README and documentation for the main functions of tensor algebra #297

Merged
AlyaNovikova merged 3 commits from feature/tensor-algebra into feature/tensor-algebra 2021-04-29 20:03:49 +03:00
7 changed files with 365 additions and 16 deletions
Showing only changes of commit 6f5b0f0a03 - Show all commits

View File

@ -230,6 +230,18 @@ One can still use generic algebras though.
> **Maturity**: EXPERIMENTAL > **Maturity**: EXPERIMENTAL
<hr/> <hr/>
* ### [kmath-tensors](kmath-tensors)
>
>
> **Maturity**: PROTOTYPE
>
> **Features:**
> - [tensor algebra](kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/api/TensorAlgebra.kt) : Basic linear algebra operations on tensors (plus, dot, etc.)
> - [tensor algebra with broadcasting](kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/algebras/BroadcastDoubleTensorAlgebra.kt) : Basic linear algebra operations implemented with broadcasting.
> - [linear algebra operations](kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/api/LinearOpsTensorAlgebra.kt) : Advanced linear algebra operations like LU decomposition, SVD, etc.
<hr/>
* ### [kmath-viktor](kmath-viktor) * ### [kmath-viktor](kmath-viktor)
> >
> >

37
kmath-tensors/README.md Normal file
View File

@ -0,0 +1,37 @@
# Module kmath-tensors
Common linear algebra operations on tensors.
- [tensor algebra](src/commonMain/kotlin/space/kscience/kmath/tensors/api/TensorAlgebra.kt) : Basic linear algebra operations on tensors (plus, dot, etc.)
- [tensor algebra with broadcasting](src/commonMain/kotlin/space/kscience/kmath/tensors/core/algebras/BroadcastDoubleTensorAlgebra.kt) : Basic linear algebra operations implemented with broadcasting.
- [linear algebra operations](src/commonMain/kotlin/space/kscience/kmath/tensors/api/LinearOpsTensorAlgebra.kt) : Advanced linear algebra operations like LU decomposition, SVD, etc.
## Artifact:
The Maven coordinates of this project are `space.kscience:kmath-tensors:0.3.0-dev-7`.
**Gradle:**
```gradle
repositories {
maven { url 'https://repo.kotlin.link' }
maven { url 'https://dl.bintray.com/hotkeytlt/maven' }
maven { url "https://dl.bintray.com/kotlin/kotlin-eap" } // include for builds based on kotlin-eap
}
dependencies {
implementation 'space.kscience:kmath-tensors:0.3.0-dev-7'
}
```
**Gradle Kotlin DSL:**
```kotlin
repositories {
maven("https://repo.kotlin.link")
maven("https://dl.bintray.com/kotlin/kotlin-eap") // include for builds based on kotlin-eap
maven("https://dl.bintray.com/hotkeytlt/maven") // required for a
}
dependencies {
implementation("space.kscience:kmath-tensors:0.3.0-dev-7")
}
```

View File

@ -11,6 +11,30 @@ kotlin.sourceSets {
} }
} }
readme { tasks.dokkaHtml {
maturity = ru.mipt.npm.gradle.Maturity.EXPERIMENTAL dependsOn(tasks.build)
}
readme {
maturity = ru.mipt.npm.gradle.Maturity.PROTOTYPE
propertyByTemplate("artifact", rootProject.file("docs/templates/ARTIFACT-TEMPLATE.md"))
feature(
id = "tensor algebra",
description = "Basic linear algebra operations on tensors (plus, dot, etc.)",
ref = "src/commonMain/kotlin/space/kscience/kmath/tensors/api/TensorAlgebra.kt"
)
feature(
id = "tensor algebra with broadcasting",
description = "Basic linear algebra operations implemented with broadcasting.",
ref = "src/commonMain/kotlin/space/kscience/kmath/tensors/core/algebras/BroadcastDoubleTensorAlgebra.kt"
)
feature(
id = "linear algebra operations",
description = "Advanced linear algebra operations like LU decomposition, SVD, etc.",
ref = "src/commonMain/kotlin/space/kscience/kmath/tensors/api/LinearOpsTensorAlgebra.kt"
)
} }

View File

@ -0,0 +1,7 @@
# Module kmath-tensors
Common linear algebra operations on tensors.
${features}
${artifact}

