Dev #194

Merged
altavir merged 266 commits from dev into master 2021-01-20 17:32:32 +03:00
3 changed files with 124 additions and 2 deletions
Showing only changes of commit 91cb95544c - Show all commits

View File

@ -36,7 +36,7 @@ public class EjmlMatrix(public val origin: SimpleMatrix, features: Set<MatrixFea
Triple( Triple(
EjmlMatrix(SimpleMatrix(ludecompositionF64.getRowPivot(null))), EjmlMatrix(SimpleMatrix(ludecompositionF64.getRowPivot(null))),
EjmlMatrix(SimpleMatrix(ludecompositionF64.getLower(null))), EjmlMatrix(SimpleMatrix(ludecompositionF64.getLower(null))),
EjmlMatrix(SimpleMatrix(ludecompositionF64.getUpper(null))) EjmlMatrix(SimpleMatrix(ludecompositionF64.getUpper(null))),
) )
} }
@ -51,7 +51,7 @@ public class EjmlMatrix(public val origin: SimpleMatrix, features: Set<MatrixFea
} }
) union features.orEmpty() ) union features.orEmpty()
public override fun suggestFeature(vararg features: MatrixFeature): FeaturedMatrix<Double> = public override fun suggestFeature(vararg features: MatrixFeature): EjmlMatrix =
EjmlMatrix(origin, this.features + features) EjmlMatrix(origin, this.features + features)
public override operator fun get(i: Int, j: Int): Double = origin[i, j] public override operator fun get(i: Int, j: Int): Double = origin[i, j]

View File

@ -0,0 +1,75 @@
package kscience.kmath.ejml
import kscience.kmath.linear.DeterminantFeature
import kscience.kmath.linear.LUPDecompositionFeature
import kscience.kmath.linear.MatrixFeature
import kscience.kmath.linear.getFeature
import org.ejml.dense.row.factory.DecompositionFactory_DDRM
import org.ejml.simple.SimpleMatrix
import kotlin.random.Random
import kotlin.random.asJavaRandom
import kotlin.test.*
internal class EjmlMatrixTest {
private val random = Random(0)
private val randomMatrix: SimpleMatrix
get() {
val s = random.nextInt(2, 100)
return SimpleMatrix.random_DDRM(s, s, 0.0, 10.0, random.asJavaRandom())
}
@Test
fun rowNum() {
val m = randomMatrix
assertEquals(m.numRows(), EjmlMatrix(m).rowNum)
}
@Test
fun colNum() {
val m = randomMatrix
assertEquals(m.numCols(), EjmlMatrix(m).rowNum)
}
@Test
fun shape() {
val m = randomMatrix
val w = EjmlMatrix(m)
assertEquals(listOf(m.numRows(), m.numCols()), w.shape.toList())
}
@Test
fun features() {
val m = randomMatrix
val w = EjmlMatrix(m)
val det = w.getFeature<DeterminantFeature<Double>>() ?: fail()
assertEquals(m.determinant(), det.determinant)
val lup = w.getFeature<LUPDecompositionFeature<Double>>() ?: fail()
val ludecompositionF64 = DecompositionFactory_DDRM.lu(m.numRows(), m.numCols())
.also { it.decompose(m.ddrm.copy()) }
assertEquals(EjmlMatrix(SimpleMatrix(ludecompositionF64.getLower(null))), lup.l)
assertEquals(EjmlMatrix(SimpleMatrix(ludecompositionF64.getUpper(null))), lup.u)
assertEquals(EjmlMatrix(SimpleMatrix(ludecompositionF64.getRowPivot(null))), lup.p)
}
private object SomeFeature : MatrixFeature {}
@Test
fun suggestFeature() {
assertNotNull(EjmlMatrix(randomMatrix).suggestFeature(SomeFeature).getFeature<SomeFeature>())
}
@Test
fun get() {
val m = randomMatrix
assertEquals(m[0, 0], EjmlMatrix(m)[0, 0])
}
@Test
fun origin() {
val m = randomMatrix
assertSame(m, EjmlMatrix(m).origin)
}
}

View File

@ -0,0 +1,47 @@
package kscience.kmath.ejml
import org.ejml.simple.SimpleMatrix
import kotlin.random.Random
import kotlin.random.asJavaRandom
import kotlin.test.Test
import kotlin.test.assertEquals
import kotlin.test.assertSame
internal class EjmlVectorTest {
private val random = Random(0)
private val randomMatrix: SimpleMatrix
get() = SimpleMatrix.random_DDRM(random.nextInt(2, 100), 1, 0.0, 10.0, random.asJavaRandom())
@Test
fun size() {
val m = randomMatrix
val w = EjmlVector(m)
assertEquals(m.numRows(), w.size)
}
@Test
fun get() {
val m = randomMatrix
val w = EjmlVector(m)
assertEquals(m[0, 0], w[0])
}
@Test
fun iterator() {
val m = randomMatrix
val w = EjmlVector(m)
assertEquals(
m.iterator(true, 0, 0, m.numRows() - 1, 0).asSequence().toList(),
w.iterator().asSequence().toList()
)
}
@Test
fun origin() {
val m = randomMatrix
val w = EjmlVector(m)
assertSame(m, w.origin)
}
}