Dev #280
@ -103,6 +103,14 @@ benchmark {
|
||||
iterationTimeUnit = "ms" // time unity for iterationTime, default is seconds
|
||||
include("MatrixInverseBenchmark")
|
||||
}
|
||||
|
||||
configurations.register("bigInt") {
|
||||
warmups = 1 // number of warmup iterations
|
||||
iterations = 3 // number of iterations
|
||||
iterationTime = 500 // time in seconds per iteration
|
||||
iterationTimeUnit = "ms" // time unity for iterationTime, default is seconds
|
||||
include("BigIntBenchmark")
|
||||
}
|
||||
}
|
||||
|
||||
kotlin.sourceSets.all {
|
||||
|
@ -0,0 +1,32 @@
|
||||
package space.kscience.kmath.benchmarks
|
||||
|
||||
import kotlinx.benchmark.Blackhole
|
||||
import org.openjdk.jmh.annotations.Benchmark
|
||||
import org.openjdk.jmh.annotations.Scope
|
||||
import org.openjdk.jmh.annotations.State
|
||||
import space.kscience.kmath.operations.BigIntField
|
||||
import space.kscience.kmath.operations.JBigIntegerField
|
||||
import space.kscience.kmath.operations.invoke
|
||||
|
||||
@State(Scope.Benchmark)
|
||||
internal class BigIntBenchmark {
|
||||
@Benchmark
|
||||
fun kmAdd(blackhole: Blackhole) = BigIntField{
|
||||
blackhole.consume(one + number(Int.MAX_VALUE))
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun jvmAdd(blackhole: Blackhole) = JBigIntegerField{
|
||||
blackhole.consume(one + number(Int.MAX_VALUE))
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun kmMultiply(blackhole: Blackhole) = BigIntField{
|
||||
blackhole.consume(number(Int.MAX_VALUE)* number(Int.MAX_VALUE))
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun jvmMultiply(blackhole: Blackhole) = JBigIntegerField{
|
||||
blackhole.consume(number(Int.MAX_VALUE)* number(Int.MAX_VALUE))
|
||||
}
|
||||
}
|
@ -9,14 +9,14 @@ import space.kscience.kmath.structures.DoubleBuffer
|
||||
import kotlin.reflect.KClass
|
||||
import kotlin.reflect.cast
|
||||
|
||||
public inline class CMMatrix(public val origin: RealMatrix) : Matrix<Double> {
|
||||
public class CMMatrix(public val origin: RealMatrix) : Matrix<Double> {
|
||||
public override val rowNum: Int get() = origin.rowDimension
|
||||
public override val colNum: Int get() = origin.columnDimension
|
||||
|
||||
public override operator fun get(i: Int, j: Int): Double = origin.getEntry(i, j)
|
||||
}
|
||||
|
||||
public inline class CMVector(public val origin: RealVector) : Point<Double> {
|
||||
public class CMVector(public val origin: RealVector) : Point<Double> {
|
||||
public override val size: Int get() = origin.dimension
|
||||
|
||||
public override operator fun get(index: Int): Double = origin.getEntry(index)
|
||||
|
@ -70,7 +70,7 @@ class NumberNDFieldTest {
|
||||
|
||||
object L2Norm : Norm<StructureND<out Number>, Double> {
|
||||
override fun norm(arg: StructureND<out Number>): Double =
|
||||
kotlin.math.sqrt(arg.elements().sumByDouble { it.second.toDouble() })
|
||||
kotlin.math.sqrt(arg.elements().sumOf { it.second.toDouble() })
|
||||
}
|
||||
|
||||
@Test
|
||||
|
@ -9,7 +9,7 @@ import space.kscience.kmath.linear.Matrix
|
||||
* @property origin the underlying [SimpleMatrix].
|
||||
* @author Iaroslav Postovalov
|
||||
*/
|
||||
public inline class EjmlMatrix(public val origin: SimpleMatrix) : Matrix<Double> {
|
||||
public class EjmlMatrix(public val origin: SimpleMatrix) : Matrix<Double> {
|
||||
public override val rowNum: Int get() = origin.numRows()
|
||||
public override val colNum: Int get() = origin.numCols()
|
||||
|
||||
|
@ -51,6 +51,9 @@ public class GaussIntegrator<T : Comparable<T>> internal constructor(
|
||||
|
||||
public companion object {
|
||||
|
||||
/**
|
||||
* Integrate given [function] in a [range] with Gauss-Legendre quadrature with [numPoints] points.
