KMP library for tensors #300
@ -31,28 +31,6 @@ public open class BufferedTensor<T>(
|
||||
|
||||
override fun hashCode(): Int = 0
|
||||
|
||||
// todo rename to vector
|
||||
public inline fun forEachVector(vectorAction : (MutableStructure1D<T>) -> Unit): Unit {
|
||||
check(shape.size >= 1) {"todo"}
|
||||
val vectorOffset = strides.strides[0]
|
||||
val vectorShape = intArrayOf(shape.last())
|
||||
for (offset in 0 until numel step vectorOffset) {
|
||||
val vector = BufferedTensor<T>(vectorShape, buffer, offset).as1D()
|
||||
vectorAction(vector)
|
||||
}
|
||||
}
|
||||
|
||||
public inline fun forEachMatrix(matrixAction : (MutableStructure2D<T>) -> Unit): Unit {
|
||||
check(shape.size >= 2) {"todo"}
|
||||
val matrixOffset = strides.strides[1]
|
||||
val matrixShape = intArrayOf(shape[shape.size - 2], shape.last()) //todo better way?
|
||||
for (offset in 0 until numel step matrixOffset) {
|
||||
val matrix = BufferedTensor<T>(matrixShape, buffer, offset).as2D()
|
||||
matrixAction(matrix)
|
||||
}
|
||||
}
|
||||
// todo remove code copy-pasting
|
||||
|
||||
public fun vectorSequence(): Sequence<MutableStructure1D<T>> = sequence {
|
||||
check(shape.size >= 1) {"todo"}
|
||||
val vectorOffset = strides.strides[0]
|
||||
@ -73,6 +51,18 @@ public open class BufferedTensor<T>(
|
||||
}
|
||||
}
|
||||
|
||||
public inline fun forEachVector(vectorAction : (MutableStructure1D<T>) -> Unit): Unit {
|
||||
for (vector in vectorSequence()){
|
||||
vectorAction(vector)
|
||||
}
|
||||
}
|
||||
|
||||
public inline fun forEachMatrix(matrixAction : (MutableStructure2D<T>) -> Unit): Unit {
|
||||
for (matrix in matrixSequence()){
|
||||
matrixAction(matrix)
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -10,23 +10,24 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double, Dou
|
||||
return DoubleTensor(newShape, this.buffer.array(), newStart)
|
||||
}
|
||||
|
||||
override fun zeros(shape: IntArray): DoubleTensor {
|
||||
TODO("Not yet implemented")
|
||||
}
|
||||
|
||||
override fun DoubleTensor.zeroesLike(): DoubleTensor {
|
||||
val shape = this.shape
|
||||
val buffer = DoubleArray(this.strides.linearSize) { 0.0 }
|
||||
override fun full(shape: IntArray, value: Double): DoubleTensor {
|
||||
val buffer = DoubleArray(TensorStrides(shape).linearSize) { value }
|
||||
return DoubleTensor(shape, buffer)
|
||||
}
|
||||
|
||||
override fun ones(shape: IntArray): DoubleTensor {
|
||||
TODO("Not yet implemented")
|
||||
override fun zeros(shape: IntArray): DoubleTensor = full(shape, 0.0)
|
||||
|
||||
override fun ones(shape: IntArray): DoubleTensor = full(shape, 1.0)
|
||||
|
||||
override fun DoubleTensor.fullLike(value: Double): DoubleTensor {
|
||||
val shape = this.shape
|
||||
val buffer = DoubleArray(this.strides.linearSize) { value }
|
||||
return DoubleTensor(shape, buffer)
|
||||
}
|
||||
|
||||
override fun DoubleTensor.onesLike(): DoubleTensor {
|
||||
TODO("Not yet implemented")
|
||||
}
|
||||
override fun DoubleTensor.zeroesLike(): DoubleTensor = this.fullLike(0.0)
|
||||
|
||||
override fun DoubleTensor.onesLike(): DoubleTensor = this.fullLike(1.0)
|
||||
|
||||
override fun eye(n: Int): DoubleTensor {
|
||||
val shape = intArrayOf(n, n)
|
||||
@ -192,15 +193,6 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double, Dou
|
||||
TODO("Not yet implemented")
|
||||
}
|
||||
|
||||
override fun full(shape: IntArray, value: Double): DoubleTensor {
|
||||
TODO("Not yet implemented")
|
||||
}
|
||||
|
||||
override fun DoubleTensor.fullLike(value: Double): DoubleTensor {
|
||||
TODO("Not yet implemented")
|
||||
}
|
||||
|
||||
|
||||
override fun DoubleTensor.sum(dim: Int, keepDim: Boolean): DoubleTensor {
|
||||
TODO("Not yet implemented")
|
||||
}
|
||||
|
@ -4,18 +4,18 @@ package space.kscience.kmath.tensors
|
||||
public interface TensorAlgebra<T, TensorType : TensorStructure<T>> {
|
||||
|
||||
|
||||
public fun zeros(shape: IntArray): TensorType
|
||||
public fun TensorType.zeroesLike(): TensorType // mb it shouldn't be tensor but algebra method (like in numpy/torch) ?
|
||||
public fun ones(shape: IntArray): TensorType
|
||||
public fun TensorType.onesLike(): TensorType
|
||||
|
||||
|
||||
//https://pytorch.org/docs/stable/generated/torch.full.html
|
||||
public fun full(shape: IntArray, value: T): TensorType
|
||||
|
||||
public fun ones(shape: IntArray): TensorType
|
||||
public fun zeros(shape: IntArray): TensorType
|
||||
|
||||
//https://pytorch.org/docs/stable/generated/torch.full_like.html#torch.full_like
|
||||
public fun TensorType.fullLike(value: T): TensorType
|
||||
|
||||
public fun TensorType.zeroesLike(): TensorType
|
||||
public fun TensorType.onesLike(): TensorType
|
||||
|
||||
//https://pytorch.org/docs/stable/generated/torch.eye.html
|
||||
public fun eye(n: Int): TensorType
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user