a new resulting tensor.
|
||||
*
|
||||
* @param value the number to divide by each element of this tensor.
|
||||
* @return the division of this tensor by the [value].
|
||||
*/
|
||||
public operator fun Tensor<T>.div(value: T): Tensor<T>
|
||||
|
||||
/**
|
||||
* Each element of the tensor [other] is divided by each element of this tensor.
|
||||
* The resulting tensor is returned.
|
||||
*
|
||||
* @param other tensor to be divided by.
|
||||
* @return the division of this tensor by [other].
|
||||
*/
|
||||
public operator fun Tensor<T>.div(other: Tensor<T>): Tensor<T>
|
||||
|
||||
/**
|
||||
* Divides by the scalar [value] each element of this tensor.
|
||||
*
|
||||
* @param value the number to divide by each element of this tensor.
|
||||
*/
|
||||
public operator fun Tensor<T>.divAssign(value: T)
|
||||
|
||||
/**
|
||||
* Each element of this tensor is divided by each element of the [other] tensor.
|
||||
*
|
||||
* @param other tensor to be divide by.
|
||||
*/
|
||||
public operator fun Tensor<T>.divAssign(other: Tensor<T>)
|
||||
}
|
@ -0,0 +1,93 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.tensors.api.Tensor
|
||||
import space.kscience.kmath.tensors.core.internal.array
|
||||
import space.kscience.kmath.tensors.core.internal.broadcastTensors
|
||||
import space.kscience.kmath.tensors.core.internal.broadcastTo
|
||||
import space.kscience.kmath.tensors.core.internal.tensor
|
||||
|
||||
/**
|
||||
* Basic linear algebra operations implemented with broadcasting.
|
||||
* For more information: https://pytorch.org/docs/stable/notes/broadcasting.html
|
||||
*/
|
||||
public object BroadcastDoubleTensorAlgebra : DoubleTensorAlgebra() {
|
||||
|
||||
override fun Tensor<Double>.plus(other: Tensor<Double>): DoubleTensor {
|
||||
val broadcast = broadcastTensors(tensor, other.tensor)
|
||||
val newThis = broadcast[0]
|
||||
val newOther = broadcast[1]
|
||||
val resBuffer = DoubleArray(newThis.linearStructure.linearSize) { i ->
|
||||
newThis.mutableBuffer.array()[i] + newOther.mutableBuffer.array()[i]
|
||||
}
|
||||
return DoubleTensor(newThis.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.plusAssign(other: Tensor<Double>) {
|
||||
val newOther = broadcastTo(other.tensor, tensor.shape)
|
||||
for (i in 0 until tensor.linearStructure.linearSize) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] +=
|
||||
newOther.mutableBuffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.minus(other: Tensor<Double>): DoubleTensor {
|
||||
val broadcast = broadcastTensors(tensor, other.tensor)
|
||||
val newThis = broadcast[0]
|
||||
val newOther = broadcast[1]
|
||||
val resBuffer = DoubleArray(newThis.linearStructure.linearSize) { i ->
|
||||
newThis.mutableBuffer.array()[i] - newOther.mutableBuffer.array()[i]
|
||||
}
|
||||
return DoubleTensor(newThis.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.minusAssign(other: Tensor<Double>) {
|
||||
val newOther = broadcastTo(other.tensor, tensor.shape)
|
||||
for (i in 0 until tensor.linearStructure.linearSize) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] -=
|
||||
newOther.mutableBuffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.times(other: Tensor<Double>): DoubleTensor {
|
||||
val broadcast = broadcastTensors(tensor, other.tensor)
|
||||
val newThis = broadcast[0]
|
||||
val newOther = broadcast[1]
|
||||
val resBuffer = DoubleArray(newThis.linearStructure.linearSize) { i ->
|
||||
newThis.mutableBuffer.array()[newThis.bufferStart + i] *
|
||||
newOther.mutableBuffer.array()[newOther.bufferStart + i]
|
||||
}
|
||||
return DoubleTensor(newThis.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.timesAssign(other: Tensor<Double>) {
|
||||
val newOther = broadcastTo(other.tensor, tensor.shape)
|
||||
for (i in 0 until tensor.linearStructure.linearSize) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] *=
|
||||
newOther.mutableBuffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.div(other: Tensor<Double>): DoubleTensor {
|
||||
val broadcast = broadcastTensors(tensor, other.tensor)
|
||||
val newThis = broadcast[0]
|
||||
val newOther = broadcast[1]
|
||||
val resBuffer = DoubleArray(newThis.linearStructure.linearSize) { i ->
|
||||
newThis.mutableBuffer.array()[newOther.bufferStart + i] /
|
||||
newOther.mutableBuffer.array()[newOther.bufferStart + i]
|
||||
}
|
||||
return DoubleTensor(newThis.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.divAssign(other: Tensor<Double>) {
|
||||
val newOther = broadcastTo(other.tensor, tensor.shape)
|
||||
for (i in 0 until tensor.linearStructure.linearSize) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] /=
|
||||
newOther.mutableBuffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,38 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.nd.Strides
|
||||
import space.kscience.kmath.structures.*
|
||||
import space.kscience.kmath.tensors.api.Tensor
|
||||
import space.kscience.kmath.tensors.core.internal.TensorLinearStructure
|
||||
|
||||
/**
|
||||
* Represents [Tensor] over a [MutableBuffer] intended to be used through [DoubleTensor] and [IntTensor]
|
||||
*/
|
||||
public open class BufferedTensor<T> internal constructor(
|
||||
override val shape: IntArray,
|
||||
internal val mutableBuffer: MutableBuffer<T>,
|
||||
internal val bufferStart: Int
|
||||
) : Tensor<T> {
|
||||
|
||||
/**
|
||||
* Buffer strides based on [TensorLinearStructure] implementation
|
||||
*/
|
||||
public val linearStructure: Strides
|
||||
get() = TensorLinearStructure(shape)
|
||||
|
||||
/**
|
||||
* Number of elements in tensor
|
||||
*/
|
||||
public val numElements: Int
|
||||
get() = linearStructure.linearSize
|
||||
|
||||
override fun get(index: IntArray): T = mutableBuffer[bufferStart + linearStructure.offset(index)]
|
||||
|
||||
override fun set(index: IntArray, value: T) {
|
||||
mutableBuffer[bufferStart + linearStructure.offset(index)] = value
|
||||
}
|
||||
|
||||
override fun elements(): Sequence<Pair<IntArray, T>> = linearStructure.indices().map {
|
||||
it to this[it]
|
||||
}
|
||||
}
|
@ -0,0 +1,20 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.structures.DoubleBuffer
|
||||
import space.kscience.kmath.tensors.core.internal.toPrettyString
|
||||
|
||||
/**
|
||||
* Default [BufferedTensor] implementation for [Double] values
|
||||
*/
|
||||
public class DoubleTensor internal constructor(
|
||||
shape: IntArray,
|
||||
buffer: DoubleArray,
|
||||
offset: Int = 0
|
||||
) : BufferedTensor<Double>(shape, DoubleBuffer(buffer), offset) {
|
||||
override fun toString(): String = toPrettyString()
|
||||
}
|
@ -0,0 +1,937 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.nd.as1D
|
||||
import space.kscience.kmath.nd.as2D
|
||||
import space.kscience.kmath.tensors.api.AnalyticTensorAlgebra
|
||||
import space.kscience.kmath.tensors.api.LinearOpsTensorAlgebra
|
||||
import space.kscience.kmath.tensors.api.TensorPartialDivisionAlgebra
|
||||
import space.kscience.kmath.tensors.api.Tensor
|
||||
import space.kscience.kmath.tensors.core.internal.dotHelper
|
||||
import space.kscience.kmath.tensors.core.internal.getRandomNormals
|
||||
import space.kscience.kmath.tensors.core.internal.*
|
||||
import space.kscience.kmath.tensors.core.internal.broadcastOuterTensors
|
||||
import space.kscience.kmath.tensors.core.internal.checkBufferShapeConsistency
|
||||
import space.kscience.kmath.tensors.core.internal.checkEmptyDoubleBuffer
|
||||
import space.kscience.kmath.tensors.core.internal.checkEmptyShape
|
||||
import space.kscience.kmath.tensors.core.internal.checkShapesCompatible
|
||||
import space.kscience.kmath.tensors.core.internal.checkSquareMatrix
|
||||
import space.kscience.kmath.tensors.core.internal.checkTranspose
|
||||
import space.kscience.kmath.tensors.core.internal.checkView
|
||||
import space.kscience.kmath.tensors.core.internal.minusIndexFrom
|
||||
import kotlin.math.*
|
||||
|
||||
/**
|
||||
* Implementation of basic operations over double tensors and basic algebra operations on them.
|
||||
*/
|
||||
public open class DoubleTensorAlgebra :
|
||||
TensorPartialDivisionAlgebra<Double>,
|
||||
AnalyticTensorAlgebra<Double>,
|
||||
LinearOpsTensorAlgebra<Double> {
|
||||
|
||||
public companion object : DoubleTensorAlgebra()
|
||||
|
||||
override fun Tensor<Double>.valueOrNull(): Double? = if (tensor.shape contentEquals intArrayOf(1))
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart] else null
|
||||
|
||||
override fun Tensor<Double>.value(): Double =
|
||||
valueOrNull() ?: throw IllegalArgumentException("Inconsistent value for tensor of with $shape shape")
|
||||
|
||||
/**
|
||||
* Constructs a tensor with the specified shape and data.
|
||||
*
|
||||
* @param shape the desired shape for the tensor.
|
||||
* @param buffer one-dimensional data array.
|
||||
* @return tensor with the [shape] shape and [buffer] data.
|
||||
*/
|
||||
public fun fromArray(shape: IntArray, buffer: DoubleArray): DoubleTensor {
|
||||
checkEmptyShape(shape)
|
||||
checkEmptyDoubleBuffer(buffer)
|
||||
checkBufferShapeConsistency(shape, buffer)
|
||||
return DoubleTensor(shape, buffer, 0)
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a tensor with the specified shape and initializer.
|
||||
*
|
||||
* @param shape the desired shape for the tensor.
|
||||
* @param initializer mapping tensor indices to values.
|
||||
* @return tensor with the [shape] shape and data generated by the [initializer].
|
||||
*/
|
||||
public fun produce(shape: IntArray, initializer: (IntArray) -> Double): DoubleTensor =
|
||||
fromArray(
|
||||
shape,
|
||||
TensorLinearStructure(shape).indices().map(initializer).toMutableList().toDoubleArray()
|
||||
)
|
||||
|
||||
override operator fun Tensor<Double>.get(i: Int): DoubleTensor {
|
||||
val lastShape = tensor.shape.drop(1).toIntArray()
|
||||
val newShape = if (lastShape.isNotEmpty()) lastShape else intArrayOf(1)
|
||||
val newStart = newShape.reduce(Int::times) * i + tensor.bufferStart
|
||||
return DoubleTensor(newShape, tensor.mutableBuffer.array(), newStart)
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a tensor of a given shape and fills all elements with a given value.
|
||||
*
|
||||
* @param value the value to fill the output tensor with.
|
||||
* @param shape array of integers defining the shape of the output tensor.
|
||||
* @return tensor with the [shape] shape and filled with [value].
|
||||
*/
|
||||
public fun full(value: Double, shape: IntArray): DoubleTensor {
|
||||
checkEmptyShape(shape)
|
||||
val buffer = DoubleArray(shape.reduce(Int::times)) { value }
|
||||
return DoubleTensor(shape, buffer)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a tensor with the same shape as `input` filled with [value].
|
||||
*
|
||||
* @param value the value to fill the output tensor with.
|
||||
* @return tensor with the `input` tensor shape and filled with [value].
|
||||
*/
|
||||
public fun Tensor<Double>.fullLike(value: Double): DoubleTensor {
|
||||
val shape = tensor.shape
|
||||
val buffer = DoubleArray(tensor.numElements) { value }
|
||||
return DoubleTensor(shape, buffer)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a tensor filled with the scalar value 0.0, with the shape defined by the variable argument [shape].
|
||||
*
|
||||
* @param shape array of integers defining the shape of the output tensor.
|
||||
* @return tensor filled with the scalar value 0.0, with the [shape] shape.
|
||||
*/
|
||||
public fun zeros(shape: IntArray): DoubleTensor = full(0.0, shape)
|
||||
|
||||
/**
|
||||
* Returns a tensor filled with the scalar value 0.0, with the same shape as a given array.
|
||||
*
|
||||
* @return tensor filled with the scalar value 0.0, with the same shape as `input` tensor.
|
||||
*/
|
||||
public fun Tensor<Double>.zeroesLike(): DoubleTensor = tensor.fullLike(0.0)
|
||||
|
||||
/**
|
||||
* Returns a tensor filled with the scalar value 1.0, with the shape defined by the variable argument [shape].
|
||||
*
|
||||
* @param shape array of integers defining the shape of the output tensor.
|
||||
* @return tensor filled with the scalar value 1.0, with the [shape] shape.
|
||||
*/
|
||||
public fun ones(shape: IntArray): DoubleTensor = full(1.0, shape)
|
||||
|
||||
/**
|
||||
* Returns a tensor filled with the scalar value 1.0, with the same shape as a given array.
|
||||
*
|
||||
* @return tensor filled with the scalar value 1.0, with the same shape as `input` tensor.
|
||||
*/
|
||||
public fun Tensor<Double>.onesLike(): DoubleTensor = tensor.fullLike(1.0)
|
||||
|
||||
/**
|
||||
* Returns a 2-D tensor with shape ([n], [n]), with ones on the diagonal and zeros elsewhere.
|
||||
*
|
||||
* @param n the number of rows and columns
|
||||
* @return a 2-D tensor with ones on the diagonal and zeros elsewhere.
|
||||
*/
|
||||
public fun eye(n: Int): DoubleTensor {
|
||||
val shape = intArrayOf(n, n)
|
||||
val buffer = DoubleArray(n * n) { 0.0 }
|
||||
val res = DoubleTensor(shape, buffer)
|
||||
for (i in 0 until n) {
|
||||
res[intArrayOf(i, i)] = 1.0
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
/**
|
||||
* Return a copy of the tensor.
|
||||
*
|
||||
* @return a copy of the `input` tensor with a copied buffer.