View File

@ -5,33 +5,99 @@
package space.kscience.kmath.tensors.api package space.kscience.kmath.tensors.api
/**
* Common linear algebra operations. Operates on [TensorStructure].
*
* @param T the type of items in the tensors.
*/
public interface LinearOpsTensorAlgebra<T> : public interface LinearOpsTensorAlgebra<T> :
TensorPartialDivisionAlgebra<T> { TensorPartialDivisionAlgebra<T> {
//https://pytorch.org/docs/stable/linalg.html#torch.linalg.det /**
* Computes the determinant of a square matrix input, or of each square matrix in a batched input.
* For more information: https://pytorch.org/docs/stable/linalg.html#torch.linalg.det
*
* @return the determinant.
*/
public fun TensorStructure<T>.det(): TensorStructure<T> public fun TensorStructure<T>.det(): TensorStructure<T>
//https://pytorch.org/docs/stable/linalg.html#torch.linalg.inv /**
* Computes the multiplicative inverse matrix of a square matrix input, or of each square matrix in a batched input.
* Given a square matrix `a`, return the matrix `aInv` satisfying
* ``a.dot(aInv) = aInv.dot(a) = eye(a.shape[0])``.
* For more information: https://pytorch.org/docs/stable/linalg.html#torch.linalg.inv
*
* @return the multiplicative inverse of a matrix.
*/
public fun TensorStructure<T>.inv(): TensorStructure<T> public fun TensorStructure<T>.inv(): TensorStructure<T>
//https://pytorch.org/docs/stable/linalg.html#torch.linalg.cholesky /**
* Cholesky decomposition.
*
* Computes the Cholesky decomposition of a Hermitian (or symmetric for real-valued matrices)
* positive-definite matrix or the Cholesky decompositions for a batch of such matrices.
* Each decomposition has the form:
* Given a tensor `input`, return the tensor `L` satisfying ``input = L * L.H``,
* where L is a lower-triangular matrix and L.H is the conjugate transpose of L,
* which is just a transpose for the case of real-valued input matrices.
* For more information: https://pytorch.org/docs/stable/linalg.html#torch.linalg.cholesky
*
* @return the batch of L matrices.
*/
public fun TensorStructure<T>.cholesky(): TensorStructure<T> public fun TensorStructure<T>.cholesky(): TensorStructure<T>
//https://pytorch.org/docs/stable/linalg.html#torch.linalg.qr /**
* QR decomposition.
*
* Computes the QR decomposition of a matrix or a batch of matrices, and returns a namedtuple `(Q, R)` of tensors.
* Given a tensor `input`, return tensors (Q, R) satisfying ``input = Q * R``,
* with `Q` being an orthogonal matrix or batch of orthogonal matrices
* and `R` being an upper triangular matrix or batch of upper triangular matrices.
* For more information: https://pytorch.org/docs/stable/linalg.html#torch.linalg.qr
*
* @return tuple of Q and R tensors.
*/
public fun TensorStructure<T>.qr(): Pair<TensorStructure<T>, TensorStructure<T>> public fun TensorStructure<T>.qr(): Pair<TensorStructure<T>, TensorStructure<T>>
//https://pytorch.org/docs/stable/generated/torch.lu.html /**
* TODO('Andrew')
* For more information: https://pytorch.org/docs/stable/generated/torch.lu.html
*
* @return ...
*/
public fun TensorStructure<T>.lu(): Pair<TensorStructure<T>, TensorStructure<Int>> public fun TensorStructure<T>.lu(): Pair<TensorStructure<T>, TensorStructure<Int>>
//https://pytorch.org/docs/stable/generated/torch.lu_unpack.html /**
* TODO('Andrew')
* For more information: https://pytorch.org/docs/stable/generated/torch.lu_unpack.html
*
* @param luTensor ...
* @param pivotsTensor ...
* @return ...
*/
public fun luPivot(luTensor: TensorStructure<T>, pivotsTensor: TensorStructure<Int>): public fun luPivot(luTensor: TensorStructure<T>, pivotsTensor: TensorStructure<Int>):
Triple<TensorStructure<T>, TensorStructure<T>, TensorStructure<T>> Triple<TensorStructure<T>, TensorStructure<T>, TensorStructure<T>>
//https://pytorch.org/docs/stable/linalg.html#torch.linalg.svd /**
* Singular Value Decomposition.
*
* Computes the singular value decomposition of either a matrix or batch of matrices `input`.
* The singular value decomposition is represented as a namedtuple `(U, S, V)`,
* such that ``input = U.dot(diagonalEmbedding(S).dot(V.T))``.
* If input is a batch of tensors, then U, S, and Vh are also batched with the same batch dimensions as input.
* For more information: https://pytorch.org/docs/stable/linalg.html#torch.linalg.svd
*
* @return the determinant.
*/
public fun TensorStructure<T>.svd(): Triple<TensorStructure<T>, TensorStructure<T>, TensorStructure<T>> public fun TensorStructure<T>.svd(): Triple<TensorStructure<T>, TensorStructure<T>, TensorStructure<T>>
//https://pytorch.org/docs/stable/generated/torch.symeig.html /**
* Returns eigenvalues and eigenvectors of a real symmetric matrix input or a batch of real symmetric matrices,
* represented by a namedtuple (eigenvalues, eigenvectors).
* For more information: https://pytorch.org/docs/stable/generated/torch.symeig.html
*
* @return a namedtuple (eigenvalues, eigenvectors)
*/
public fun TensorStructure<T>.symEig(): Pair<TensorStructure<T>, TensorStructure<T>> public fun TensorStructure<T>.symEig(): Pair<TensorStructure<T>, TensorStructure<T>>
} }

