KMP library for tensors #300
@ -91,29 +91,6 @@ public class DoubleLinearOpsTensorAlgebra :
|
|||||||
return qTensor to rTensor
|
return qTensor to rTensor
|
||||||
}
|
}
|
||||||
|
|
||||||
internal fun svd1d(a: DoubleTensor, epsilon: Double = 1e-10): DoubleTensor {
|
|
||||||
val (n, m) = a.shape
|
|
||||||
var v: DoubleTensor
|
|
||||||
val b: DoubleTensor
|
|
||||||
if (n > m) {
|
|
||||||
b = a.transpose(0, 1).dot(a)
|
|
||||||
v = DoubleTensor(intArrayOf(m), getRandomNormals(m, 0))
|
|
||||||
} else {
|
|
||||||
b = a.dot(a.transpose(0, 1))
|
|
||||||
v = DoubleTensor(intArrayOf(n), getRandomNormals(n, 0))
|
|
||||||
}
|
|
||||||
|
|
||||||
var lastV: DoubleTensor
|
|
||||||
while (true) {
|
|
||||||
lastV = v
|
|
||||||
v = b.dot(lastV)
|
|
||||||
val norm = DoubleAnalyticTensorAlgebra { (v dot v).sqrt().value() }
|
|
||||||
v = v.times(1.0 / norm)
|
|
||||||
if (abs(v.dot(lastV).value()) > 1 - epsilon) {
|
|
||||||
return v
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
override fun DoubleTensor.svd(): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
|
override fun DoubleTensor.svd(): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
|
||||||
val size = this.shape.size
|
val size = this.shape.size
|
||||||
@ -124,47 +101,8 @@ public class DoubleLinearOpsTensorAlgebra :
|
|||||||
val resV = zeros(commonShape + intArrayOf(min(n, m), m))
|
val resV = zeros(commonShape + intArrayOf(min(n, m), m))
|
||||||
|
|
||||||
for ((matrix, USV) in this.matrixSequence()
|
for ((matrix, USV) in this.matrixSequence()
|
||||||
.zip(resU.matrixSequence().zip(resS.vectorSequence().zip(resV.matrixSequence())))) {
|
.zip(resU.matrixSequence().zip(resS.vectorSequence().zip(resV.matrixSequence()))))
|
||||||
val res = ArrayList<Triple<Double, DoubleTensor, DoubleTensor>>(0)
|
svdHelper(matrix.asTensor(), USV, m, n)
|
||||||
val (matrixU, SV) = USV
|
|
||||||
val (matrixS, matrixV) = SV
|
|
||||||
|
|
||||||
for (k in 0 until min(n, m)) {
|
|
||||||
var a = matrix.asTensor().copy()
|
|
||||||
for ((singularValue, u, v) in res.slice(0 until k)) {
|
|
||||||
val outerProduct = DoubleArray(u.shape[0] * v.shape[0])
|
|
||||||
for (i in 0 until u.shape[0]) {
|
|
||||||
for (j in 0 until v.shape[0]) {
|
|
||||||
outerProduct[i * v.shape[0] + j] = u[i].value() * v[j].value()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
a = a - singularValue.times(DoubleTensor(intArrayOf(u.shape[0], v.shape[0]), outerProduct))
|
|
||||||
}
|
|
||||||
var v: DoubleTensor
|
|
||||||
var u: DoubleTensor
|
|
||||||
var norm: Double
|
|
||||||
if (n > m) {
|
|
||||||
v = svd1d(a)
|
|
||||||
u = matrix.asTensor().dot(v)
|
|
||||||
norm = DoubleAnalyticTensorAlgebra { (u dot u).sqrt().value() }
|
|
||||||
u = u.times(1.0 / norm)
|
|
||||||
} else {
|
|
||||||
u = svd1d(a)
|
|
||||||
v = matrix.asTensor().transpose(0, 1).dot(u)
|
|
||||||
norm = DoubleAnalyticTensorAlgebra { (v dot v).sqrt().value() }
|
|
||||||
v = v.times(1.0 / norm)
|
|
||||||
}
|
|
||||||
|
|
||||||
res.add(Triple(norm, u, v))
|
|
||||||
}
|
|
||||||
|
|
||||||
val s = res.map { it.first }.toDoubleArray()
|
|
||||||
val uBuffer = res.map { it.second }.flatMap { it.buffer.array().toList() }.toDoubleArray()
|
|
||||||
val vBuffer = res.map { it.third }.flatMap { it.buffer.array().toList() }.toDoubleArray()
|
|
||||||
uBuffer.copyInto(matrixU.buffer.array())
|
|
||||||
s.copyInto(matrixS.buffer.array())
|
|
||||||
vBuffer.copyInto(matrixV.buffer.array())
|
|
||||||
}
|
|
||||||
return Triple(resU, resS, resV.transpose(size - 2, size - 1))
|
return Triple(resU, resS, resV.transpose(size - 2, size - 1))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -4,6 +4,8 @@ import space.kscience.kmath.nd.MutableStructure1D
|
|||||||
import space.kscience.kmath.nd.MutableStructure2D
|
import space.kscience.kmath.nd.MutableStructure2D
|
||||||
import space.kscience.kmath.nd.as1D
|
import space.kscience.kmath.nd.as1D
|
||||||
import space.kscience.kmath.nd.as2D
|
