KMP library for tensors #300
@ -30,20 +30,17 @@ fun main() {
|
|||||||
|
|
||||||
println("Real alpha:\n$alpha")
|
println("Real alpha:\n$alpha")
|
||||||
|
|
||||||
// also take sample of size 20 from normal distribution for x TODO rename
|
// also take sample of size 20 from normal distribution for x
|
||||||
val x = randNormal(
|
val x = randNormal(
|
||||||
intArrayOf(20, 5),
|
intArrayOf(20, 5),
|
||||||
randSeed
|
randSeed
|
||||||
)
|
)
|
||||||
|
|
||||||
// calculate y and add gaussian noise (N(0, 0.05))
|
// calculate y and add gaussian noise (N(0, 0.05))
|
||||||
// TODO: please add an intercept: Y = beta * X + alpha + N(0,0.5)
|
|
||||||
val y = x dot alpha
|
val y = x dot alpha
|
||||||
y += y.randNormalLike(randSeed) * 0.05
|
y += y.randNormalLike(randSeed) * 0.05
|
||||||
|
|
||||||
// now restore the coefficient vector with OSL estimator with SVD
|
// now restore the coefficient vector with OSL estimator with SVD
|
||||||
// TODO: you need to change accordingly [X 1] [alpha beta] = Y
|
|
||||||
// TODO: inverting [X 1] via SVD
|
|
||||||
val (u, singValues, v) = x.svd()
|
val (u, singValues, v) = x.svd()
|
||||||
|
|
||||||
// we have to make sure the singular values of the matrix are not close to zero
|
// we have to make sure the singular values of the matrix are not close to zero
|
||||||
|
Loading…
Reference in New Issue
Block a user