|
||||
*/
|
||||
public fun Tensor<Double>.copy(): DoubleTensor {
|
||||
return DoubleTensor(tensor.shape, tensor.mutableBuffer.array().copyOf(), tensor.bufferStart)
|
||||
}
|
||||
|
||||
override fun Double.plus(other: Tensor<Double>): DoubleTensor {
|
||||
val resBuffer = DoubleArray(other.tensor.numElements) { i ->
|
||||
other.tensor.mutableBuffer.array()[other.tensor.bufferStart + i] + this
|
||||
}
|
||||
return DoubleTensor(other.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.plus(value: Double): DoubleTensor = value + tensor
|
||||
|
||||
override fun Tensor<Double>.plus(other: Tensor<Double>): DoubleTensor {
|
||||
checkShapesCompatible(tensor, other.tensor)
|
||||
val resBuffer = DoubleArray(tensor.numElements) { i ->
|
||||
tensor.mutableBuffer.array()[i] + other.tensor.mutableBuffer.array()[i]
|
||||
}
|
||||
return DoubleTensor(tensor.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.plusAssign(value: Double) {
|
||||
for (i in 0 until tensor.numElements) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] += value
|
||||
}
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.plusAssign(other: Tensor<Double>) {
|
||||
checkShapesCompatible(tensor, other.tensor)
|
||||
for (i in 0 until tensor.numElements) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] +=
|
||||
other.tensor.mutableBuffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
override fun Double.minus(other: Tensor<Double>): DoubleTensor {
|
||||
val resBuffer = DoubleArray(other.tensor.numElements) { i ->
|
||||
this - other.tensor.mutableBuffer.array()[other.tensor.bufferStart + i]
|
||||
}
|
||||
return DoubleTensor(other.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.minus(value: Double): DoubleTensor {
|
||||
val resBuffer = DoubleArray(tensor.numElements) { i ->
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] - value
|
||||
}
|
||||
return DoubleTensor(tensor.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.minus(other: Tensor<Double>): DoubleTensor {
|
||||
checkShapesCompatible(tensor, other)
|
||||
val resBuffer = DoubleArray(tensor.numElements) { i ->
|
||||
tensor.mutableBuffer.array()[i] - other.tensor.mutableBuffer.array()[i]
|
||||
}
|
||||
return DoubleTensor(tensor.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.minusAssign(value: Double) {
|
||||
for (i in 0 until tensor.numElements) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] -= value
|
||||
}
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.minusAssign(other: Tensor<Double>) {
|
||||
checkShapesCompatible(tensor, other)
|
||||
for (i in 0 until tensor.numElements) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] -=
|
||||
other.tensor.mutableBuffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
override fun Double.times(other: Tensor<Double>): DoubleTensor {
|
||||
val resBuffer = DoubleArray(other.tensor.numElements) { i ->
|
||||
other.tensor.mutableBuffer.array()[other.tensor.bufferStart + i] * this
|
||||
}
|
||||
return DoubleTensor(other.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.times(value: Double): DoubleTensor = value * tensor
|
||||
|
||||
override fun Tensor<Double>.times(other: Tensor<Double>): DoubleTensor {
|
||||
checkShapesCompatible(tensor, other)
|
||||
val resBuffer = DoubleArray(tensor.numElements) { i ->
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] *
|
||||
other.tensor.mutableBuffer.array()[other.tensor.bufferStart + i]
|
||||
}
|
||||
return DoubleTensor(tensor.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.timesAssign(value: Double) {
|
||||
for (i in 0 until tensor.numElements) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] *= value
|
||||
}
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.timesAssign(other: Tensor<Double>) {
|
||||
checkShapesCompatible(tensor, other)
|
||||
for (i in 0 until tensor.numElements) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] *=
|
||||
other.tensor.mutableBuffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
override fun Double.div(other: Tensor<Double>): DoubleTensor {
|
||||
val resBuffer = DoubleArray(other.tensor.numElements) { i ->
|
||||
this / other.tensor.mutableBuffer.array()[other.tensor.bufferStart + i]
|
||||
}
|
||||
return DoubleTensor(other.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.div(value: Double): DoubleTensor {
|
||||
val resBuffer = DoubleArray(tensor.numElements) { i ->
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] / value
|
||||
}
|
||||
return DoubleTensor(shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.div(other: Tensor<Double>): DoubleTensor {
|
||||
checkShapesCompatible(tensor, other)
|
||||
val resBuffer = DoubleArray(tensor.numElements) { i ->
|
||||
tensor.mutableBuffer.array()[other.tensor.bufferStart + i] /
|
||||
other.tensor.mutableBuffer.array()[other.tensor.bufferStart + i]
|
||||
}
|
||||
return DoubleTensor(tensor.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.divAssign(value: Double) {
|
||||
for (i in 0 until tensor.numElements) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] /= value
|
||||
}
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.divAssign(other: Tensor<Double>) {
|
||||
checkShapesCompatible(tensor, other)
|
||||
for (i in 0 until tensor.numElements) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] /=
|
||||
other.tensor.mutableBuffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.unaryMinus(): DoubleTensor {
|
||||
val resBuffer = DoubleArray(tensor.numElements) { i ->
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i].unaryMinus()
|
||||
}
|
||||
return DoubleTensor(tensor.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.transpose(i: Int, j: Int): DoubleTensor {
|
||||
val ii = tensor.minusIndex(i)
|
||||
val jj = tensor.minusIndex(j)
|
||||
checkTranspose(tensor.dimension, ii, jj)
|
||||
val n = tensor.numElements
|
||||
val resBuffer = DoubleArray(n)
|
||||
|
||||
val resShape = tensor.shape.copyOf()
|
||||
resShape[ii] = resShape[jj].also { resShape[jj] = resShape[ii] }
|
||||
|
||||
val resTensor = DoubleTensor(resShape, resBuffer)
|
||||
|
||||
for (offset in 0 until n) {
|
||||
val oldMultiIndex = tensor.linearStructure.index(offset)
|
||||
val newMultiIndex = oldMultiIndex.copyOf()
|
||||
newMultiIndex[ii] = newMultiIndex[jj].also { newMultiIndex[jj] = newMultiIndex[ii] }
|
||||
|
||||
val linearIndex = resTensor.linearStructure.offset(newMultiIndex)
|
||||
resTensor.mutableBuffer.array()[linearIndex] =
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + offset]
|
||||
}
|
||||
return resTensor
|
||||
}
|
||||
|
||||
|
||||
override fun Tensor<Double>.view(shape: IntArray): DoubleTensor {
|
||||
checkView(tensor, shape)
|
||||
return DoubleTensor(shape, tensor.mutableBuffer.array(), tensor.bufferStart)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.viewAs(other: Tensor<Double>): DoubleTensor =
|
||||
tensor.view(other.shape)
|
||||
|
||||
override infix fun Tensor<Double>.dot(other: Tensor<Double>): DoubleTensor {
|
||||
if (tensor.shape.size == 1 && other.shape.size == 1) {
|
||||
return DoubleTensor(intArrayOf(1), doubleArrayOf(tensor.times(other).tensor.mutableBuffer.array().sum()))
|
||||
}
|
||||
|
||||
var newThis = tensor.copy()
|
||||
var newOther = other.copy()
|
||||
|
||||
var penultimateDim = false
|
||||
var lastDim = false
|
||||
if (tensor.shape.size == 1) {
|
||||
penultimateDim = true
|
||||
newThis = tensor.view(intArrayOf(1) + tensor.shape)
|
||||
}
|
||||
if (other.shape.size == 1) {
|
||||
lastDim = true
|
||||
newOther = other.tensor.view(other.shape + intArrayOf(1))
|
||||
}
|
||||
|
||||
val broadcastTensors = broadcastOuterTensors(newThis.tensor, newOther.tensor)
|
||||
newThis = broadcastTensors[0]
|
||||
newOther = broadcastTensors[1]
|
||||
|
||||
val l = newThis.shape[newThis.shape.size - 2]
|
||||
val m1 = newThis.shape[newThis.shape.size - 1]
|
||||
val m2 = newOther.shape[newOther.shape.size - 2]
|
||||
val n = newOther.shape[newOther.shape.size - 1]
|
||||
check(m1 == m2) {
|
||||
"Tensors dot operation dimension mismatch: ($l, $m1) x ($m2, $n)"
|
||||
}
|
||||
|
||||
val resShape = newThis.shape.sliceArray(0..(newThis.shape.size - 2)) + intArrayOf(newOther.shape.last())
|
||||
val resSize = resShape.reduce { acc, i -> acc * i }
|
||||
val resTensor = DoubleTensor(resShape, DoubleArray(resSize))
|
||||
|
||||
for ((res, ab) in resTensor.matrixSequence().zip(newThis.matrixSequence().zip(newOther.matrixSequence()))) {
|
||||
val (a, b) = ab
|
||||
dotHelper(a.as2D(), b.as2D(), res.as2D(), l, m1, n)
|
||||
}
|
||||
|
||||
if (penultimateDim) {
|
||||
return resTensor.view(
|
||||
resTensor.shape.dropLast(2).toIntArray() +
|
||||
intArrayOf(resTensor.shape.last())
|
||||
)
|
||||
}
|
||||
if (lastDim) {
|
||||
return resTensor.view(resTensor.shape.dropLast(1).toIntArray())
|
||||
}
|
||||
return resTensor
|
||||
}
|
||||
|
||||
override fun diagonalEmbedding(diagonalEntries: Tensor<Double>, offset: Int, dim1: Int, dim2: Int):
|
||||
DoubleTensor {
|
||||
val n = diagonalEntries.shape.size
|
||||
val d1 = minusIndexFrom(n + 1, dim1)
|
||||
val d2 = minusIndexFrom(n + 1, dim2)
|
||||
|
||||
check(d1 != d2) {
|
||||
"Diagonal dimensions cannot be identical $d1, $d2"
|
||||
}
|
||||
check(d1 <= n && d2 <= n) {
|
||||
"Dimension out of range"
|
||||
}
|
||||
|
||||
var lessDim = d1
|
||||
var greaterDim = d2
|
||||
var realOffset = offset
|
||||
if (lessDim > greaterDim) {
|
||||
realOffset *= -1
|
||||
lessDim = greaterDim.also { greaterDim = lessDim }
|
||||
}
|
||||
|
||||
val resShape = diagonalEntries.shape.slice(0 until lessDim).toIntArray() +
|
||||
intArrayOf(diagonalEntries.shape[n - 1] + abs(realOffset)) +
|
||||
diagonalEntries.shape.slice(lessDim until greaterDim - 1).toIntArray() +
|
||||
intArrayOf(diagonalEntries.shape[n - 1] + abs(realOffset)) +
|
||||
diagonalEntries.shape.slice(greaterDim - 1 until n - 1).toIntArray()
|
||||
val resTensor = zeros(resShape)
|
||||
|
||||
for (i in 0 until diagonalEntries.tensor.numElements) {
|
||||
val multiIndex = diagonalEntries.tensor.linearStructure.index(i)
|
||||
|
||||
var offset1 = 0
|
||||
var offset2 = abs(realOffset)
|
||||
if (realOffset < 0) {
|
||||
offset1 = offset2.also { offset2 = offset1 }
|
||||
}
|
||||
val diagonalMultiIndex = multiIndex.slice(0 until lessDim).toIntArray() +
|
||||
intArrayOf(multiIndex[n - 1] + offset1) +
|
||||
multiIndex.slice(lessDim until greaterDim - 1).toIntArray() +
|
||||
intArrayOf(multiIndex[n - 1] + offset2) +
|
||||
multiIndex.slice(greaterDim - 1 until n - 1).toIntArray()
|
||||
|
||||
resTensor[diagonalMultiIndex] = diagonalEntries[multiIndex]
|
||||
}
|
||||
|
||||
return resTensor.tensor
|
||||
}
|
||||
|
||||
/**
|
||||
* Applies the [transform] function to each element of the tensor and returns the resulting modified tensor.
|
||||
*
|
||||
* @param transform the function to be applied to each element of the tensor.
|
||||
* @return the resulting tensor after applying the function.
|
||||
*/
|
||||
public fun Tensor<Double>.map(transform: (Double) -> Double): DoubleTensor {
|
||||
return DoubleTensor(
|
||||
tensor.shape,
|
||||
tensor.mutableBuffer.array().map { transform(it) }.toDoubleArray(),
|
||||
tensor.bufferStart
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* Compares element-wise two tensors with a specified precision.
|
||||
*
|
||||
* @param other the tensor to compare with `input` tensor.
|
||||
* @param epsilon permissible error when comparing two Double values.
|
||||
* @return true if two tensors have the same shape and elements, false otherwise.
|
||||
*/
|
||||
public fun Tensor<Double>.eq(other: Tensor<Double>, epsilon: Double): Boolean =
|
||||
tensor.eq(other) { x, y -> abs(x - y) < epsilon }
|
||||
|
||||
/**
|
||||
* Compares element-wise two tensors.
|
||||
* Comparison of two Double values occurs with 1e-5 precision.
|
||||
*
|
||||
* @param other the tensor to compare with `input` tensor.
|
||||
* @return true if two tensors have the same shape and elements, false otherwise.
|
||||
*/
|
||||
public infix fun Tensor<Double>.eq(other: Tensor<Double>): Boolean = tensor.eq(other, 1e-5)
|
||||
|
||||
private fun Tensor<Double>.eq(
|
||||
other: Tensor<Double>,
|
||||
eqFunction: (Double, Double) -> Boolean
|
||||
): Boolean {
|
||||
checkShapesCompatible(tensor, other)
|
||||
val n = tensor.numElements
|
||||
if (n != other.tensor.numElements) {
|
||||
return false
|
||||
}
|
||||
for (i in 0 until n) {
|
||||
if (!eqFunction(
|
||||
tensor.mutableBuffer[tensor.bufferStart + i],
|
||||
other.tensor.mutableBuffer[other.tensor.bufferStart + i]
|
||||
)
|
||||
) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a tensor of random numbers drawn from normal distributions with 0.0 mean and 1.0 standard deviation.
|
||||
*
|
||||
* @param shape the desired shape for the output tensor.
|
||||
* @param seed the random seed of the pseudo-random number generator.
|
||||
* @return tensor of a given shape filled with numbers from the normal distribution
|
||||
* with 0.0 mean and 1.0 standard deviation.