|
||||
*/
|
||||
public fun integrate(
|
||||
range: ClosedRange<Double>,
|
||||
numPoints: Int = 100,
|
||||
@ -63,5 +66,20 @@ public class GaussIntegrator<T : Comparable<T>> internal constructor(
|
||||
UnivariateIntegrand(function, IntegrationRange(range))
|
||||
)
|
||||
}
|
||||
|
||||
// public fun integrate(
|
||||
// borders: List<Double>,
|
||||
// numPoints: Int = 10,
|
||||
// ruleFactory: GaussIntegratorRuleFactory<Double> = GaussLegendreDoubleRuleFactory,
|
||||
// features: List<IntegrandFeature> = emptyList(),
|
||||
// function: (Double) -> Double,
|
||||
// ): UnivariateIntegrand<Double> {
|
||||
// require(borders.indices.all { i -> i == 0 || borders[i] > borders[i - 1] }){"Borders are not sorted"}
|
||||
//
|
||||
// val (points, weights) = ruleFactory.build(numPoints, range)
|
||||
// return GaussIntegrator(DoubleField, points, weights).integrate(
|
||||
// UnivariateIntegrand(function, IntegrationRange(range))
|
||||
// )
|
||||
// }
|
||||
}
|
||||
}
|
@ -10,6 +10,7 @@ import kotlin.native.concurrent.ThreadLocal
|
||||
public interface GaussIntegratorRuleFactory<T : Any> {
|
||||
public val algebra: Field<T>
|
||||
public val bufferFactory: BufferFactory<T>
|
||||
|
||||
public fun build(numPoints: Int): Pair<Buffer<T>, Buffer<T>>
|
||||
|
||||
public companion object {
|
||||
@ -20,6 +21,7 @@ public interface GaussIntegratorRuleFactory<T : Any> {
|
||||
|
||||
/**
|
||||
* Create an integration rule by scaling existing normalized rule
|
||||
*
|
||||
*/
|
||||
public fun <T : Comparable<T>> GaussIntegratorRuleFactory<T>.build(
|
||||
numPoints: Int,
|
||||
@ -45,8 +47,8 @@ public fun <T : Comparable<T>> GaussIntegratorRuleFactory<T>.build(
|
||||
/**
|
||||
* Gauss integrator rule based ont Legendre polynomials. All rules are normalized to
|
||||
*
|
||||
* The code is based on Apache Commons Math source code version 3.6.1
|
||||
* https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/analysis/integration/gauss/LegendreRuleFactory.html
|
||||
* The code is based on [Apache Commons Math source code version 3.6.1](https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/analysis/integration/gauss/LegendreRuleFactory.html)
|
||||
*
|
||||
*/
|
||||
@ThreadLocal
|
||||
public object GaussLegendreDoubleRuleFactory : GaussIntegratorRuleFactory<Double> {
|
||||
@ -96,12 +98,12 @@ public object GaussLegendreDoubleRuleFactory : GaussIntegratorRuleFactory<Double
|
||||
// P[j](b)
|
||||
var pb = b
|
||||
for (j in 1 until numPoints) {
|
||||
val two_j_p_1 = 2 * j + 1
|
||||
val j_p_1 = j + 1
|
||||
val twoJP1 = 2 * j + 1
|
||||
val jP1 = j + 1
|
||||
// P[j+1](a)
|
||||
val ppa = (two_j_p_1 * a * pa - j * pma) / j_p_1
|
||||
val ppa = (twoJP1 * a * pa - j * pma) / jP1
|
||||
// P[j+1](b)
|
||||
val ppb = (two_j_p_1 * b * pb - j * pmb) / j_p_1
|
||||
val ppb = (twoJP1 * b * pb - j * pmb) / jP1
|
||||
pma = pa
|
||||
pa = ppa
|
||||
pmb = pb
|
||||
@ -129,11 +131,8 @@ public object GaussLegendreDoubleRuleFactory : GaussIntegratorRuleFactory<Double
|
||||
if (!done) {
|
||||
if (pa * pc <= 0) {
|
||||
b = c
|
||||
pmb = pmc
|
||||
pb = pc
|
||||
} else {
|
||||
a = c
|
||||
pma = pmc
|
||||
pa = pc
|
||||
}
|
||||
c = 0.5 * (a + b)
|
||||
@ -147,7 +146,7 @@ public object GaussLegendreDoubleRuleFactory : GaussIntegratorRuleFactory<Double
|
||||
points[idx] = -c
|
||||
weights[idx] = w
|
||||
}
|
||||
// If "numberOfPoints" is odd, 0 is a root.