View File

@ -5,44 +5,243 @@
package space.kscience.kmath.tensors.api package space.kscience.kmath.tensors.api
// https://proofwiki.org/wiki/Definition:Algebra_over_Ring /**
* Basic linear algebra operations on [TensorStructure].
* For more information: https://proofwiki.org/wiki/Definition:Algebra_over_Ring
*
* @param T the type of items in the tensors.
*/
public interface TensorAlgebra<T> { public interface TensorAlgebra<T> {
/**
* Returns a single tensor value of unit dimension. The tensor shape must be equal to [1].
*
* @return the value of a scalar tensor.
*/
public fun TensorStructure<T>.value(): T public fun TensorStructure<T>.value(): T
/**
* Each element of the tensor [other] is added to this value.
* The resulting tensor is returned.
*
* @param other tensor to be added.
* @return the sum of this value and tensor [other].
*/
public operator fun T.plus(other: TensorStructure<T>): TensorStructure<T> public operator fun T.plus(other: TensorStructure<T>): TensorStructure<T>
/**
* Adds the scalar [value] to each element of this tensor and returns a new resulting tensor.
*
* @param value the number to be added to each element of this tensor.
* @return the sum of this tensor and [value].
*/
public operator fun TensorStructure<T>.plus(value: T): TensorStructure<T> public operator fun TensorStructure<T>.plus(value: T): TensorStructure<T>
/**
* Each element of the tensor [other] is added to each element of this tensor.
* The resulting tensor is returned.
*
* @param other tensor to be added.
* @return the sum of this tensor and [other].
*/
public operator fun TensorStructure<T>.plus(other: TensorStructure<T>): TensorStructure<T> public operator fun TensorStructure<T>.plus(other: TensorStructure<T>): TensorStructure<T>
/**
* Adds the scalar [value] to each element of this tensor.
*
* @param value the number to be added to each element of this tensor.
*/
public operator fun TensorStructure<T>.plusAssign(value: T): Unit public operator fun TensorStructure<T>.plusAssign(value: T): Unit
/**
* Each element of the tensor [other] is added to each element of this tensor.
*
* @param other tensor to be added.
*/
public operator fun TensorStructure<T>.plusAssign(other: TensorStructure<T>): Unit public operator fun TensorStructure<T>.plusAssign(other: TensorStructure<T>): Unit
/**
* Each element of the tensor [other] is subtracted from this value.
* The resulting tensor is returned.
*
* @param other tensor to be subtracted.
* @return the difference between this value and tensor [other].
*/
public operator fun T.minus(other: TensorStructure<T>): TensorStructure<T> public operator fun T.minus(other: TensorStructure<T>): TensorStructure<T>
/**
* Subtracts the scalar [value] from each element of this tensor and returns a new resulting tensor.
*
* @param value the number to be subtracted from each element of this tensor.
* @return the difference between this tensor and [value].
*/
public operator fun TensorStructure<T>.minus(value: T): TensorStructure<T> public operator fun TensorStructure<T>.minus(value: T): TensorStructure<T>
/**
* Each element of the tensor [other] is subtracted from each element of this tensor.
* The resulting tensor is returned.
*
* @param other tensor to be subtracted.
* @return the difference between this tensor and [other].
*/
public operator fun TensorStructure<T>.minus(other: TensorStructure<T>): TensorStructure<T> public operator fun TensorStructure<T>.minus(other: TensorStructure<T>): TensorStructure<T>
/**
* Subtracts the scalar [value] from each element of this tensor.
*
* @param value the number to be subtracted from each element of this tensor.
*/
public operator fun TensorStructure<T>.minusAssign(value: T): Unit public operator fun TensorStructure<T>.minusAssign(value: T): Unit
/**
* Each element of the tensor [other] is subtracted from each element of this tensor.
*
* @param other tensor to be subtracted.
*/
public operator fun TensorStructure<T>.minusAssign(other: TensorStructure<T>): Unit public operator fun TensorStructure<T>.minusAssign(other: TensorStructure<T>): Unit