|
||||
*/
|
||||
public fun randomNormal(shape: IntArray, seed: Long = 0): DoubleTensor =
|
||||
DoubleTensor(shape, getRandomNormals(shape.reduce(Int::times), seed))
|
||||
|
||||
/**
|
||||
* Returns a tensor with the same shape as `input` of random numbers drawn from normal distributions
|
||||
* with 0.0 mean and 1.0 standard deviation.
|
||||
*
|
||||
* @param seed the random seed of the pseudo-random number generator.
|
||||
* @return tensor with the same shape as `input` filled with numbers from the normal distribution
|
||||
* with 0.0 mean and 1.0 standard deviation.
|
||||
*/
|
||||
public fun Tensor<Double>.randomNormalLike(seed: Long = 0): DoubleTensor =
|
||||
DoubleTensor(tensor.shape, getRandomNormals(tensor.shape.reduce(Int::times), seed))
|
||||
|
||||
/**
|
||||
* Concatenates a sequence of tensors with equal shapes along the first dimension.
|
||||
*
|
||||
* @param tensors the [List] of tensors with same shapes to concatenate
|
||||
* @return tensor with concatenation result
|
||||
*/
|
||||
public fun stack(tensors: List<Tensor<Double>>): DoubleTensor {
|
||||
check(tensors.isNotEmpty()) { "List must have at least 1 element" }
|
||||
val shape = tensors[0].shape
|
||||
check(tensors.all { it.shape contentEquals shape }) { "Tensors must have same shapes" }
|
||||
val resShape = intArrayOf(tensors.size) + shape
|
||||
val resBuffer = tensors.flatMap {
|
||||
it.tensor.mutableBuffer.array().drop(it.tensor.bufferStart).take(it.tensor.numElements)
|
||||
}.toDoubleArray()
|
||||
return DoubleTensor(resShape, resBuffer, 0)
|
||||
}
|
||||
|
||||
/**
|
||||
* Builds tensor from rows of input tensor
|
||||
*
|
||||
* @param indices the [IntArray] of 1-dimensional indices
|
||||
* @return tensor with rows corresponding to rows by [indices]
|
||||
*/
|
||||
public fun Tensor<Double>.rowsByIndices(indices: IntArray): DoubleTensor {
|
||||
return stack(indices.map { this[it] })
|
||||
}
|
||||
|
||||
internal fun Tensor<Double>.fold(foldFunction: (DoubleArray) -> Double): Double =
|
||||
foldFunction(tensor.toDoubleArray())
|
||||
|
||||
internal fun Tensor<Double>.foldDim(
|
||||
foldFunction: (DoubleArray) -> Double,
|
||||
dim: Int,
|
||||
keepDim: Boolean
|
||||
): DoubleTensor {
|
||||
check(dim < dimension) { "Dimension $dim out of range $dimension" }
|
||||
val resShape = if (keepDim) {
|
||||
shape.take(dim).toIntArray() + intArrayOf(1) + shape.takeLast(dimension - dim - 1).toIntArray()
|
||||
} else {
|
||||
shape.take(dim).toIntArray() + shape.takeLast(dimension - dim - 1).toIntArray()
|
||||
}
|
||||
val resNumElements = resShape.reduce(Int::times)
|
||||
val resTensor = DoubleTensor(resShape, DoubleArray(resNumElements) { 0.0 }, 0)
|
||||
for (index in resTensor.linearStructure.indices()) {
|
||||
val prefix = index.take(dim).toIntArray()
|
||||
val suffix = index.takeLast(dimension - dim - 1).toIntArray()
|
||||
resTensor[index] = foldFunction(DoubleArray(shape[dim]) { i ->
|
||||
tensor[prefix + intArrayOf(i) + suffix]
|
||||
})
|
||||
}
|
||||
|
||||
return resTensor
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.sum(): Double = tensor.fold { it.sum() }
|
||||
|
||||
override fun Tensor<Double>.sum(dim: Int, keepDim: Boolean): DoubleTensor =
|
||||
foldDim({ x -> x.sum() }, dim, keepDim)
|
||||
|
||||
override fun Tensor<Double>.min(): Double = this.fold { it.minOrNull()!! }
|
||||
|
||||
override fun Tensor<Double>.min(dim: Int, keepDim: Boolean): DoubleTensor =
|
||||
foldDim({ x -> x.minOrNull()!! }, dim, keepDim)
|
||||
|
||||
override fun Tensor<Double>.max(): Double = this.fold { it.maxOrNull()!! }
|
||||
|
||||
override fun Tensor<Double>.max(dim: Int, keepDim: Boolean): DoubleTensor =
|
||||
foldDim({ x -> x.maxOrNull()!! }, dim, keepDim)
|
||||
|
||||
override fun Tensor<Double>.argMax(dim: Int, keepDim: Boolean): DoubleTensor =
|
||||
foldDim({ x ->
|
||||
x.withIndex().maxByOrNull { it.value }?.index!!.toDouble()
|
||||
}, dim, keepDim)
|
||||
|
||||
|
||||
override fun Tensor<Double>.mean(): Double = this.fold { it.sum() / tensor.numElements }
|
||||
|
||||
override fun Tensor<Double>.mean(dim: Int, keepDim: Boolean): DoubleTensor =
|
||||
foldDim(
|
||||
{ arr ->
|
||||
check(dim < dimension) { "Dimension $dim out of range $dimension" }
|
||||
arr.sum() / shape[dim]
|
||||
},
|
||||
dim,
|
||||
keepDim
|
||||
)
|
||||
|
||||
override fun Tensor<Double>.std(): Double = this.fold { arr ->
|
||||
val mean = arr.sum() / tensor.numElements
|
||||
sqrt(arr.sumOf { (it - mean) * (it - mean) } / (tensor.numElements - 1))
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.std(dim: Int, keepDim: Boolean): DoubleTensor = foldDim(
|
||||
{ arr ->
|
||||
check(dim < dimension) { "Dimension $dim out of range $dimension" }
|
||||
val mean = arr.sum() / shape[dim]
|
||||
sqrt(arr.sumOf { (it - mean) * (it - mean) } / (shape[dim] - 1))
|
||||
},
|
||||
dim,
|
||||
keepDim
|
||||
)
|
||||
|
||||
override fun Tensor<Double>.variance(): Double = this.fold { arr ->
|
||||
val mean = arr.sum() / tensor.numElements
|
||||
arr.sumOf { (it - mean) * (it - mean) } / (tensor.numElements - 1)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.variance(dim: Int, keepDim: Boolean): DoubleTensor = foldDim(
|
||||
{ arr ->
|
||||
check(dim < dimension) { "Dimension $dim out of range $dimension" }
|
||||
val mean = arr.sum() / shape[dim]
|
||||
arr.sumOf { (it - mean) * (it - mean) } / (shape[dim] - 1)
|
||||
},
|
||||
dim,
|
||||
keepDim
|
||||
)
|
||||
|
||||
private fun cov(x: DoubleTensor, y: DoubleTensor): Double {
|
||||
val n = x.shape[0]
|
||||
return ((x - x.mean()) * (y - y.mean())).mean() * n / (n - 1)
|
||||
}
|
||||
|
||||
override fun cov(tensors: List<Tensor<Double>>): DoubleTensor {
|
||||
check(tensors.isNotEmpty()) { "List must have at least 1 element" }
|
||||
val n = tensors.size
|
||||
val m = tensors[0].shape[0]
|
||||
check(tensors.all { it.shape contentEquals intArrayOf(m) }) { "Tensors must have same shapes" }
|
||||
val resTensor = DoubleTensor(
|
||||
intArrayOf(n, n),
|
||||
DoubleArray(n * n) { 0.0 }
|
||||
)
|
||||
for (i in 0 until n) {
|
||||
for (j in 0 until n) {
|
||||
resTensor[intArrayOf(i, j)] = cov(tensors[i].tensor, tensors[j].tensor)
|
||||
}
|
||||
}
|
||||
return resTensor
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.exp(): DoubleTensor = tensor.map(::exp)
|
||||
|
||||
override fun Tensor<Double>.ln(): DoubleTensor = tensor.map(::ln)
|
||||
|
||||
override fun Tensor<Double>.sqrt(): DoubleTensor = tensor.map(::sqrt)
|
||||
|
||||
override fun Tensor<Double>.cos(): DoubleTensor = tensor.map(::cos)
|
||||
|
||||
override fun Tensor<Double>.acos(): DoubleTensor = tensor.map(::acos)
|
||||
|
||||
override fun Tensor<Double>.cosh(): DoubleTensor = tensor.map(::cosh)
|
||||
|
||||
override fun Tensor<Double>.acosh(): DoubleTensor = tensor.map(::acosh)
|
||||
|
||||
override fun Tensor<Double>.sin(): DoubleTensor = tensor.map(::sin)
|
||||
|
||||
override fun Tensor<Double>.asin(): DoubleTensor = tensor.map(::asin)
|
||||
|
||||
override fun Tensor<Double>.sinh(): DoubleTensor = tensor.map(::sinh)
|
||||
|
||||
override fun Tensor<Double>.asinh(): DoubleTensor = tensor.map(::asinh)
|
||||
|
||||
override fun Tensor<Double>.tan(): DoubleTensor = tensor.map(::tan)
|
||||
|
||||
override fun Tensor<Double>.atan(): DoubleTensor = tensor.map(::atan)
|
||||
|
||||
override fun Tensor<Double>.tanh(): DoubleTensor = tensor.map(::tanh)
|
||||
|
||||
override fun Tensor<Double>.atanh(): DoubleTensor = tensor.map(::atanh)
|
||||
|
||||
override fun Tensor<Double>.ceil(): DoubleTensor = tensor.map(::ceil)
|
||||
|
||||
override fun Tensor<Double>.floor(): DoubleTensor = tensor.map(::floor)
|
||||
|
||||
override fun Tensor<Double>.inv(): DoubleTensor = invLU(1e-9)
|
||||
|
||||
override fun Tensor<Double>.det(): DoubleTensor = detLU(1e-9)
|
||||
|
||||
/**
|
||||
* Computes the LU factorization of a matrix or batches of matrices `input`.
|
||||
* Returns a tuple containing the LU factorization and pivots of `input`.
|
||||
*
|
||||
* @param epsilon permissible error when comparing the determinant of a matrix with zero
|
||||
* @return pair of `factorization` and `pivots`.
|
||||
* The `factorization` has the shape ``(*, m, n)``, where``(*, m, n)`` is the shape of the `input` tensor.
|
||||
* The `pivots` has the shape ``(∗, min(m, n))``. `pivots` stores all the intermediate transpositions of rows.
|
||||
*/
|
||||
public fun Tensor<Double>.luFactor(epsilon: Double): Pair<DoubleTensor, IntTensor> =
|
||||
computeLU(tensor, epsilon)
|
||||
?: throw IllegalArgumentException("Tensor contains matrices which are singular at precision $epsilon")
|
||||
|
||||
/**
|
||||
* Computes the LU factorization of a matrix or batches of matrices `input`.
|
||||
* Returns a tuple containing the LU factorization and pivots of `input`.
|
||||
* Uses an error of ``1e-9`` when calculating whether a matrix is degenerate.
|
||||
*
|
||||
* @return pair of `factorization` and `pivots`.
|
||||
* The `factorization` has the shape ``(*, m, n)``, where``(*, m, n)`` is the shape of the `input` tensor.
|
||||
* The `pivots` has the shape ``(∗, min(m, n))``. `pivots` stores all the intermediate transpositions of rows.
|
||||
*/
|
||||
public fun Tensor<Double>.luFactor(): Pair<DoubleTensor, IntTensor> = luFactor(1e-9)
|
||||
|
||||
/**
|
||||
* Unpacks the data and pivots from a LU factorization of a tensor.
|
||||
* Given a tensor [luTensor], return tensors (P, L, U) satisfying ``P * luTensor = L * U``,
|
||||
* with `P` being a permutation matrix or batch of matrices,
|
||||
* `L` being a lower triangular matrix or batch of matrices,
|
||||
* `U` being an upper triangular matrix or batch of matrices.
|
||||
*
|
||||
* @param luTensor the packed LU factorization data
|
||||
* @param pivotsTensor the packed LU factorization pivots
|
||||
* @return triple of P, L and U tensors
|
||||
*/
|
||||
public fun luPivot(
|
||||
luTensor: Tensor<Double>,
|
||||
pivotsTensor: Tensor<Int>
|
||||
): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
|
||||
checkSquareMatrix(luTensor.shape)
|
||||
check(
|
||||
luTensor.shape.dropLast(2).toIntArray() contentEquals pivotsTensor.shape.dropLast(1).toIntArray() ||
|
||||
luTensor.shape.last() == pivotsTensor.shape.last() - 1
|
||||
) { "Inappropriate shapes of input tensors" }
|
||||
|
||||
val n = luTensor.shape.last()
|
||||
val pTensor = luTensor.zeroesLike()
|
||||
pTensor
|
||||
.matrixSequence()
|
||||
.zip(pivotsTensor.tensor.vectorSequence())
|
||||
.forEach { (p, pivot) -> pivInit(p.as2D(), pivot.as1D(), n) }
|
||||
|
||||
val lTensor = luTensor.zeroesLike()
|
||||
val uTensor = luTensor.zeroesLike()
|
||||
|
||||
lTensor.matrixSequence()
|
||||
.zip(uTensor.matrixSequence())
|
||||
.zip(luTensor.tensor.matrixSequence())
|
||||
.forEach { (pairLU, lu) ->
|
||||
val (l, u) = pairLU
|
||||
luPivotHelper(l.as2D(), u.as2D(), lu.as2D(), n)
|
||||
}
|
||||
|
||||
return Triple(pTensor, lTensor, uTensor)
|
||||
}
|
||||
|
||||
/**
|
||||
* QR decomposition.
|
||||
*
|
||||
* Computes the QR decomposition of a matrix or a batch of matrices, and returns a pair `(Q, R)` of tensors.
|
||||
* Given a tensor `input`, return tensors (Q, R) satisfying ``input = Q * R``,
|
||||
* with `Q` being an orthogonal matrix or batch of orthogonal matrices
|
||||
* and `R` being an upper triangular matrix or batch of upper triangular matrices.
|
||||
*
|
||||
* @param epsilon permissible error when comparing tensors for equality.
