KMP library for tensors #300
@ -77,46 +77,6 @@ public class DoubleLinearOpsTensorAlgebra :
|
||||
return lTensor
|
||||
}
|
||||
|
||||
private fun MutableStructure1D<Double>.dot(other: MutableStructure1D<Double>): Double {
|
||||
var res = 0.0
|
||||
for (i in 0 until size) {
|
||||
res += this[i] * other[i]
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
private fun MutableStructure1D<Double>.l2Norm(): Double {
|
||||
var squareSum = 0.0
|
||||
for (i in 0 until size) {
|
||||
squareSum += this[i] * this[i]
|
||||
}
|
||||
return sqrt(squareSum)
|
||||
}
|
||||
|
||||
fun qrHelper(
|
||||
matrix: MutableStructure2D<Double>,
|
||||
q: MutableStructure2D<Double>,
|
||||
r: MutableStructure2D<Double>
|
||||
) {
|
||||
//todo check square
|
||||
val n = matrix.colNum
|
||||
for (j in 0 until n) {
|
||||
val v = matrix.columns[j]
|
||||
if (j > 0) {
|
||||
for (i in 0 until j) {
|
||||
r[i, j] = q.columns[i].dot(matrix.columns[j])
|
||||
for (k in 0 until n) {
|
||||
v[k] = v[k] - r[i, j] * q.columns[i][k]
|
||||
}
|
||||
}
|
||||
}
|
||||
r[j, j] = v.l2Norm()
|
||||
for (i in 0 until n) {
|
||||
q[i, j] = v[i] / r[j, j]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
override fun DoubleTensor.qr(): Pair<DoubleTensor, DoubleTensor> {
|
||||
checkSquareMatrix(shape)
|
||||
val qTensor = zeroesLike()
|
||||
|
@ -186,3 +186,43 @@ internal inline fun luMatrixInv(
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
internal inline fun MutableStructure1D<Double>.dot(other: MutableStructure1D<Double>): Double {
|
||||
var res = 0.0
|
||||
for (i in 0 until size) {
|
||||
res += this[i] * other[i]
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
internal inline fun MutableStructure1D<Double>.l2Norm(): Double {
|
||||
var squareSum = 0.0
|
||||
for (i in 0 until size) {
|
||||
squareSum += this[i] * this[i]
|
||||
}
|
||||
return sqrt(squareSum)
|
||||
}
|
||||
|
||||
internal inline fun qrHelper(
|
||||
matrix: MutableStructure2D<Double>,
|
||||
q: MutableStructure2D<Double>,
|
||||
r: MutableStructure2D<Double>
|
||||
) {
|
||||
//todo check square
|
||||
val n = matrix.colNum
|
||||
for (j in 0 until n) {
|
||||
val v = matrix.columns[j]
|
||||
if (j > 0) {
|
||||
for (i in 0 until j) {
|
||||
r[i, j] = q.columns[i].dot(matrix.columns[j])
|
||||
for (k in 0 until n) {
|
||||
v[k] = v[k] - r[i, j] * q.columns[i][k]
|
||||
}
|
||||
}
|
||||
}
|
||||
r[j, j] = v.l2Norm()
|
||||
for (i in 0 until n) {
|
||||
q[i, j] = v[i] / r[j, j]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user