KMP library for tensors #300
@ -9,6 +9,8 @@ import space.kscience.kmath.tensors.core.DoubleTensor
|
||||
import space.kscience.kmath.tensors.core.algebras.DoubleAnalyticTensorAlgebra
|
||||
import space.kscience.kmath.tensors.core.algebras.DoubleLinearOpsTensorAlgebra
|
||||
|
||||
import kotlin.math.abs
|
||||
|
||||
// OLS estimator using SVD
|
||||
|
||||
fun main() {
|
||||
@ -26,8 +28,7 @@ fun main() {
|
||||
doubleArrayOf(1.0, 2.5, 3.4, 5.0, 10.1)
|
||||
)
|
||||
|
||||
println("Real alpha:\n" +
|
||||
"$alpha")
|
||||
println("Real alpha:\n$alpha")
|
||||
|
||||
// also take sample of size 20 from normal distribution for x TODO rename
|
||||
val x = randNormal(
|
||||
@ -35,20 +36,22 @@ fun main() {
|
||||
randSeed
|
||||
)
|
||||
|
||||
// calculate y and add gaussian noise (N(0, 0.05)) TODO rename
|
||||
// calculate y and add gaussian noise (N(0, 0.05))
|
||||
// TODO: please add an intercept: Y = beta * X + alpha + N(0,0.5)
|
||||
val y = x dot alpha
|
||||
y += y.randNormalLike(randSeed) * 0.05
|
||||
|
||||
// now restore the coefficient vector with OSL estimator with SVD
|
||||
// TODO: you need to change accordingly [X 1] [alpha beta] = Y
|
||||
// TODO: inverting [X 1] via SVD
|
||||
val (u, singValues, v) = x.svd()
|
||||
|
||||
// we have to make sure the singular values of the matrix are not close to zero
|
||||
println("Singular values:\n" +
|
||||
"$singValues")
|
||||
// TODO something with Boolean tensors
|
||||
println("Singular values:\n$singValues")
|
||||
|
||||
|
||||
// inverse Sigma matrix can be restored from singular values with diagonalEmbedding function
|
||||
val sigma = diagonalEmbedding(1.0/singValues)
|
||||
val sigma = diagonalEmbedding(singValues.map{ x -> if (abs(x) < 1e-3) 0.0 else 1.0/x })
|
||||
|
||||
val alphaOLS = v dot sigma dot u.transpose() dot y
|
||||
println("Estimated alpha:\n" +
|
||||
|
Loading…
Reference in New Issue
Block a user