Dev #280
@ -1,11 +1,8 @@
|
||||
package kscience.kmath.commons.prob
|
||||
package kscience.kmath.stat
|
||||
|
||||
import kotlinx.coroutines.Dispatchers
|
||||
import kotlinx.coroutines.async
|
||||
import kotlinx.coroutines.runBlocking
|
||||
import kscience.kmath.stat.RandomGenerator
|
||||
import kscience.kmath.stat.blocking
|
||||
import kscience.kmath.stat.fromSource
|
||||
import kscience.kmath.stat.samplers.GaussianSampler
|
||||
import org.apache.commons.rng.simple.RandomSource
|
||||
import java.time.Duration
|
@ -1,4 +1,4 @@
|
||||
package kscience.kmath.commons.prob
|
||||
package kscience.kmath.stat
|
||||
|
||||
import kotlinx.coroutines.runBlocking
|
||||
import kscience.kmath.chains.Chain
|
@ -9,6 +9,9 @@ import kscience.kmath.stat.samplers.NormalizedGaussianSampler
|
||||
import kscience.kmath.stat.samplers.ZigguratNormalizedGaussianSampler
|
||||
import kotlin.math.*
|
||||
|
||||
/**
|
||||
* Implements [UnivariateDistribution] for the normal (gaussian) distribution.
|
||||
*/
|
||||
public inline class NormalDistribution(public val sampler: GaussianSampler) : UnivariateDistribution<Double> {
|
||||
public constructor(
|
||||
mean: Double,
|
||||
|
@ -2,6 +2,10 @@ package kscience.kmath.stat.internal
|
||||
|
||||
import kotlin.math.abs
|
||||
|
||||
/**
|
||||
* Based on Commons Math implementation.
|
||||
* See [https://commons.apache.org/proper/commons-math/javadocs/api-3.3/org/apache/commons/math3/special/Erf.html].
|
||||
*/
|
||||
internal object InternalErf {
|
||||
fun erfc(x: Double): Double {
|
||||
if (abs(x) > 40) return if (x > 0) 0.0 else 2.0
|
||||
|
@ -12,7 +12,7 @@ import kotlin.math.pow
|
||||
* Sampling from an [exponential distribution](http://mathworld.wolfram.com/ExponentialDistribution.html).
|
||||
*
|
||||
* Based on Commons RNG implementation.
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/AhrensDieterExponentialSampler.html
|
||||
* See [https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/AhrensDieterExponentialSampler.html].
|
||||
*/
|
||||
public class AhrensDieterExponentialSampler private constructor(public val mean: Double) : Sampler<Double> {
|
||||
public override fun sample(generator: RandomGenerator): Chain<Double> = generator.chain {
|
||||
|
@ -15,7 +15,8 @@ import kotlin.math.*
|
||||
* Marsaglia and Tsang, A Simple Method for Generating Gamma Variables. ACM Transactions on Mathematical Software, Volume 26 Issue 3, September, 2000.
|
||||
*
|
||||
* Based on Commons RNG implementation.
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/AhrensDieterMarsagliaTsangGammaSampler.html
|
||||
*
|
||||
* See [https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/AhrensDieterMarsagliaTsangGammaSampler.html].
|
||||
*/
|
||||
public class AhrensDieterMarsagliaTsangGammaSampler private constructor(
|
||||
alpha: Double,
|
||||
|
@ -34,7 +34,7 @@ import kotlin.math.min
|
||||
* that exploit the power of 2.
|
||||
*
|
||||
* Based on Commons RNG implementation.
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/AliasMethodDiscreteSampler.html
|
||||
* See [https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/AliasMethodDiscreteSampler.html].
|
||||
*/
|
||||
public open class AliasMethodDiscreteSampler private constructor(
|
||||
// Deliberate direct storage of input arrays
|
||||
|
@ -11,7 +11,7 @@ import kotlin.math.*
|
||||
* distribution.
|
||||
*
|
||||
* Based on Commons RNG implementation.