|
||||
* Used when checking the positive definiteness of the input matrix or matrices.
|
||||
* @return pair of Q and R tensors.
|
||||
*/
|
||||
public fun Tensor<Double>.cholesky(epsilon: Double): DoubleTensor {
|
||||
checkSquareMatrix(shape)
|
||||
checkPositiveDefinite(tensor, epsilon)
|
||||
|
||||
val n = shape.last()
|
||||
val lTensor = zeroesLike()
|
||||
|
||||
for ((a, l) in tensor.matrixSequence().zip(lTensor.matrixSequence()))
|
||||
for (i in 0 until n) choleskyHelper(a.as2D(), l.as2D(), n)
|
||||
|
||||
return lTensor
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.cholesky(): DoubleTensor = cholesky(1e-6)
|
||||
|
||||
override fun Tensor<Double>.qr(): Pair<DoubleTensor, DoubleTensor> {
|
||||
checkSquareMatrix(shape)
|
||||
val qTensor = zeroesLike()
|
||||
val rTensor = zeroesLike()
|
||||
tensor.matrixSequence()
|
||||
.zip(
|
||||
(qTensor.matrixSequence()
|
||||
.zip(rTensor.matrixSequence()))
|
||||
).forEach { (matrix, qr) ->
|
||||
val (q, r) = qr
|
||||
qrHelper(matrix.asTensor(), q.asTensor(), r.as2D())
|
||||
}
|
||||
|
||||
return qTensor to rTensor
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.svd(): Triple<DoubleTensor, DoubleTensor, DoubleTensor> =
|
||||
svd(epsilon = 1e-10)
|
||||
|
||||
/**
|
||||
* Singular Value Decomposition.
|
||||
*
|
||||
* Computes the singular value decomposition of either a matrix or batch of matrices `input`.
|
||||
* The singular value decomposition is represented as a triple `(U, S, V)`,
|
||||
* such that ``input = U.dot(diagonalEmbedding(S).dot(V.T))``.
|
||||
* If input is a batch of tensors, then U, S, and Vh are also batched with the same batch dimensions as input.
|
||||
*
|
||||
* @param epsilon permissible error when calculating the dot product of vectors,
|
||||
* i.e. the precision with which the cosine approaches 1 in an iterative algorithm.
|
||||
* @return triple `(U, S, V)`.
|
||||
*/
|
||||
public fun Tensor<Double>.svd(epsilon: Double): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
|
||||
val size = tensor.dimension
|
||||
val commonShape = tensor.shape.sliceArray(0 until size - 2)
|
||||
val (n, m) = tensor.shape.sliceArray(size - 2 until size)
|
||||
val uTensor = zeros(commonShape + intArrayOf(min(n, m), n))
|
||||
val sTensor = zeros(commonShape + intArrayOf(min(n, m)))
|
||||
val vTensor = zeros(commonShape + intArrayOf(min(n, m), m))
|
||||
|
||||
tensor.matrixSequence()
|
||||
.zip(
|
||||
uTensor.matrixSequence()
|
||||
.zip(
|
||||
sTensor.vectorSequence()
|
||||
.zip(vTensor.matrixSequence())
|
||||
)
|
||||
).forEach { (matrix, USV) ->
|
||||
val matrixSize = matrix.shape.reduce { acc, i -> acc * i }
|
||||
val curMatrix = DoubleTensor(
|
||||
matrix.shape,
|
||||
matrix.mutableBuffer.array().slice(matrix.bufferStart until matrix.bufferStart + matrixSize)
|
||||
.toDoubleArray()
|
||||
)
|
||||
svdHelper(curMatrix, USV, m, n, epsilon)
|
||||
}
|
||||
|
||||
return Triple(uTensor.transpose(), sTensor, vTensor.transpose())
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.symEig(): Pair<DoubleTensor, DoubleTensor> =
|
||||
symEig(epsilon = 1e-15)
|
||||
|
||||
/**
|
||||
* Returns eigenvalues and eigenvectors of a real symmetric matrix input or a batch of real symmetric matrices,
|
||||
* represented by a pair (eigenvalues, eigenvectors).
|
||||
*
|
||||
* @param epsilon permissible error when comparing tensors for equality
|
||||
* and when the cosine approaches 1 in the SVD algorithm.
|
||||
* @return a pair (eigenvalues, eigenvectors)
|
||||
*/
|
||||
public fun Tensor<Double>.symEig(epsilon: Double): Pair<DoubleTensor, DoubleTensor> {
|
||||
checkSymmetric(tensor, epsilon)
|
||||
val (u, s, v) = tensor.svd(epsilon)
|
||||
val shp = s.shape + intArrayOf(1)
|
||||
val utv = u.transpose() dot v
|
||||
val n = s.shape.last()
|
||||
for (matrix in utv.matrixSequence())
|
||||
cleanSymHelper(matrix.as2D(), n)
|
||||
|
||||
val eig = (utv dot s.view(shp)).view(s.shape)
|
||||
return eig to v
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the determinant of a square matrix input, or of each square matrix in a batched input
|
||||
* using LU factorization algorithm.
|
||||
*
|
||||
* @param epsilon error in the LU algorithm - permissible error when comparing the determinant of a matrix with zero
|
||||
* @return the determinant.
|
||||
*/
|
||||
public fun Tensor<Double>.detLU(epsilon: Double = 1e-9): DoubleTensor {
|
||||
|
||||
checkSquareMatrix(tensor.shape)
|
||||
val luTensor = tensor.copy()
|
||||
val pivotsTensor = tensor.setUpPivots()
|
||||
|
||||
val n = shape.size
|
||||
|
||||
val detTensorShape = IntArray(n - 1) { i -> shape[i] }
|
||||
detTensorShape[n - 2] = 1
|
||||
val resBuffer = DoubleArray(detTensorShape.reduce(Int::times)) { 0.0 }
|
||||
|
||||
val detTensor = DoubleTensor(
|
||||
detTensorShape,
|
||||
resBuffer
|
||||
)
|
||||
|
||||
luTensor.matrixSequence().zip(pivotsTensor.vectorSequence()).forEachIndexed { index, (lu, pivots) ->
|
||||
resBuffer[index] = if (luHelper(lu.as2D(), pivots.as1D(), epsilon))
|
||||
0.0 else luMatrixDet(lu.as2D(), pivots.as1D())
|
||||
}
|
||||
|
||||
return detTensor
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the multiplicative inverse matrix of a square matrix input, or of each square matrix in a batched input
|
||||
* using LU factorization algorithm.
|
||||
* Given a square matrix `a`, return the matrix `aInv` satisfying
|
||||
* ``a.dot(aInv) = aInv.dot(a) = eye(a.shape[0])``.
|
||||
*
|
||||
* @param epsilon error in the LU algorithm - permissible error when comparing the determinant of a matrix with zero
|
||||
* @return the multiplicative inverse of a matrix.
|
||||
*/
|
||||
public fun Tensor<Double>.invLU(epsilon: Double = 1e-9): DoubleTensor {
|
||||
val (luTensor, pivotsTensor) = luFactor(epsilon)
|
||||
val invTensor = luTensor.zeroesLike()
|
||||
|
||||
val seq = luTensor.matrixSequence().zip(pivotsTensor.vectorSequence()).zip(invTensor.matrixSequence())
|
||||
for ((luP, invMatrix) in seq) {
|
||||
val (lu, pivots) = luP
|
||||
luMatrixInv(lu.as2D(), pivots.as1D(), invMatrix.as2D())
|
||||
}
|
||||
|
||||
return invTensor
|
||||
}
|
||||
|
||||
/**
|
||||
* LUP decomposition
|
||||
*
|
||||
* Computes the LUP decomposition of a matrix or a batch of matrices.
|
||||
* Given a tensor `input`, return tensors (P, L, U) satisfying ``P * input = L * U``,
|
||||
* with `P` being a permutation matrix or batch of matrices,
|
||||
* `L` being a lower triangular matrix or batch of matrices,
|
||||
* `U` being an upper triangular matrix or batch of matrices.
|
||||
*
|
||||
* @param epsilon permissible error when comparing the determinant of a matrix with zero
|
||||
* @return triple of P, L and U tensors
|
||||
*/
|
||||
public fun Tensor<Double>.lu(epsilon: Double = 1e-9): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
|
||||
val (lu, pivots) = tensor.luFactor(epsilon)
|
||||
return luPivot(lu, pivots)
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.lu(): Triple<DoubleTensor, DoubleTensor, DoubleTensor> = lu(1e-9)
|
||||
}
|
||||
|
||||
|
@ -0,0 +1,17 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.structures.IntBuffer
|
||||
|
||||
/**
|
||||
* Default [BufferedTensor] implementation for [Int] values
|
||||
*/
|
||||
public class IntTensor internal constructor(
|
||||
shape: IntArray,
|
||||
buffer: IntArray,
|
||||
offset: Int = 0
|
||||
) : BufferedTensor<Int>(shape, IntBuffer(buffer), offset)
|
@ -0,0 +1,57 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core.internal
|
||||
|
||||
import space.kscience.kmath.nd.Strides
|
||||
import kotlin.math.max
|
||||
|
||||
|
||||
internal fun stridesFromShape(shape: IntArray): IntArray {
|
||||
val nDim = shape.size
|
||||
val res = IntArray(nDim)
|
||||
if (nDim == 0)
|
||||
return res
|
||||
|
||||
var current = nDim - 1
|
||||
res[current] = 1
|
||||
|
||||
while (current > 0) {
|
||||
res[current - 1] = max(1, shape[current]) * res[current]
|
||||
current--
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
internal fun indexFromOffset(offset: Int, strides: IntArray, nDim: Int): IntArray {
|
||||
val res = IntArray(nDim)
|
||||
var current = offset
|
||||
var strideIndex = 0
|
||||
|
||||
while (strideIndex < nDim) {
|
||||
res[strideIndex] = (current / strides[strideIndex])
|
||||
current %= strides[strideIndex]
|
||||
strideIndex++
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
/**
|
||||
* This [Strides] implementation follows the last dimension first convention
|
||||
* For more information: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html
|
||||
*
|
||||
* @param shape the shape of the tensor.