import space.kscience.kmath.nd.as2D
|
||||||
|
import kotlin.math.abs
|
||||||
|
import kotlin.math.min
|
||||||
import kotlin.math.sqrt
|
import kotlin.math.sqrt
|
||||||
|
|
||||||
|
|
||||||
@ -216,3 +218,73 @@ internal inline fun DoubleLinearOpsTensorAlgebra.qrHelper(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
internal inline fun DoubleLinearOpsTensorAlgebra.svd1d(a: DoubleTensor, epsilon: Double = 1e-10): DoubleTensor {
|
||||||
|
val (n, m) = a.shape
|
||||||
|
var v: DoubleTensor
|
||||||
|
val b: DoubleTensor
|
||||||
|
if (n > m) {
|
||||||
|
b = a.transpose(0, 1).dot(a)
|
||||||
|
v = DoubleTensor(intArrayOf(m), getRandomNormals(m, 0))
|
||||||
|
} else {
|
||||||
|
b = a.dot(a.transpose(0, 1))
|
||||||
|
v = DoubleTensor(intArrayOf(n), getRandomNormals(n, 0))
|
||||||
|
}
|
||||||
|
|
||||||
|
var lastV: DoubleTensor
|
||||||
|
while (true) {
|
||||||
|
lastV = v
|
||||||
|
v = b.dot(lastV)
|
||||||
|
val norm = DoubleAnalyticTensorAlgebra { (v dot v).sqrt().value() }
|
||||||
|
v = v.times(1.0 / norm)
|
||||||
|
if (abs(v.dot(lastV).value()) > 1 - epsilon) {
|
||||||
|
return v
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
internal inline fun DoubleLinearOpsTensorAlgebra.svdHelper(
|
||||||
|
matrix: DoubleTensor,
|
||||||
|
USV: Pair<BufferedTensor<Double>, Pair<BufferedTensor<Double>, BufferedTensor<Double>>>,
|
||||||
|
m: Int, n: Int
|
||||||
|
): Unit {
|
||||||
|
val res = ArrayList<Triple<Double, DoubleTensor, DoubleTensor>>(0)
|
||||||
|
val (matrixU, SV) = USV
|
||||||
|
val (matrixS, matrixV) = SV
|
||||||
|
|
||||||
|
for (k in 0 until min(n, m)) {
|
||||||
|
var a = matrix.copy()
|
||||||
|
for ((singularValue, u, v) in res.slice(0 until k)) {
|
||||||
|
val outerProduct = DoubleArray(u.shape[0] * v.shape[0])
|
||||||
|
for (i in 0 until u.shape[0]) {
|
||||||
|
for (j in 0 until v.shape[0]) {
|
||||||
|
outerProduct[i * v.shape[0] + j] = u[i].value() * v[j].value()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
a = a - singularValue.times(DoubleTensor(intArrayOf(u.shape[0], v.shape[0]), outerProduct))
|
||||||
|
}
|
||||||
|
var v: DoubleTensor
|
||||||
|
var u: DoubleTensor
|
||||||
|
var norm: Double
|
||||||
|
if (n > m) {
|
||||||
|
v = svd1d(a)
|
||||||
|
u = matrix.dot(v)
|
||||||
|
norm = DoubleAnalyticTensorAlgebra { (u dot u).sqrt().value() }
|
||||||
|
u = u.times(1.0 / norm)
|
||||||
|
} else {
|
||||||
|
u = svd1d(a)
|
||||||
|
v = matrix.transpose(0, 1).dot(u)
|
||||||
|
norm = DoubleAnalyticTensorAlgebra { (v dot v).sqrt().value() }
|
||||||
|
v = v.times(1.0 / norm)
|
||||||
|
}
|
||||||
|
|
||||||
|
res.add(Triple(norm, u, v))
|
||||||
|
}
|
||||||
|
|
||||||
|
val s = res.map { it.first }.toDoubleArray()
|
||||||
|
val uBuffer = res.map { it.second }.flatMap { it.buffer.array().toList() }.toDoubleArray()
|
||||||
|
val vBuffer = res.map { it.third }.flatMap { it.buffer.array().toList() }.toDoubleArray()
|
||||||
|
uBuffer.copyInto(matrixU.buffer.array())
|
||||||
|
s.copyInto(matrixS.buffer.array())
|
||||||
|
vBuffer.copyInto(matrixV.buffer.array())
|
||||||
|
}
|
||||||
|
@ -124,7 +124,7 @@ class TestDoubleLinearOpsTensorAlgebra {
|
|||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
fun svd1d() = DoubleLinearOpsTensorAlgebra {
|
fun testSVD1D() = DoubleLinearOpsTensorAlgebra {
|
||||||
val tensor2 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
val tensor2 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||||
|
|
||||||
val res = svd1d(tensor2)
|
val res = svd1d(tensor2)
|
||||||
@ -135,7 +135,7 @@ class TestDoubleLinearOpsTensorAlgebra {
|
|||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
fun svd() = DoubleLinearOpsTensorAlgebra {
|
fun testSVD() = DoubleLinearOpsTensorAlgebra {
|
||||||
val epsilon = 1e-10
|
val epsilon = 1e-10
|
||||||
fun test_tensor(tensor: DoubleTensor) {
|
fun test_tensor(tensor: DoubleTensor) {
|
||||||
val svd = tensor.svd()
|
val svd = tensor.svd()
|
||||||
|
Loading…
Reference in New Issue
Block a user