/**
* Each element of the tensor [other] is multiplied by this value.
* The resulting tensor is returned.
*
* @param other tensor to be multiplied.
* @return the product of this value and tensor [other].
*/
public operator fun T.times(other: TensorStructure<T>): TensorStructure<T> public operator fun T.times(other: TensorStructure<T>): TensorStructure<T>
/**
* Multiplies the scalar [value] by each element of this tensor and returns a new resulting tensor.
*
* @param value the number to be multiplied by each element of this tensor.
* @return the product of this tensor and [value].
*/
public operator fun TensorStructure<T>.times(value: T): TensorStructure<T> public operator fun TensorStructure<T>.times(value: T): TensorStructure<T>
/**
* Each element of the tensor [other] is multiplied by each element of this tensor.
* The resulting tensor is returned.
*
* @param other tensor to be multiplied.
* @return the product of this tensor and [other].
*/
public operator fun TensorStructure<T>.times(other: TensorStructure<T>): TensorStructure<T> public operator fun TensorStructure<T>.times(other: TensorStructure<T>): TensorStructure<T>
/**
* Multiplies the scalar [value] by each element of this tensor.
*
* @param value the number to be multiplied by each element of this tensor.
*/
public operator fun TensorStructure<T>.timesAssign(value: T): Unit public operator fun TensorStructure<T>.timesAssign(value: T): Unit
/**
* Each element of the tensor [other] is multiplied by each element of this tensor.
*
* @param other tensor to be multiplied.
*/
public operator fun TensorStructure<T>.timesAssign(other: TensorStructure<T>): Unit public operator fun TensorStructure<T>.timesAssign(other: TensorStructure<T>): Unit
/**
* Numerical negative, element-wise.
*
* @return tensor - negation of the original tensor.
*/
public operator fun TensorStructure<T>.unaryMinus(): TensorStructure<T> public operator fun TensorStructure<T>.unaryMinus(): TensorStructure<T>
//https://pytorch.org/cppdocs/notes/tensor_indexing.html /**
* Returns the tensor at index i
* For more information: https://pytorch.org/cppdocs/notes/tensor_indexing.html
*
* @param i index of the extractable tensor
* @return subtensor of the original tensor with index [i]
*/
public operator fun TensorStructure<T>.get(i: Int): TensorStructure<T> public operator fun TensorStructure<T>.get(i: Int): TensorStructure<T>
//https://pytorch.org/docs/stable/generated/torch.transpose.html /**
* Returns a tensor that is a transposed version of this tensor. The given dimensions [i] and [j] are swapped.
* For more information: https://pytorch.org/docs/stable/generated/torch.transpose.html
*
* @param i the first dimension to be transposed
* @param j the second dimension to be transposed
* @return transposed tensor
*/
public fun TensorStructure<T>.transpose(i: Int = -2, j: Int = -1): TensorStructure<T> public fun TensorStructure<T>.transpose(i: Int = -2, j: Int = -1): TensorStructure<T>
//https://pytorch.org/docs/stable/tensor_view.html /**
* Returns a new tensor with the same data as the self tensor but of a different shape.
* The returned tensor shares the same data and must have the same number of elements, but may have a different size
* For more information: https://pytorch.org/docs/stable/tensor_view.html
*
* @param shape the desired size
* @return tensor with new shape
*/
public fun TensorStructure<T>.view(shape: IntArray): TensorStructure<T> public fun TensorStructure<T>.view(shape: IntArray): TensorStructure<T>
/**
* View this tensor as the same size as [other].
* ``this.viewAs(other) is equivalent to this.view(other.shape)``.
* For more information: https://pytorch.org/cppdocs/notes/tensor_indexing.html
*
* @param other the result tensor has the same size as other.
* @return the result tensor with the same size as other.
*/