|
||||
*/
|
||||
internal class TensorLinearStructure(override val shape: IntArray) : Strides {
|
||||
override val strides: IntArray
|
||||
get() = stridesFromShape(shape)
|
||||
|
||||
override fun index(offset: Int): IntArray =
|
||||
indexFromOffset(offset, strides, shape.size)
|
||||
|
||||
override val linearSize: Int
|
||||
get() = shape.reduce(Int::times)
|
||||
|
||||
}
|
@ -0,0 +1,146 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core.internal
|
||||
|
||||
import space.kscience.kmath.tensors.core.DoubleTensor
|
||||
import kotlin.math.max
|
||||
|
||||
internal fun multiIndexBroadCasting(tensor: DoubleTensor, resTensor: DoubleTensor, linearSize: Int) {
|
||||
for (linearIndex in 0 until linearSize) {
|
||||
val totalMultiIndex = resTensor.linearStructure.index(linearIndex)
|
||||
val curMultiIndex = tensor.shape.copyOf()
|
||||
|
||||
val offset = totalMultiIndex.size - curMultiIndex.size
|
||||
|
||||
for (i in curMultiIndex.indices) {
|
||||
if (curMultiIndex[i] != 1) {
|
||||
curMultiIndex[i] = totalMultiIndex[i + offset]
|
||||
} else {
|
||||
curMultiIndex[i] = 0
|
||||
}
|
||||
}
|
||||
|
||||
val curLinearIndex = tensor.linearStructure.offset(curMultiIndex)
|
||||
resTensor.mutableBuffer.array()[linearIndex] =
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + curLinearIndex]
|
||||
}
|
||||
}
|
||||
|
||||
internal fun broadcastShapes(vararg shapes: IntArray): IntArray {
|
||||
var totalDim = 0
|
||||
for (shape in shapes) {
|
||||
totalDim = max(totalDim, shape.size)
|
||||
}
|
||||
|
||||
val totalShape = IntArray(totalDim) { 0 }
|
||||
for (shape in shapes) {
|
||||
for (i in shape.indices) {
|
||||
val curDim = shape[i]
|
||||
val offset = totalDim - shape.size
|
||||
totalShape[i + offset] = max(totalShape[i + offset], curDim)
|
||||
}
|
||||
}
|
||||
|
||||
for (shape in shapes) {
|
||||
for (i in shape.indices) {
|
||||
val curDim = shape[i]
|
||||
val offset = totalDim - shape.size
|
||||
check(curDim == 1 || totalShape[i + offset] == curDim) {
|
||||
"Shapes are not compatible and cannot be broadcast"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return totalShape
|
||||
}
|
||||
|
||||
internal fun broadcastTo(tensor: DoubleTensor, newShape: IntArray): DoubleTensor {
|
||||
require(tensor.shape.size <= newShape.size) {
|
||||
"Tensor is not compatible with the new shape"
|
||||
}
|
||||
|
||||
val n = newShape.reduce { acc, i -> acc * i }
|
||||
val resTensor = DoubleTensor(newShape, DoubleArray(n))
|
||||
|
||||
for (i in tensor.shape.indices) {
|
||||
val curDim = tensor.shape[i]
|
||||
val offset = newShape.size - tensor.shape.size
|
||||
check(curDim == 1 || newShape[i + offset] == curDim) {
|
||||
"Tensor is not compatible with the new shape and cannot be broadcast"
|
||||
}
|
||||
}
|
||||
|
||||
multiIndexBroadCasting(tensor, resTensor, n)
|
||||
return resTensor
|
||||
}
|
||||
|
||||
internal fun broadcastTensors(vararg tensors: DoubleTensor): List<DoubleTensor> {
|
||||
val totalShape = broadcastShapes(*(tensors.map { it.shape }).toTypedArray())
|
||||
val n = totalShape.reduce { acc, i -> acc * i }
|
||||
|
||||
return tensors.map { tensor ->
|
||||
val resTensor = DoubleTensor(totalShape, DoubleArray(n))
|
||||
multiIndexBroadCasting(tensor, resTensor, n)
|
||||
resTensor
|
||||
}
|
||||
}
|
||||
|
||||
internal fun broadcastOuterTensors(vararg tensors: DoubleTensor): List<DoubleTensor> {
|
||||
val onlyTwoDims = tensors.asSequence().onEach {
|
||||
require(it.shape.size >= 2) {
|
||||
"Tensors must have at least 2 dimensions"
|
||||
}
|
||||
}.any { it.shape.size != 2 }
|
||||
|
||||
if (!onlyTwoDims) {
|
||||
return tensors.asList()
|
||||
}
|
||||
|
||||
val totalShape = broadcastShapes(*(tensors.map { it.shape.sliceArray(0..it.shape.size - 3) }).toTypedArray())
|
||||
val n = totalShape.reduce { acc, i -> acc * i }
|
||||
|
||||
return buildList {
|
||||
for (tensor in tensors) {
|
||||
val matrixShape = tensor.shape.sliceArray(tensor.shape.size - 2 until tensor.shape.size).copyOf()
|
||||
val matrixSize = matrixShape[0] * matrixShape[1]
|
||||
val matrix = DoubleTensor(matrixShape, DoubleArray(matrixSize))
|
||||
|
||||
val outerTensor = DoubleTensor(totalShape, DoubleArray(n))
|
||||
val resTensor = DoubleTensor(totalShape + matrixShape, DoubleArray(n * matrixSize))
|
||||
|
||||
for (linearIndex in 0 until n) {
|
||||
val totalMultiIndex = outerTensor.linearStructure.index(linearIndex)
|
||||
var curMultiIndex = tensor.shape.sliceArray(0..tensor.shape.size - 3).copyOf()
|
||||
curMultiIndex = IntArray(totalMultiIndex.size - curMultiIndex.size) { 1 } + curMultiIndex
|
||||
|
||||
val newTensor = DoubleTensor(curMultiIndex + matrixShape, tensor.mutableBuffer.array())
|
||||
|
||||
for (i in curMultiIndex.indices) {
|
||||
if (curMultiIndex[i] != 1) {
|
||||
curMultiIndex[i] = totalMultiIndex[i]
|
||||
} else {
|
||||
curMultiIndex[i] = 0
|
||||
}
|
||||
}
|
||||
|
||||
for (i in 0 until matrixSize) {
|
||||
val curLinearIndex = newTensor.linearStructure.offset(
|
||||
curMultiIndex +
|
||||
matrix.linearStructure.index(i)
|
||||
)
|
||||
val newLinearIndex = resTensor.linearStructure.offset(
|
||||
totalMultiIndex +
|
||||
matrix.linearStructure.index(i)
|
||||
)
|
||||
|
||||
resTensor.mutableBuffer.array()[resTensor.bufferStart + newLinearIndex] =
|
||||
newTensor.mutableBuffer.array()[newTensor.bufferStart + curLinearIndex]
|
||||
}
|
||||
}
|
||||
add(resTensor)
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,64 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core.internal
|
||||
|
||||
import space.kscience.kmath.tensors.api.Tensor
|
||||
import space.kscience.kmath.tensors.core.DoubleTensor
|
||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
|
||||
|
||||
|
||||
internal fun checkEmptyShape(shape: IntArray) =
|
||||
check(shape.isNotEmpty()) {
|
||||
"Illegal empty shape provided"
|
||||
}
|
||||
|
||||
internal fun checkEmptyDoubleBuffer(buffer: DoubleArray) =
|
||||
check(buffer.isNotEmpty()) {
|
||||
"Illegal empty buffer provided"
|
||||
}
|
||||
|
||||
internal fun checkBufferShapeConsistency(shape: IntArray, buffer: DoubleArray) =
|
||||
check(buffer.size == shape.reduce(Int::times)) {
|
||||
"Inconsistent shape ${shape.toList()} for buffer of size ${buffer.size} provided"
|
||||
}
|
||||
|
||||
internal fun <T> checkShapesCompatible(a: Tensor<T>, b: Tensor<T>) =
|
||||
check(a.shape contentEquals b.shape) {
|
||||
"Incompatible shapes ${a.shape.toList()} and ${b.shape.toList()} "
|
||||
}
|
||||
|
||||
internal fun checkTranspose(dim: Int, i: Int, j: Int) =
|
||||
check((i < dim) and (j < dim)) {
|
||||
"Cannot transpose $i to $j for a tensor of dim $dim"
|
||||
}
|
||||
|
||||
internal fun <T> checkView(a: Tensor<T>, shape: IntArray) =
|
||||
check(a.shape.reduce(Int::times) == shape.reduce(Int::times))
|
||||
|
||||
internal fun checkSquareMatrix(shape: IntArray) {
|
||||
val n = shape.size
|
||||
check(n >= 2) {
|
||||
"Expected tensor with 2 or more dimensions, got size $n instead"
|
||||
}
|
||||
check(shape[n - 1] == shape[n - 2]) {
|
||||
"Tensor must be batches of square matrices, but they are ${shape[n - 1]} by ${shape[n - 1]} matrices"
|
||||
}
|
||||
}
|
||||
|
||||
internal fun DoubleTensorAlgebra.checkSymmetric(
|
||||
tensor: Tensor<Double>, epsilon: Double = 1e-6
|
||||
) =
|
||||
check(tensor.eq(tensor.transpose(), epsilon)) {
|
||||
"Tensor is not symmetric about the last 2 dimensions at precision $epsilon"
|
||||
}
|
||||
|
||||
internal fun DoubleTensorAlgebra.checkPositiveDefinite(tensor: DoubleTensor, epsilon: Double = 1e-6) {
|
||||
checkSymmetric(tensor, epsilon)
|
||||
for (mat in tensor.matrixSequence())
|
||||
check(mat.asTensor().detLU().value() > 0.0) {
|
||||
"Tensor contains matrices which are not positive definite ${mat.asTensor().detLU().value()}"
|
||||
}
|
||||
}
|
@ -0,0 +1,342 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core.internal
|
||||
|
||||
import space.kscience.kmath.nd.MutableStructure1D
|
||||
import space.kscience.kmath.nd.MutableStructure2D
|
||||
import space.kscience.kmath.nd.as1D
|
||||
import space.kscience.kmath.nd.as2D
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.tensors.core.*
|
||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
|
||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra.Companion.valueOrNull
|
||||
import kotlin.math.abs
|
||||
import kotlin.math.min
|
||||
import kotlin.math.sign
|
||||
import kotlin.math.sqrt
|
||||
|
||||
|
||||
internal fun <T> BufferedTensor<T>.vectorSequence(): Sequence<BufferedTensor<T>> = sequence {
|
||||
val n = shape.size
|
||||
val vectorOffset = shape[n - 1]
|
||||
val vectorShape = intArrayOf(shape.last())
|
||||
for (offset in 0 until numElements step vectorOffset) {
|
||||
val vector = BufferedTensor(vectorShape, mutableBuffer, bufferStart + offset)
|
||||
yield(vector)
|
||||
}
|
||||
}
|
||||
|
||||
internal fun <T> BufferedTensor<T>.matrixSequence(): Sequence<BufferedTensor<T>> = sequence {
|
||||
val n = shape.size
|
||||
check(n >= 2) { "Expected tensor with 2 or more dimensions, got size $n" }
|
||||
val matrixOffset = shape[n - 1] * shape[n - 2]
|
||||
val matrixShape = intArrayOf(shape[n - 2], shape[n - 1])
|
||||
for (offset in 0 until numElements step matrixOffset) {
|
||||
val matrix = BufferedTensor(matrixShape, mutableBuffer, bufferStart + offset)
|
||||
yield(matrix)
|
||||
}
|
||||
}
|
||||
|
||||
internal fun dotHelper(
|
||||
a: MutableStructure2D<Double>,
|
||||
b: MutableStructure2D<Double>,
|
||||
res: MutableStructure2D<Double>,
|
||||
l: Int, m: Int, n: Int
|
||||
) {
|
||||
for (i in 0 until l) {
|
||||
for (j in 0 until n) {
|
||||
var curr = 0.0
|
||||
for (k in 0 until m) {
|
||||
curr += a[i, k] * b[k, j]
|
||||
}
|
||||
res[i, j] = curr
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
internal fun luHelper(
|
||||
lu: MutableStructure2D<Double>,
|
||||
pivots: MutableStructure1D<Int>,
|
||||
epsilon: Double
|
||||
): Boolean {
|
||||
|
||||
val m = lu.rowNum
|
||||
|
||||
for (row in 0..m) pivots[row] = row
|
||||
|
||||
for (i in 0 until m) {
|
||||
var maxVal = 0.0
|
||||
var maxInd = i
|
||||
|
||||
for (k in i until m) {
|
||||
val absA = abs(lu[k, i])
|
||||
if (absA > maxVal) {
|
||||
maxVal = absA
|
||||
maxInd = k
|
||||
}
|
||||
}
|
||||
|
||||
if (abs(maxVal) < epsilon)
|
||||
return true // matrix is singular
|
||||
|
||||
if (maxInd != i) {
|
||||
|
||||
val j = pivots[i]
|
||||
pivots[i] = pivots[maxInd]
|
||||
pivots[maxInd] = j
|
||||
|
||||
for (k in 0 until m) {
|
||||
val tmp = lu[i, k]
|
||||
lu[i, k] = lu[maxInd, k]
|
||||
lu[maxInd, k] = tmp
|
||||
}
|
||||
|
||||
pivots[m] += 1
|
||||
|
||||
}
|
||||
|
||||
for (j in i + 1 until m) {
|
||||
lu[j, i] /= lu[i, i]
|
||||
for (k in i + 1 until m) {
|
||||
lu[j, k] -= lu[j, i] * lu[i, k]
|
||||
}
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
internal fun <T> BufferedTensor<T>.setUpPivots(): IntTensor {
|
||||
val n = this.shape.size
|
||||
val m = this.shape.last()
|
||||
val pivotsShape = IntArray(n - 1) { i -> this.shape[i] }
|
||||
pivotsShape[n - 2] = m + 1
|
||||
|
||||
return IntTensor(
|
||||
pivotsShape,
|
||||
IntArray(pivotsShape.reduce(Int::times)) { 0 }
|
||||
)
|
||||
}
|
||||
|
||||
internal fun DoubleTensorAlgebra.computeLU(
|
||||
tensor: DoubleTensor,
|
||||
epsilon: Double
|
||||
): Pair<DoubleTensor, IntTensor>? {
|
||||
|
||||
checkSquareMatrix(tensor.shape)
|
||||
val luTensor = tensor.copy()
|
||||
val pivotsTensor = tensor.setUpPivots()
|
||||
|
||||
for ((lu, pivots) in luTensor.matrixSequence().zip(pivotsTensor.vectorSequence()))
|
||||
if (luHelper(lu.as2D(), pivots.as1D(), epsilon))
|
||||
return null
|
||||
|
||||
return Pair(luTensor, pivotsTensor)
|
||||
}
|
||||
|
||||
internal fun pivInit(
|
||||
p: MutableStructure2D<Double>,
|
||||
pivot: MutableStructure1D<Int>,
|
||||
n: Int
|
||||
) {
|
||||
for (i in 0 until n) {
|
||||
p[i, pivot[i]] = 1.0
|
||||
}
|
||||
}
|
||||
|
||||
internal fun luPivotHelper(
|
||||
l: MutableStructure2D<Double>,
|
||||
u: MutableStructure2D<Double>,
|
||||
lu: MutableStructure2D<Double>,
|
||||
n: Int
|
||||
) {
|
||||
for (i in 0 until n) {
|
||||
for (j in 0 until n) {
|
||||
if (i == j) {
|
||||
l[i, j] = 1.0
|
||||
}
|
||||
if (j < i) {
|
||||
l[i, j] = lu[i, j]
|
||||
}
|
||||
if (j >= i) {
|
||||
u[i, j] = lu[i, j]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
internal fun choleskyHelper(
|
||||
