example with LUP #296

Merged
AndreiKingsley merged 1 commits from andrew into feature/tensor-algebra 2021-04-28 19:07:21 +03:00
Showing only changes of commit a0e9180db6 - Show all commits

View File

@ -0,0 +1,97 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.algebras.DoubleLinearOpsTensorAlgebra
// solving linear system with LUP decomposition
fun main () {
// work in context with linear operations
DoubleLinearOpsTensorAlgebra {
// set true value of x
val trueX = fromArray(
intArrayOf(4),
doubleArrayOf(-2.0, 1.5, 6.8, -2.4)
)
// and A matrix
val a = fromArray(
intArrayOf(4, 4),
doubleArrayOf(
0.5, 10.5, 4.5, 1.0,
8.5, 0.9, 12.8, 0.1,
5.56, 9.19, 7.62, 5.45,
1.0, 2.0, -3.0, -2.5
)
)
// calculate y value
val b = a dot trueX
// check out A and b
println("A:\n$a")
println("b:\n$b")
// solve `Ax = b` system using LUP decomposition
// get P, L, U such that PA = LU
val (lu, pivots) = a.lu()
val (p, l, u) = luPivot(lu, pivots)
// check that P is permutation matrix
println("P:\n$p")
// L is lower triangular matrix and U is upper triangular matrix
println("L:\n$l")
println("U:\n$u")
// and PA = LU
println("PA:\n${p dot a}")
println("LU:\n${l dot u}")
/* Ax = b;
PAx = Pb;
LUx = Pb;
let y = Ux, then
Ly = Pb -- this system can be easily solved, since the matrix L is lower triangular;
Ux = y can be solved the same way, since the matrix L is upper triangular
*/
// this function returns solution x of a system lx = b, l should be lower triangular
fun solveLT(l: DoubleTensor, b: DoubleTensor): DoubleTensor {
val n = l.shape[0]
val x = zeros(intArrayOf(n))
for (i in 0 until n){
x[intArrayOf(i)] = (b[intArrayOf(i)] - l[i].dot(x).value()) / l[intArrayOf(i, i)]
}
return x
}
val y = solveLT(l, p dot b)
// solveLT(l, b) function can be easily adapted for upper triangular matrix by the permutation matrix revMat
// create it by placing ones on side diagonal
val revMat = u.zeroesLike()
val n = revMat.shape[0]
for (i in 0 until n) {
revMat[intArrayOf(i, n - 1 - i)] = 1.0
}
// solution of system ux = b, u should be upper triangular
fun solveUT(u: DoubleTensor, b: DoubleTensor): DoubleTensor = revMat dot solveLT(
revMat dot u dot revMat, revMat dot b
)
val x = solveUT(u, y)
println("True x:\n$trueX")
println("x founded with LU method:\n$x")
}
}