public fun TensorStructure<T>.viewAs(other: TensorStructure<T>): TensorStructure<T> public fun TensorStructure<T>.viewAs(other: TensorStructure<T>): TensorStructure<T>
//https://pytorch.org/docs/stable/generated/torch.matmul.html /**
* Matrix product of two tensors.
*
* The behavior depends on the dimensionality of the tensors as follows:
* 1. If both tensors are 1-dimensional, the dot product (scalar) is returned.
*
* 2. If both arguments are 2-dimensional, the matrix-matrix product is returned.
*
* 3. If the first argument is 1-dimensional and the second argument is 2-dimensional,
* a 1 is prepended to its dimension for the purpose of the matrix multiply.
* After the matrix multiply, the prepended dimension is removed.
*
* 4. If the first argument is 2-dimensional and the second argument is 1-dimensional,
* the matrix-vector product is returned.
*
* 5. If both arguments are at least 1-dimensional and at least one argument is N-dimensional (where N > 2),
* then a batched matrix multiply is returned. If the first argument is 1-dimensional,
* a 1 is prepended to its dimension for the purpose of the batched matrix multiply and removed after.
* If the second argument is 1-dimensional, a 1 is appended to its dimension for the purpose of the batched matrix
* multiple and removed after.
* The non-matrix (i.e. batch) dimensions are broadcasted (and thus must be broadcastable).
* For example, if `input` is a (j \times 1 \times n \times n) tensor and `other` is a
* (k \times n \times n) tensor, out will be a (j \times k \times n \times n) tensor.
*
* For more information: https://pytorch.org/docs/stable/generated/torch.matmul.html
*
* @param other tensor to be multiplied
* @return mathematical product of two tensors
*/
public infix fun TensorStructure<T>.dot(other: TensorStructure<T>): TensorStructure<T> public infix fun TensorStructure<T>.dot(other: TensorStructure<T>): TensorStructure<T>
//https://pytorch.org/docs/stable/generated/torch.diag_embed.html /**
* Creates a tensor whose diagonals of certain 2D planes (specified by [dim1] and [dim2])
* are filled by [diagonalEntries].
* To facilitate creating batched diagonal matrices,
* the 2D planes formed by the last two dimensions of the returned tensor are chosen by default.
*
* The argument [offset] controls which diagonal to consider:
* 1. If [offset] = 0, it is the main diagonal.
* 2. If [offset] > 0, it is above the main diagonal.
* 3. If [offset] < 0, it is below the main diagonal.
*
* The size of the new matrix will be calculated
* to make the specified diagonal of the size of the last input dimension.
* For more information: https://pytorch.org/docs/stable/generated/torch.diag_embed.html
*
* @param diagonalEntries - the input tensor. Must be at least 1-dimensional.
* @param offset - which diagonal to consider. Default: 0 (main diagonal).
* @param dim1 - first dimension with respect to which to take diagonal. Default: -2.
* @param dim2 - second dimension with respect to which to take diagonal. Default: -1.
*
* @return tensor whose diagonals of certain 2D planes (specified by [dim1] and [dim2])
* are filled by [diagonalEntries]
*/
public fun diagonalEmbedding( public fun diagonalEmbedding(
diagonalEntries: TensorStructure<T>, diagonalEntries: TensorStructure<T>,
offset: Int = 0, offset: Int = 0,

View File

@ -10,6 +10,10 @@ import space.kscience.kmath.tensors.core.*
import space.kscience.kmath.tensors.core.broadcastTensors import space.kscience.kmath.tensors.core.broadcastTensors
import space.kscience.kmath.tensors.core.broadcastTo import space.kscience.kmath.tensors.core.broadcastTo
/**
* Basic linear algebra operations implemented with broadcasting.
* For more information: https://pytorch.org/docs/stable/notes/broadcasting.html
*/
public class BroadcastDoubleTensorAlgebra : DoubleTensorAlgebra() { public class BroadcastDoubleTensorAlgebra : DoubleTensorAlgebra() {
override fun TensorStructure<Double>.plus(other: TensorStructure<Double>): DoubleTensor { override fun TensorStructure<Double>.plus(other: TensorStructure<Double>): DoubleTensor {