a: MutableStructure2D<Double>,
|
||||
l: MutableStructure2D<Double>,
|
||||
n: Int
|
||||
) {
|
||||
for (i in 0 until n) {
|
||||
for (j in 0 until i) {
|
||||
var h = a[i, j]
|
||||
for (k in 0 until j) {
|
||||
h -= l[i, k] * l[j, k]
|
||||
}
|
||||
l[i, j] = h / l[j, j]
|
||||
}
|
||||
var h = a[i, i]
|
||||
for (j in 0 until i) {
|
||||
h -= l[i, j] * l[i, j]
|
||||
}
|
||||
l[i, i] = sqrt(h)
|
||||
}
|
||||
}
|
||||
|
||||
internal fun luMatrixDet(lu: MutableStructure2D<Double>, pivots: MutableStructure1D<Int>): Double {
|
||||
if (lu[0, 0] == 0.0) {
|
||||
return 0.0
|
||||
}
|
||||
val m = lu.shape[0]
|
||||
val sign = if ((pivots[m] - m) % 2 == 0) 1.0 else -1.0
|
||||
return (0 until m).asSequence().map { lu[it, it] }.fold(sign) { left, right -> left * right }
|
||||
}
|
||||
|
||||
internal fun luMatrixInv(
|
||||
lu: MutableStructure2D<Double>,
|
||||
pivots: MutableStructure1D<Int>,
|
||||
invMatrix: MutableStructure2D<Double>
|
||||
) {
|
||||
val m = lu.shape[0]
|
||||
|
||||
for (j in 0 until m) {
|
||||
for (i in 0 until m) {
|
||||
if (pivots[i] == j) {
|
||||
invMatrix[i, j] = 1.0
|
||||
}
|
||||
|
||||
for (k in 0 until i) {
|
||||
invMatrix[i, j] -= lu[i, k] * invMatrix[k, j]
|
||||
}
|
||||
}
|
||||
|
||||
for (i in m - 1 downTo 0) {
|
||||
for (k in i + 1 until m) {
|
||||
invMatrix[i, j] -= lu[i, k] * invMatrix[k, j]
|
||||
}
|
||||
invMatrix[i, j] /= lu[i, i]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
internal fun DoubleTensorAlgebra.qrHelper(
|
||||
matrix: DoubleTensor,
|
||||
q: DoubleTensor,
|
||||
r: MutableStructure2D<Double>
|
||||
) {
|
||||
checkSquareMatrix(matrix.shape)
|
||||
val n = matrix.shape[0]
|
||||
val qM = q.as2D()
|
||||
val matrixT = matrix.transpose(0, 1)
|
||||
val qT = q.transpose(0, 1)
|
||||
|
||||
for (j in 0 until n) {
|
||||
val v = matrixT[j]
|
||||
val vv = v.as1D()
|
||||
if (j > 0) {
|
||||
for (i in 0 until j) {
|
||||
r[i, j] = (qT[i] dot matrixT[j]).value()
|
||||
for (k in 0 until n) {
|
||||
val qTi = qT[i].as1D()
|
||||
vv[k] = vv[k] - r[i, j] * qTi[k]
|
||||
}
|
||||
}
|
||||
}
|
||||
r[j, j] = DoubleTensorAlgebra { (v dot v).sqrt().value() }
|
||||
for (i in 0 until n) {
|
||||
qM[i, j] = vv[i] / r[j, j]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
internal fun DoubleTensorAlgebra.svd1d(a: DoubleTensor, epsilon: Double = 1e-10): DoubleTensor {
|
||||
val (n, m) = a.shape
|
||||
var v: DoubleTensor
|
||||
val b: DoubleTensor
|
||||
if (n > m) {
|
||||
b = a.transpose(0, 1).dot(a)
|
||||
v = DoubleTensor(intArrayOf(m), getRandomUnitVector(m, 0))
|
||||
} else {
|
||||
b = a.dot(a.transpose(0, 1))
|
||||
v = DoubleTensor(intArrayOf(n), getRandomUnitVector(n, 0))
|
||||
}
|
||||
|
||||
var lastV: DoubleTensor
|
||||
while (true) {
|
||||
lastV = v
|
||||
v = b.dot(lastV)
|
||||
val norm = DoubleTensorAlgebra { (v dot v).sqrt().value() }
|
||||
v = v.times(1.0 / norm)
|
||||
if (abs(v.dot(lastV).value()) > 1 - epsilon) {
|
||||
return v
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
internal fun DoubleTensorAlgebra.svdHelper(
|
||||
matrix: DoubleTensor,
|
||||
USV: Pair<BufferedTensor<Double>, Pair<BufferedTensor<Double>, BufferedTensor<Double>>>,
|
||||
m: Int, n: Int, epsilon: Double
|
||||
) {
|
||||
val res = ArrayList<Triple<Double, DoubleTensor, DoubleTensor>>(0)
|
||||
val (matrixU, SV) = USV
|
||||
val (matrixS, matrixV) = SV
|
||||
|
||||
for (k in 0 until min(n, m)) {
|
||||
var a = matrix.copy()
|
||||
for ((singularValue, u, v) in res.slice(0 until k)) {
|
||||
val outerProduct = DoubleArray(u.shape[0] * v.shape[0])
|
||||
for (i in 0 until u.shape[0]) {
|
||||
for (j in 0 until v.shape[0]) {
|
||||
outerProduct[i * v.shape[0] + j] = u[i].value() * v[j].value()
|
||||
}
|
||||
}
|
||||
a = a - singularValue.times(DoubleTensor(intArrayOf(u.shape[0], v.shape[0]), outerProduct))
|
||||
}
|
||||
var v: DoubleTensor
|
||||
var u: DoubleTensor
|
||||
var norm: Double
|
||||
if (n > m) {
|
||||
v = svd1d(a, epsilon)
|
||||
u = matrix.dot(v)
|
||||
norm = DoubleTensorAlgebra { (u dot u).sqrt().value() }
|
||||
u = u.times(1.0 / norm)
|
||||
} else {
|
||||
u = svd1d(a, epsilon)
|
||||
v = matrix.transpose(0, 1).dot(u)
|
||||
norm = DoubleTensorAlgebra { (v dot v).sqrt().value() }
|
||||
v = v.times(1.0 / norm)
|
||||
}
|
||||
|
||||
res.add(Triple(norm, u, v))
|
||||
}
|
||||
|
||||
val s = res.map { it.first }.toDoubleArray()
|
||||
val uBuffer = res.map { it.second }.flatMap { it.mutableBuffer.array().toList() }.toDoubleArray()
|
||||
val vBuffer = res.map { it.third }.flatMap { it.mutableBuffer.array().toList() }.toDoubleArray()
|
||||
for (i in uBuffer.indices) {
|
||||
matrixU.mutableBuffer.array()[matrixU.bufferStart + i] = uBuffer[i]
|
||||
}
|
||||
for (i in s.indices) {
|
||||
matrixS.mutableBuffer.array()[matrixS.bufferStart + i] = s[i]
|
||||
}
|
||||
for (i in vBuffer.indices) {
|
||||
matrixV.mutableBuffer.array()[matrixV.bufferStart + i] = vBuffer[i]
|
||||
}
|
||||
}
|
||||
|
||||
internal fun cleanSymHelper(matrix: MutableStructure2D<Double>, n: Int) {
|
||||
for (i in 0 until n)
|
||||
for (j in 0 until n) {
|
||||
if (i == j) {
|
||||
matrix[i, j] = sign(matrix[i, j])
|
||||
} else {
|
||||
matrix[i, j] = 0.0
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,44 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core.internal
|
||||
|
||||
import space.kscience.kmath.nd.MutableBufferND
|
||||
import space.kscience.kmath.structures.asMutableBuffer
|
||||
import space.kscience.kmath.tensors.api.Tensor
|
||||
import space.kscience.kmath.tensors.core.BufferedTensor
|
||||
import space.kscience.kmath.tensors.core.DoubleTensor
|
||||
import space.kscience.kmath.tensors.core.IntTensor
|
||||
|
||||
internal fun BufferedTensor<Int>.asTensor(): IntTensor =
|
||||
IntTensor(this.shape, this.mutableBuffer.array(), this.bufferStart)
|
||||
|
||||
internal fun BufferedTensor<Double>.asTensor(): DoubleTensor =
|
||||
DoubleTensor(this.shape, this.mutableBuffer.array(), this.bufferStart)
|
||||
|
||||
internal fun <T> Tensor<T>.copyToBufferedTensor(): BufferedTensor<T> =
|
||||
BufferedTensor(
|
||||
this.shape,
|
||||
TensorLinearStructure(this.shape).indices().map(this::get).toMutableList().asMutableBuffer(), 0
|
||||
)
|
||||
|
||||
internal fun <T> Tensor<T>.toBufferedTensor(): BufferedTensor<T> = when (this) {
|
||||
is BufferedTensor<T> -> this
|
||||
is MutableBufferND<T> -> if (this.strides.strides contentEquals TensorLinearStructure(this.shape).strides)
|
||||
BufferedTensor(this.shape, this.mutableBuffer, 0) else this.copyToBufferedTensor()
|
||||
else -> this.copyToBufferedTensor()
|
||||
}
|
||||
|
||||
internal val Tensor<Double>.tensor: DoubleTensor
|
||||
get() = when (this) {
|
||||
is DoubleTensor -> this
|
||||
else -> this.toBufferedTensor().asTensor()
|
||||
}
|
||||
|
||||
internal val Tensor<Int>.tensor: IntTensor
|
||||
get() = when (this) {
|
||||
is IntTensor -> this
|
||||
else -> this.toBufferedTensor().asTensor()
|
||||
}
|
@ -0,0 +1,124 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core.internal
|
||||
|
||||
import space.kscience.kmath.nd.as1D
|
||||
import space.kscience.kmath.samplers.GaussianSampler
|
||||
import space.kscience.kmath.stat.RandomGenerator
|
||||
import space.kscience.kmath.structures.*
|
||||
import space.kscience.kmath.tensors.core.BufferedTensor
|
||||
import space.kscience.kmath.tensors.core.DoubleTensor
|
||||
import kotlin.math.*
|
||||
|
||||
/**
|
||||
* Returns a reference to [IntArray] containing all of the elements of this [Buffer] or copy the data.
|
||||
*/
|
||||
internal fun Buffer<Int>.array(): IntArray = when (this) {
|
||||
is IntBuffer -> array
|
||||
else -> this.toIntArray()
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a reference to [DoubleArray] containing all of the elements of this [Buffer] or copy the data.
|
||||
*/
|
||||
internal fun Buffer<Double>.array(): DoubleArray = when (this) {
|
||||
is DoubleBuffer -> array
|
||||
else -> this.toDoubleArray()
|
||||
}
|
||||
|
||||
internal fun getRandomNormals(n: Int, seed: Long): DoubleArray {
|
||||
val distribution = GaussianSampler(0.0, 1.0)
|
||||
val generator = RandomGenerator.default(seed)
|
||||
return distribution.sample(generator).nextBufferBlocking(n).toDoubleArray()
|
||||
}
|
||||
|
||||
internal fun getRandomUnitVector(n: Int, seed: Long): DoubleArray {
|
||||
val unnorm = getRandomNormals(n, seed)
|
||||
val norm = sqrt(unnorm.sumOf { it * it })
|
||||
return unnorm.map { it / norm }.toDoubleArray()
|
||||
}
|
||||
|
||||
internal fun minusIndexFrom(n: Int, i: Int): Int = if (i >= 0) i else {
|
||||
val ii = n + i
|
||||
check(ii >= 0) {
|
||||
"Out of bound index $i for tensor of dim $n"
|
||||
}
|
||||
ii
|
||||
}
|
||||
|
||||
internal fun <T> BufferedTensor<T>.minusIndex(i: Int): Int = minusIndexFrom(this.dimension, i)
|
||||
|
||||
internal fun format(value: Double, digits: Int = 4): String = buildString {
|
||||
val res = buildString {
|
||||
val ten = 10.0
|
||||
val approxOrder = if (value == 0.0) 0 else ceil(log10(abs(value))).toInt()
|
||||
val order = if (
|
||||
((value % ten) == 0.0) ||
|
||||
(value == 1.0) ||
|
||||
((1 / value) % ten == 0.0)
|
||||
) approxOrder else approxOrder - 1
|
||||
val lead = value / ten.pow(order)
|
||||
if (value >= 0.0) append(' ')
|
||||
append(round(lead * ten.pow(digits)) / ten.pow(digits))
|
||||
when {
|
||||
order == 0 -> Unit
|
||||
order > 0 -> {
|
||||
append("e+")
|
||||
append(order)
|
||||
}
|
||||
else -> {
|
||||
append('e')
|
||||
append(order)
|
||||
}
|
||||
}
|
||||
}
|
||||
val fLength = digits + 6
|
||||
append(res)
|
||||
repeat(fLength - res.length) { append(' ') }
|
||||
}
|
||||
|
||||
internal fun DoubleTensor.toPrettyString(): String = buildString {
|
||||
var offset = 0
|
||||
val shape = this@toPrettyString.shape
|
||||
val linearStructure = this@toPrettyString.linearStructure
|
||||
val vectorSize = shape.last()
|
||||
append("DoubleTensor(\n")
|
||||
var charOffset = 3
|
||||
for (vector in vectorSequence()) {
|
||||
repeat(charOffset) { append(' ') }
|
||||
val index = linearStructure.index(offset)
|
||||
for (ind in index.reversed()) {
|
||||
if (ind != 0) {
|
||||
break
|
||||
}
|
||||
append('[')
|
||||
charOffset += 1
|
||||
}
|
||||
|
||||
val values = vector.as1D().toMutableList().map(::format)
|
||||
|
||||
values.joinTo(this, separator = ", ")
|
||||
|
||||
append(']')
|
||||
charOffset -= 1
|
||||
|
||||
index.reversed().zip(shape.reversed()).drop(1).forEach { (ind, maxInd) ->
|
||||
if (ind != maxInd - 1) {
|
||||
return@forEach
|
||||
}
|
||||
append(']')
|
||||
charOffset -= 1
|
||||
}
|
||||
|
||||
offset += vectorSize
|
||||
if (this@toPrettyString.numElements == offset) {
|
||||
break
|
||||
}
|
||||
|
||||
append(",\n")
|
||||
}
|
||||
append("\n)")
|
||||
}
|
@ -0,0 +1,37 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.tensors.api.Tensor
|
||||
import space.kscience.kmath.tensors.core.internal.tensor
|
||||
|
||||
/**
|
||||
* Casts [Tensor] of [Double] to [DoubleTensor]
|
||||
*/
|
||||
public fun Tensor<Double>.toDoubleTensor(): DoubleTensor = this.tensor
|
||||
|
||||
/**
|
||||
* Casts [Tensor] of [Int] to [IntTensor]
|
||||
*/
|
||||
public fun Tensor<Int>.toIntTensor(): IntTensor = this.tensor
|
||||
|
||||
/**
|
||||
* Returns [DoubleArray] of tensor elements
|
||||
*/
|
||||
public fun DoubleTensor.toDoubleArray(): DoubleArray {
|
||||
return DoubleArray(numElements) { i ->
|
||||
mutableBuffer[bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns [IntArray] of tensor elements
|
||||
*/
|
||||
public fun IntTensor.toIntArray(): IntArray {
|
||||
return IntArray(numElements) { i ->
|
||||
mutableBuffer[bufferStart + i]
|
||||
}
|
||||
}
|
@ -0,0 +1,105 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.tensors.core.internal.*
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertTrue
|
||||
|
||||
internal class TestBroadcasting {
|
||||
|
||||
@Test
|
||||
fun testBroadcastShapes() = DoubleTensorAlgebra {
|
||||
assertTrue(
|
||||
broadcastShapes(
|
||||
intArrayOf(2, 3), intArrayOf(1, 3), intArrayOf(1, 1, 1)
|
||||
) contentEquals intArrayOf(1, 2, 3)
|
||||
)
|
||||
|
||||
assertTrue(
|
||||
broadcastShapes(
|
||||
intArrayOf(6, 7), intArrayOf(5, 6, 1), intArrayOf(7), intArrayOf(5, 1, 7)
|
||||
) contentEquals intArrayOf(5, 6, 7)
|
||||
)
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testBroadcastTo() = DoubleTensorAlgebra {
|