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/BoxMullerNormalizedGaussianSampler.html
|
||||
* See [https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/BoxMullerNormalizedGaussianSampler.html].
|
||||
*/
|
||||
public class BoxMullerNormalizedGaussianSampler private constructor() : NormalizedGaussianSampler, Sampler<Double> {
|
||||
private var nextGaussian: Double = Double.NaN
|
||||
|
@ -9,7 +9,7 @@ import kscience.kmath.stat.Sampler
|
||||
* Sampling from a Gaussian distribution with given mean and standard deviation.
|
||||
*
|
||||
* Based on Commons RNG implementation.
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/GaussianSampler.html
|
||||
* See [https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/GaussianSampler.html].
|
||||
*
|
||||
* @property mean the mean of the distribution.
|
||||
* @property standardDeviation the variance of the distribution.
|
||||
|
@ -16,7 +16,7 @@ import kotlin.math.exp
|
||||
* Sampling uses 1 call to UniformRandomProvider.nextDouble(). This method provides an alternative to the SmallMeanPoissonSampler for slow generators of double.
|
||||
*
|
||||
* Based on Commons RNG implementation.
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/KempSmallMeanPoissonSampler.html
|
||||
* See [https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/KempSmallMeanPoissonSampler.html].
|
||||
*/
|
||||
public class KempSmallMeanPoissonSampler private constructor(
|
||||
private val p0: Double,
|
||||
|
@ -18,7 +18,7 @@ import kotlin.math.*
|
||||
* This sampler is suitable for mean >= 40.
|
||||
*
|
||||
* Based on Commons RNG implementation.
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/LargeMeanPoissonSampler.html
|
||||
* See [https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/LargeMeanPoissonSampler.html].
|
||||
*/
|
||||
public class LargeMeanPoissonSampler private constructor(public val mean: Double) : Sampler<Int> {
|
||||
private val exponential: Sampler<Double> = AhrensDieterExponentialSampler.of(1.0)
|
||||
|
@ -13,7 +13,7 @@ import kotlin.math.sqrt
|
||||
* [BoxMullerNormalizedGaussianSampler].
|
||||
*
|
||||
* Based on Commons RNG implementation.
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/MarsagliaNormalizedGaussianSampler.html
|
||||
* See [https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/MarsagliaNormalizedGaussianSampler.html]
|
||||
*/
|
||||
public class MarsagliaNormalizedGaussianSampler private constructor() : NormalizedGaussianSampler, Sampler<Double> {
|
||||
private var nextGaussian = Double.NaN
|
||||
|
@ -14,7 +14,7 @@ import kscience.kmath.stat.Sampler
|
||||
* Devroye, Luc. (1981). The Computer Generation of Poisson Random Variables Computing vol. 26 pp. 197-207.
|
||||
*
|
||||
* Based on Commons RNG implementation.
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/PoissonSampler.html
|
||||
* See [https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/PoissonSampler.html].
|
||||
*/
|
||||
public class PoissonSampler private constructor(mean: Double) : Sampler<Int> {
|
||||
private val poissonSamplerDelegate: Sampler<Int> = of(mean)
|
||||
|
@ -17,7 +17,7 @@ import kotlin.math.exp
|
||||
*
|
||||
* Based on Commons RNG implementation.
|
||||
*
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/SmallMeanPoissonSampler.html
|
||||
* See [https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/SmallMeanPoissonSampler.html].
|
||||
*/
|
||||
public class SmallMeanPoissonSampler private constructor(mean: Double) : Sampler<Int> {
|
||||
private val p0: Double = exp(-mean)
|
||||
|
@ -12,7 +12,7 @@ import kotlin.math.*
|
||||
* implementation has been adapted from the C code provided therein.
|
||||
*
|
||||
* Based on Commons RNG implementation.
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/ZigguratNormalizedGaussianSampler.html
|
||||
* See [https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/ZigguratNormalizedGaussianSampler.html].
|
||||
*/
|
||||
public class ZigguratNormalizedGaussianSampler private constructor() :
|
||||
NormalizedGaussianSampler, Sampler<Double> {
|
||||
|
Loading…
Reference in New Issue
Block a user