|
||||
// If "numPoints" is odd, 0 is a root.
|
||||
// Note: as written, the test for oddness will work for negative
|
||||
// integers too (although it is not necessary here), preventing
|
||||
// a FindBugs warning.
|
||||
|
@ -38,7 +38,7 @@ internal class MultivariateHistogramTest {
|
||||
put(nextDouble(), nextDouble(), nextDouble())
|
||||
}
|
||||
}
|
||||
assertEquals(n, histogram.bins.sumBy { it.value.toInt() })
|
||||
assertEquals(n, histogram.bins.sumOf { it.value.toInt() })
|
||||
}
|
||||
|
||||
@Test
|
||||
|
@ -163,7 +163,7 @@ internal object InternalGamma {
|
||||
}
|
||||
|
||||
private fun lanczos(x: Double): Double =
|
||||
(LANCZOS.size - 1 downTo 1).sumByDouble { LANCZOS[it] / (x + it) } + LANCZOS[0]
|
||||
(LANCZOS.size - 1 downTo 1).sumOf { LANCZOS[it] / (x + it) } + LANCZOS[0]
|
||||
|
||||
private fun invGamma1pm1(x: Double): Double {
|
||||
require(x >= -0.5)
|
||||
|
@ -21,7 +21,7 @@ internal object InternalUtils {
|
||||
fun validateProbabilities(probabilities: DoubleArray?): Double {
|
||||
require(!(probabilities == null || probabilities.isEmpty())) { "Probabilities must not be empty." }
|
||||
|
||||
val sumProb = probabilities.sumByDouble { prob ->
|
||||
val sumProb = probabilities.sumOf { prob ->
|
||||
require(!(prob < 0 || prob.isInfinite() || prob.isNaN())) { "Invalid probability: $prob" }
|
||||
prob
|
||||
}
|
||||
|
@ -40,7 +40,7 @@ public interface NoDerivFunctionOptimization<T : Any> : Optimization<T> {
|
||||
require(y.size == yErr.size) { "Y and yErr buffer should of the same size" }
|
||||
|
||||
return Expression { arguments ->
|
||||
x.indices.sumByDouble {
|
||||
x.indices.sumOf {
|
||||
val xValue = x[it]
|
||||
val yValue = y[it]
|
||||
val yErrValue = yErr[it]
|
||||
|
@ -32,7 +32,7 @@ public class RandomSourceGenerator internal constructor(public val source: Rando
|
||||
*
|
||||
* @property generator the underlying [RandomGenerator] object.
|
||||
*/
|
||||
public inline class RandomGeneratorProvider(public val generator: RandomGenerator) : UniformRandomProvider {
|
||||
public class RandomGeneratorProvider(public val generator: RandomGenerator) : UniformRandomProvider {
|
||||
/**
|
||||
* Generates a [Boolean] value.
|
||||
*
|
||||
|
@ -4,7 +4,7 @@ import org.jetbrains.bio.viktor.F64FlatArray
|
||||
import space.kscience.kmath.structures.MutableBuffer
|
||||
|
||||
@Suppress("NOTHING_TO_INLINE", "OVERRIDE_BY_INLINE")
|
||||
public inline class ViktorBuffer(public val flatArray: F64FlatArray) : MutableBuffer<Double> {
|
||||
public class ViktorBuffer(public val flatArray: F64FlatArray) : MutableBuffer<Double> {
|
||||
public override val size: Int
|
||||
get() = flatArray.size
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user