||||
val tensor1 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
val tensor2 = fromArray(intArrayOf(1, 3), doubleArrayOf(10.0, 20.0, 30.0))
|
||||
|
||||
val res = broadcastTo(tensor2, tensor1.shape)
|
||||
assertTrue(res.shape contentEquals intArrayOf(2, 3))
|
||||
assertTrue(res.mutableBuffer.array() contentEquals doubleArrayOf(10.0, 20.0, 30.0, 10.0, 20.0, 30.0))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testBroadcastTensors() = DoubleTensorAlgebra {
|
||||
val tensor1 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
val tensor2 = fromArray(intArrayOf(1, 3), doubleArrayOf(10.0, 20.0, 30.0))
|
||||
val tensor3 = fromArray(intArrayOf(1, 1, 1), doubleArrayOf(500.0))
|
||||
|
||||
val res = broadcastTensors(tensor1, tensor2, tensor3)
|
||||
|
||||
assertTrue(res[0].shape contentEquals intArrayOf(1, 2, 3))
|
||||
assertTrue(res[1].shape contentEquals intArrayOf(1, 2, 3))
|
||||
assertTrue(res[2].shape contentEquals intArrayOf(1, 2, 3))
|
||||
|
||||
assertTrue(res[0].mutableBuffer.array() contentEquals doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
assertTrue(res[1].mutableBuffer.array() contentEquals doubleArrayOf(10.0, 20.0, 30.0, 10.0, 20.0, 30.0))
|
||||
assertTrue(res[2].mutableBuffer.array() contentEquals doubleArrayOf(500.0, 500.0, 500.0, 500.0, 500.0, 500.0))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testBroadcastOuterTensors() = DoubleTensorAlgebra {
|
||||
val tensor1 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
val tensor2 = fromArray(intArrayOf(1, 3), doubleArrayOf(10.0, 20.0, 30.0))
|
||||
val tensor3 = fromArray(intArrayOf(1, 1, 1), doubleArrayOf(500.0))
|
||||
|
||||
val res = broadcastOuterTensors(tensor1, tensor2, tensor3)
|
||||
|
||||
assertTrue(res[0].shape contentEquals intArrayOf(1, 2, 3))
|
||||
assertTrue(res[1].shape contentEquals intArrayOf(1, 1, 3))
|
||||
assertTrue(res[2].shape contentEquals intArrayOf(1, 1, 1))
|
||||
|
||||
assertTrue(res[0].mutableBuffer.array() contentEquals doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
assertTrue(res[1].mutableBuffer.array() contentEquals doubleArrayOf(10.0, 20.0, 30.0))
|
||||
assertTrue(res[2].mutableBuffer.array() contentEquals doubleArrayOf(500.0))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testBroadcastOuterTensorsShapes() = DoubleTensorAlgebra {
|
||||
val tensor1 = fromArray(intArrayOf(2, 1, 3, 2, 3), DoubleArray(2 * 1 * 3 * 2 * 3) {0.0})
|
||||
val tensor2 = fromArray(intArrayOf(4, 2, 5, 1, 3, 3), DoubleArray(4 * 2 * 5 * 1 * 3 * 3) {0.0})
|
||||
val tensor3 = fromArray(intArrayOf(1, 1), doubleArrayOf(500.0))
|
||||
|
||||
val res = broadcastOuterTensors(tensor1, tensor2, tensor3)
|
||||
|
||||
assertTrue(res[0].shape contentEquals intArrayOf(4, 2, 5, 3, 2, 3))
|
||||
assertTrue(res[1].shape contentEquals intArrayOf(4, 2, 5, 3, 3, 3))
|
||||
assertTrue(res[2].shape contentEquals intArrayOf(4, 2, 5, 3, 1, 1))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testMinusTensor() = BroadcastDoubleTensorAlgebra.invoke {
|
||||
val tensor1 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
val tensor2 = fromArray(intArrayOf(1, 3), doubleArrayOf(10.0, 20.0, 30.0))
|
||||
val tensor3 = fromArray(intArrayOf(1, 1, 1), doubleArrayOf(500.0))
|
||||
|
||||
val tensor21 = tensor2 - tensor1
|
||||
val tensor31 = tensor3 - tensor1
|
||||
val tensor32 = tensor3 - tensor2
|
||||
|
||||
assertTrue(tensor21.shape contentEquals intArrayOf(2, 3))
|
||||
assertTrue(tensor21.mutableBuffer.array() contentEquals doubleArrayOf(9.0, 18.0, 27.0, 6.0, 15.0, 24.0))
|
||||
|
||||
assertTrue(tensor31.shape contentEquals intArrayOf(1, 2, 3))
|
||||
assertTrue(
|
||||
tensor31.mutableBuffer.array()
|
||||
contentEquals doubleArrayOf(499.0, 498.0, 497.0, 496.0, 495.0, 494.0)
|
||||
)
|
||||
|
||||
assertTrue(tensor32.shape contentEquals intArrayOf(1, 1, 3))
|
||||
assertTrue(tensor32.mutableBuffer.array() contentEquals doubleArrayOf(490.0, 480.0, 470.0))
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,158 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import kotlin.math.*
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertTrue
|
||||
|
||||
internal class TestDoubleAnalyticTensorAlgebra {
|
||||
|
||||
val shape = intArrayOf(2, 1, 3, 2)
|
||||
val buffer = doubleArrayOf(
|
||||
27.1, 20.0, 19.84,
|
||||
23.123, 3.0, 2.0,
|
||||
|
||||
3.23, 133.7, 25.3,
|
||||
100.3, 11.0, 12.012
|
||||
)
|
||||
val tensor = DoubleTensor(shape, buffer)
|
||||
|
||||
fun DoubleArray.fmap(transform: (Double) -> Double): DoubleArray {
|
||||
return this.map(transform).toDoubleArray()
|
||||
}
|
||||
|
||||
fun expectedTensor(transform: (Double) -> Double): DoubleTensor {
|
||||
return DoubleTensor(shape, buffer.fmap(transform))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testExp() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor.exp() eq expectedTensor(::exp) }
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testLog() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor.ln() eq expectedTensor(::ln) }
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testSqrt() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor.sqrt() eq expectedTensor(::sqrt) }
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testCos() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor.cos() eq expectedTensor(::cos) }
|
||||
}
|
||||
|
||||
|
||||
@Test
|
||||
fun testCosh() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor.cosh() eq expectedTensor(::cosh) }
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testAcosh() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor.acosh() eq expectedTensor(::acosh) }
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testSin() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor.sin() eq expectedTensor(::sin) }
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testSinh() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor.sinh() eq expectedTensor(::sinh) }
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testAsinh() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor.asinh() eq expectedTensor(::asinh) }
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testTan() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor.tan() eq expectedTensor(::tan) }
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testAtan() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor.atan() eq expectedTensor(::atan) }
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testTanh() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor.tanh() eq expectedTensor(::tanh) }
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testCeil() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor.ceil() eq expectedTensor(::ceil) }
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testFloor() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor.floor() eq expectedTensor(::floor) }
|
||||
}
|
||||
|
||||
val shape2 = intArrayOf(2, 2)
|
||||
val buffer2 = doubleArrayOf(
|
||||
1.0, 2.0,
|
||||
-3.0, 4.0
|
||||
)
|
||||
val tensor2 = DoubleTensor(shape2, buffer2)
|
||||
|
||||
@Test
|
||||
fun testMin() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor2.min() == -3.0 }
|
||||
assertTrue { tensor2.min(0, true) eq fromArray(
|
||||
intArrayOf(1, 2),
|
||||
doubleArrayOf(-3.0, 2.0)
|
||||
)}
|
||||
assertTrue { tensor2.min(1, false) eq fromArray(
|
||||
intArrayOf(2),
|
||||
doubleArrayOf(1.0, -3.0)
|
||||
)}
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testMax() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor2.max() == 4.0 }
|
||||
assertTrue { tensor2.max(0, true) eq fromArray(
|
||||
intArrayOf(1, 2),
|
||||
doubleArrayOf(1.0, 4.0)
|
||||
)}
|
||||
assertTrue { tensor2.max(1, false) eq fromArray(
|
||||
intArrayOf(2),
|
||||
doubleArrayOf(2.0, 4.0)
|
||||
)}
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testSum() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor2.sum() == 4.0 }
|
||||
assertTrue { tensor2.sum(0, true) eq fromArray(
|
||||
intArrayOf(1, 2),
|
||||
doubleArrayOf(-2.0, 6.0)
|
||||
)}
|
||||
assertTrue { tensor2.sum(1, false) eq fromArray(
|
||||
intArrayOf(2),
|
||||
doubleArrayOf(3.0, 1.0)
|
||||
)}
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testMean() = DoubleTensorAlgebra {
|
||||
assertTrue { tensor2.mean() == 1.0 }
|
||||
assertTrue { tensor2.mean(0, true) eq fromArray(
|
||||
intArrayOf(1, 2),
|
||||
doubleArrayOf(-1.0, 3.0)
|
||||
)}
|
||||
assertTrue { tensor2.mean(1, false) eq fromArray(
|
||||
intArrayOf(2),
|
||||
doubleArrayOf(1.5, 0.5)
|
||||
)}
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,196 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.tensors.core.internal.array
|
||||
import space.kscience.kmath.tensors.core.internal.svd1d
|
||||
import kotlin.math.abs
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertEquals
|
||||
import kotlin.test.assertTrue
|
||||
|
||||
internal class TestDoubleLinearOpsTensorAlgebra {
|
||||
|
||||
@Test
|
||||
fun testDetLU() = DoubleTensorAlgebra {
|
||||
val tensor = fromArray(
|
||||
intArrayOf(2, 2, 2),
|
||||
doubleArrayOf(
|
||||
1.0, 3.0,
|
||||
1.0, 2.0,
|
||||
1.5, 1.0,
|
||||
10.0, 2.0
|
||||
)
|
||||
)
|
||||
|
||||
val expectedTensor = fromArray(
|
||||
intArrayOf(2, 1),
|
||||
doubleArrayOf(
|
||||
-1.0,
|
||||
-7.0
|
||||
)
|
||||
)
|
||||
val detTensor = tensor.detLU()
|
||||
|
||||
assertTrue(detTensor.eq(expectedTensor))
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testDet() = DoubleTensorAlgebra {
|
||||
val expectedValue = 0.019827417
|
||||
val m = fromArray(
|
||||
intArrayOf(3, 3), doubleArrayOf(
|
||||
2.1843, 1.4391, -0.4845,
|
||||
1.4391, 1.7772, 0.4055,
|
||||
-0.4845, 0.4055, 0.7519
|
||||
)
|
||||
)
|
||||
|
||||
assertTrue { abs(m.det().value() - expectedValue) < 1e-5 }
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testDetSingle() = DoubleTensorAlgebra {
|
||||
val expectedValue = 48.151623
|
||||
val m = fromArray(
|
||||
intArrayOf(1, 1), doubleArrayOf(
|
||||
expectedValue
|
||||
)
|
||||
)
|
||||
|
||||
assertTrue { abs(m.det().value() - expectedValue) < 1e-5 }
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testInvLU() = DoubleTensorAlgebra {
|
||||
val tensor = fromArray(
|
||||
intArrayOf(2, 2, 2),
|
||||
doubleArrayOf(
|
||||
1.0, 0.0,
|
||||
0.0, 2.0,
|
||||
1.0, 1.0,
|
||||
1.0, 0.0
|
||||
)
|
||||
)
|
||||
|
||||
val expectedTensor = fromArray(
|
||||
intArrayOf(2, 2, 2), doubleArrayOf(
|
||||
1.0, 0.0,
|
||||
0.0, 0.5,
|
||||
0.0, 1.0,
|
||||
1.0, -1.0
|
||||
)
|
||||
)
|
||||
|
||||
val invTensor = tensor.invLU()
|
||||
assertTrue(invTensor.eq(expectedTensor))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testScalarProduct() = DoubleTensorAlgebra {
|
||||
val a = fromArray(intArrayOf(3), doubleArrayOf(1.8, 2.5, 6.8))
|
||||
val b = fromArray(intArrayOf(3), doubleArrayOf(5.5, 2.6, 6.4))
|
||||
assertEquals(a.dot(b).value(), 59.92)
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testQR() = DoubleTensorAlgebra {
|
||||
val shape = intArrayOf(2, 2, 2)
|
||||
val buffer = doubleArrayOf(
|
||||
1.0, 3.0,
|
||||
1.0, 2.0,
|
||||
1.5, 1.0,
|
||||
10.0, 2.0
|
||||
)
|
||||
|
||||
val tensor = fromArray(shape, buffer)
|
||||
|
||||
val (q, r) = tensor.qr()
|
||||
|
||||
assertTrue { q.shape contentEquals shape }
|
||||
assertTrue { r.shape contentEquals shape }
|
||||
|
||||
assertTrue((q dot r).eq(tensor))
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testLU() = DoubleTensorAlgebra {
|
||||
val shape = intArrayOf(2, 2, 2)
|
||||
val buffer = doubleArrayOf(
|
||||
1.0, 3.0,
|
||||
1.0, 2.0,
|
||||
1.5, 1.0,
|
||||
10.0, 2.0
|
||||
)
|
||||
val tensor = fromArray(shape, buffer)
|
||||
|
||||
val (p, l, u) = tensor.lu()
|
||||
|
||||
assertTrue { p.shape contentEquals shape }
|
||||
assertTrue { l.shape contentEquals shape }
|
||||
assertTrue { u.shape contentEquals shape }
|
||||
|
||||
assertTrue((p dot tensor).eq(l dot u))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testCholesky() = DoubleTensorAlgebra {
|
||||
val tensor = randomNormal(intArrayOf(2, 5, 5), 0)
|
||||
val sigma = (tensor dot tensor.transpose()) + diagonalEmbedding(
|
||||
fromArray(intArrayOf(2, 5), DoubleArray(10) { 0.1 })
|
||||
)
|
||||
val low = sigma.cholesky()
|
||||
val sigmChol = low dot low.transpose()
|
||||
assertTrue(sigma.eq(sigmChol))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testSVD1D() = DoubleTensorAlgebra {
|
||||
val tensor2 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
