KMP library for tensors #300
@ -1,8 +1,8 @@
|
|||||||
package space.kscience.kmath.tensors.core
|
package space.kscience.kmath.tensors.core
|
||||||
|
|
||||||
|
import space.kscience.kmath.samplers.GaussianSampler
|
||||||
|
import space.kscience.kmath.stat.RandomGenerator
|
||||||
import space.kscience.kmath.structures.*
|
import space.kscience.kmath.structures.*
|
||||||
import kotlin.random.Random
|
|
||||||
import kotlin.math.*
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns a reference to [IntArray] containing all of the elements of this [Buffer].
|
* Returns a reference to [IntArray] containing all of the elements of this [Buffer].
|
||||||
@ -37,8 +37,9 @@ internal fun Buffer<Double>.array(): DoubleArray = when (this) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
internal inline fun getRandomNormals(n: Int, seed: Long): DoubleArray {
|
internal inline fun getRandomNormals(n: Int, seed: Long): DoubleArray {
|
||||||
val u = Random(seed)
|
val distribution = GaussianSampler(0.0, 1.0)
|
||||||
return (0 until n).map { sqrt(-2.0 * ln(u.nextDouble())) * cos(2.0 * PI * u.nextDouble()) }.toDoubleArray()
|
val generator = RandomGenerator.default(seed)
|
||||||
|
return distribution.sample(generator).nextBufferBlocking(n).toDoubleArray()
|
||||||
}
|
}
|
||||||
|
|
||||||
internal inline fun minusIndexFrom(n: Int, i: Int) : Int = if (i >= 0) i else {
|
internal inline fun minusIndexFrom(n: Int, i: Int) : Int = if (i >= 0) i else {
|
||||||
|
Loading…
Reference in New Issue
Block a user