|
||||
val res = svd1d(tensor2)
|
||||
|
||||
assertTrue(res.shape contentEquals intArrayOf(2))
|
||||
assertTrue { abs(abs(res.mutableBuffer.array()[res.bufferStart]) - 0.386) < 0.01 }
|
||||
assertTrue { abs(abs(res.mutableBuffer.array()[res.bufferStart + 1]) - 0.922) < 0.01 }
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testSVD() = DoubleTensorAlgebra{
|
||||
testSVDFor(fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)))
|
||||
testSVDFor(fromArray(intArrayOf(2, 2), doubleArrayOf(-1.0, 0.0, 239.0, 238.0)))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testBatchedSVD() = DoubleTensorAlgebra {
|
||||
val tensor = randomNormal(intArrayOf(2, 5, 3), 0)
|
||||
val (tensorU, tensorS, tensorV) = tensor.svd()
|
||||
val tensorSVD = tensorU dot (diagonalEmbedding(tensorS) dot tensorV.transpose())
|
||||
assertTrue(tensor.eq(tensorSVD))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testBatchedSymEig() = DoubleTensorAlgebra {
|
||||
val tensor = randomNormal(shape = intArrayOf(2, 3, 3), 0)
|
||||
val tensorSigma = tensor + tensor.transpose()
|
||||
val (tensorS, tensorV) = tensorSigma.symEig()
|
||||
val tensorSigmaCalc = tensorV dot (diagonalEmbedding(tensorS) dot tensorV.transpose())
|
||||
assertTrue(tensorSigma.eq(tensorSigmaCalc))
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
private fun DoubleTensorAlgebra.testSVDFor(tensor: DoubleTensor, epsilon: Double = 1e-10): Unit {
|
||||
val svd = tensor.svd()
|
||||
|
||||
val tensorSVD = svd.first
|
||||
.dot(
|
||||
diagonalEmbedding(svd.second)
|
||||
.dot(svd.third.transpose())
|
||||
)
|
||||
|
||||
assertTrue(tensor.eq(tensorSVD, epsilon))
|
||||
}
|
@ -0,0 +1,89 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.nd.DefaultStrides
|
||||
import space.kscience.kmath.nd.MutableBufferND
|
||||
import space.kscience.kmath.nd.as1D
|
||||
import space.kscience.kmath.nd.as2D
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.structures.DoubleBuffer
|
||||
import space.kscience.kmath.structures.toDoubleArray
|
||||
import space.kscience.kmath.tensors.core.internal.array
|
||||
import space.kscience.kmath.tensors.core.internal.asTensor
|
||||
import space.kscience.kmath.tensors.core.internal.matrixSequence
|
||||
import space.kscience.kmath.tensors.core.internal.toBufferedTensor
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertEquals
|
||||
import kotlin.test.assertTrue
|
||||
|
||||
internal class TestDoubleTensor {
|
||||
|
||||
@Test
|
||||
fun testValue() = DoubleTensorAlgebra {
|
||||
val value = 12.5
|
||||
val tensor = fromArray(intArrayOf(1), doubleArrayOf(value))
|
||||
assertEquals(tensor.value(), value)
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testStrides() = DoubleTensorAlgebra {
|
||||
val tensor = fromArray(intArrayOf(2, 2), doubleArrayOf(3.5, 5.8, 58.4, 2.4))
|
||||
assertEquals(tensor[intArrayOf(0, 1)], 5.8)
|
||||
assertTrue(
|
||||
tensor.elements().map { it.second }.toList().toDoubleArray() contentEquals tensor.mutableBuffer.toDoubleArray()
|
||||
)
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testGet() = DoubleTensorAlgebra {
|
||||
val tensor = fromArray(intArrayOf(1, 2, 2), doubleArrayOf(3.5, 5.8, 58.4, 2.4))
|
||||
val matrix = tensor[0].as2D()
|
||||
assertEquals(matrix[0, 1], 5.8)
|
||||
|
||||
val vector = tensor[0][1].as1D()
|
||||
assertEquals(vector[0], 58.4)
|
||||
|
||||
matrix[0, 1] = 77.89
|
||||
assertEquals(tensor[intArrayOf(0, 0, 1)], 77.89)
|
||||
|
||||
vector[0] = 109.56
|
||||
assertEquals(tensor[intArrayOf(0, 1, 0)], 109.56)
|
||||
|
||||
tensor.matrixSequence().forEach {
|
||||
val a = it.asTensor()
|
||||
val secondRow = a[1].as1D()
|
||||
val secondColumn = a.transpose(0, 1)[1].as1D()
|
||||
assertEquals(secondColumn[0], 77.89)
|
||||
assertEquals(secondRow[1], secondColumn[1])
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testNoBufferProtocol() {
|
||||
|
||||
// create buffer
|
||||
val doubleArray = DoubleBuffer(doubleArrayOf(1.0, 2.0, 3.0))
|
||||
|
||||
// create ND buffers, no data is copied
|
||||
val ndArray = MutableBufferND(DefaultStrides(intArrayOf(3)), doubleArray)
|
||||
|
||||
// map to tensors
|
||||
val bufferedTensorArray = ndArray.toBufferedTensor() // strides are flipped so data copied
|
||||
val tensorArray = bufferedTensorArray.asTensor() // data not contiguous so copied again
|
||||
|
||||
val tensorArrayPublic = ndArray.toDoubleTensor() // public API, data copied twice
|
||||
val sharedTensorArray = tensorArrayPublic.toDoubleTensor() // no data copied by matching type
|
||||
|
||||
assertTrue(tensorArray.mutableBuffer.array() contentEquals sharedTensorArray.mutableBuffer.array())
|
||||
|
||||
tensorArray[intArrayOf(0)] = 55.9
|
||||
assertEquals(tensorArrayPublic[intArrayOf(0)], 1.0)
|
||||
|
||||
tensorArrayPublic[intArrayOf(0)] = 55.9
|
||||
assertEquals(sharedTensorArray[intArrayOf(0)], 55.9)
|
||||
assertEquals(bufferedTensorArray[intArrayOf(0)], 1.0)
|
||||
|
||||
bufferedTensorArray[intArrayOf(0)] = 55.9
|
||||
assertEquals(ndArray[intArrayOf(0)], 1.0)
|
||||
|
||||
}
|
||||
}
|
@ -0,0 +1,167 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.tensors.core.internal.array
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertFalse
|
||||
import kotlin.test.assertTrue
|
||||
|
||||
internal class TestDoubleTensorAlgebra {
|
||||
|
||||
@Test
|
||||
fun testDoublePlus() = DoubleTensorAlgebra {
|
||||
val tensor = fromArray(intArrayOf(2), doubleArrayOf(1.0, 2.0))
|
||||
val res = 10.0 + tensor
|
||||
assertTrue(res.mutableBuffer.array() contentEquals doubleArrayOf(11.0, 12.0))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun TestDoubleDiv() = DoubleTensorAlgebra {
|
||||
val tensor = fromArray(intArrayOf(2), doubleArrayOf(2.0, 4.0))
|
||||
val res = 2.0/tensor
|
||||
assertTrue(res.mutableBuffer.array() contentEquals doubleArrayOf(1.0, 0.5))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testDivDouble() = DoubleTensorAlgebra {
|
||||
val tensor = fromArray(intArrayOf(2), doubleArrayOf(10.0, 5.0))
|
||||
val res = tensor / 2.5
|
||||
assertTrue(res.mutableBuffer.array() contentEquals doubleArrayOf(4.0, 2.0))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testTranspose1x1() = DoubleTensorAlgebra {
|
||||
val tensor = fromArray(intArrayOf(1), doubleArrayOf(0.0))
|
||||
val res = tensor.transpose(0, 0)
|
||||
|
||||
assertTrue(res.mutableBuffer.array() contentEquals doubleArrayOf(0.0))
|
||||
assertTrue(res.shape contentEquals intArrayOf(1))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testTranspose3x2() = DoubleTensorAlgebra {
|
||||
val tensor = fromArray(intArrayOf(3, 2), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
val res = tensor.transpose(1, 0)
|
||||
|
||||
assertTrue(res.mutableBuffer.array() contentEquals doubleArrayOf(1.0, 3.0, 5.0, 2.0, 4.0, 6.0))
|
||||
assertTrue(res.shape contentEquals intArrayOf(2, 3))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testTranspose1x2x3() = DoubleTensorAlgebra {
|
||||
val tensor = fromArray(intArrayOf(1, 2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
val res01 = tensor.transpose(0, 1)
|
||||
val res02 = tensor.transpose(-3, 2)
|
||||
val res12 = tensor.transpose()
|
||||
|
||||
assertTrue(res01.shape contentEquals intArrayOf(2, 1, 3))
|
||||
assertTrue(res02.shape contentEquals intArrayOf(3, 2, 1))
|
||||
assertTrue(res12.shape contentEquals intArrayOf(1, 3, 2))
|
||||
|
||||
assertTrue(res01.mutableBuffer.array() contentEquals doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
assertTrue(res02.mutableBuffer.array() contentEquals doubleArrayOf(1.0, 4.0, 2.0, 5.0, 3.0, 6.0))
|
||||
assertTrue(res12.mutableBuffer.array() contentEquals doubleArrayOf(1.0, 4.0, 2.0, 5.0, 3.0, 6.0))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testLinearStructure() = DoubleTensorAlgebra {
|
||||
val shape = intArrayOf(3)
|
||||
val tensorA = full(value = -4.5, shape = shape)
|
||||
val tensorB = full(value = 10.9, shape = shape)
|
||||
val tensorC = full(value = 789.3, shape = shape)
|
||||
val tensorD = full(value = -72.9, shape = shape)
|
||||
val tensorE = full(value = 553.1, shape = shape)
|
||||
val result = 15.8 * tensorA - 1.5 * tensorB * (-tensorD) + 0.02 * tensorC / tensorE - 39.4
|
||||
|
||||
val expected = fromArray(
|
||||
shape,
|
||||
(1..3).map {
|
||||
15.8 * (-4.5) - 1.5 * 10.9 * 72.9 + 0.02 * 789.3 / 553.1 - 39.4
|
||||
}.toDoubleArray()
|
||||
)
|
||||
|
||||
val assignResult = zeros(shape)
|
||||
tensorA *= 15.8
|
||||
tensorB *= 1.5
|
||||
tensorB *= -tensorD
|
||||
tensorC *= 0.02
|
||||
tensorC /= tensorE
|
||||
assignResult += tensorA
|
||||
assignResult -= tensorB
|
||||
assignResult += tensorC
|
||||
assignResult += -39.4
|
||||
|
||||
assertTrue(expected.mutableBuffer.array() contentEquals result.mutableBuffer.array())
|
||||
assertTrue(expected.mutableBuffer.array() contentEquals assignResult.mutableBuffer.array())
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testDot() = DoubleTensorAlgebra {
|
||||
val tensor1 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
val tensor11 = fromArray(intArrayOf(3, 2), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
val tensor2 = fromArray(intArrayOf(3), doubleArrayOf(10.0, 20.0, 30.0))
|
||||
val tensor3 = fromArray(intArrayOf(1, 1, 3), doubleArrayOf(-1.0, -2.0, -3.0))
|
||||
|
||||
val res12 = tensor1.dot(tensor2)
|
||||
assertTrue(res12.mutableBuffer.array() contentEquals doubleArrayOf(140.0, 320.0))
|
||||
assertTrue(res12.shape contentEquals intArrayOf(2))
|
||||
|
||||
val res32 = tensor3.dot(tensor2)
|
||||
assertTrue(res32.mutableBuffer.array() contentEquals doubleArrayOf(-140.0))
|
||||
assertTrue(res32.shape contentEquals intArrayOf(1, 1))
|
||||
|
||||
val res22 = tensor2.dot(tensor2)
|
||||
assertTrue(res22.mutableBuffer.array() contentEquals doubleArrayOf(1400.0))
|
||||
assertTrue(res22.shape contentEquals intArrayOf(1))
|
||||
|
||||
val res11 = tensor1.dot(tensor11)
|
||||
assertTrue(res11.mutableBuffer.array() contentEquals doubleArrayOf(22.0, 28.0, 49.0, 64.0))
|
||||
assertTrue(res11.shape contentEquals intArrayOf(2, 2))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testDiagonalEmbedding() = DoubleTensorAlgebra {
|
||||
val tensor1 = fromArray(intArrayOf(3), doubleArrayOf(10.0, 20.0, 30.0))
|
||||
val tensor2 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
val tensor3 = zeros(intArrayOf(2, 3, 4, 5))
|
||||
|
||||
assertTrue(diagonalEmbedding(tensor3, 0, 3, 4).shape contentEquals
|
||||
intArrayOf(2, 3, 4, 5, 5))
|
||||
assertTrue(diagonalEmbedding(tensor3, 1, 3, 4).shape contentEquals
|
||||
intArrayOf(2, 3, 4, 6, 6))
|
||||
assertTrue(diagonalEmbedding(tensor3, 2, 0, 3).shape contentEquals
|
||||
intArrayOf(7, 2, 3, 7, 4))
|
||||
|
||||
val diagonal1 = diagonalEmbedding(tensor1, 0, 1, 0)
|
||||
assertTrue(diagonal1.shape contentEquals intArrayOf(3, 3))
|
||||
assertTrue(diagonal1.mutableBuffer.array() contentEquals
|
||||
doubleArrayOf(10.0, 0.0, 0.0, 0.0, 20.0, 0.0, 0.0, 0.0, 30.0))
|
||||
|
||||
val diagonal1Offset = diagonalEmbedding(tensor1, 1, 1, 0)
|
||||
assertTrue(diagonal1Offset.shape contentEquals intArrayOf(4, 4))
|
||||
assertTrue(diagonal1Offset.mutableBuffer.array() contentEquals
|
||||
doubleArrayOf(0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 20.0, 0.0, 0.0, 0.0, 0.0, 30.0, 0.0))
|
||||
|
||||
val diagonal2 = diagonalEmbedding(tensor2, 1, 0, 2)
|
||||
assertTrue(diagonal2.shape contentEquals intArrayOf(4, 2, 4))
|
||||
assertTrue(diagonal2.mutableBuffer.array() contentEquals
|
||||
doubleArrayOf(
|
||||
0.0, 1.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0,
|
||||
0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 5.0, 0.0,
|
||||
0.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 6.0,
|
||||
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testEq() = DoubleTensorAlgebra {
|
||||
val tensor1 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
val tensor2 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
val tensor3 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 5.0))
|
||||
|
||||
assertTrue(tensor1 eq tensor1)
|
||||
assertTrue(tensor1 eq tensor2)
|
||||
assertFalse(tensor1.eq(tensor3))
|
||||
|
||||
}
|
||||
}
|
@ -42,6 +42,7 @@ include(
|
||||
":kmath-ast",
|
||||
":kmath-ejml",
|
||||
":kmath-kotlingrad",
|
||||
":kmath-tensors",
|
||||
":kmath-jupyter",
|
||||
":examples",
|
||||
":benchmarks"
|
||||
|
Loading…
Reference in New Issue
Block a user