Dev #194

Merged
altavir merged 266 commits from dev into master 2021-01-20 17:32:32 +03:00
16 changed files with 172 additions and 129 deletions
Showing only changes of commit 625e624cab - Show all commits

View File

@ -28,6 +28,8 @@
- `kmath-prob` renamed to `kmath-stat` - `kmath-prob` renamed to `kmath-stat`
- Grid generators moved to `kmath-for-real` - Grid generators moved to `kmath-for-real`
- Use `Point<Double>` instead of specialized type in `kmath-for-real` - Use `Point<Double>` instead of specialized type in `kmath-for-real`
- Optimized dot product for buffer matrices moved to `kmath-for-real`
- EjmlMatrix context is an object
### Deprecated ### Deprecated

View File

@ -0,0 +1,51 @@
package kscience.kmath.structures
import kotlinx.benchmark.Benchmark
import kscience.kmath.commons.linear.CMMatrixContext
import kscience.kmath.commons.linear.CMMatrixContext.dot
import kscience.kmath.commons.linear.toCM
import kscience.kmath.ejml.EjmlMatrixContext
import kscience.kmath.ejml.toEjml
import kscience.kmath.linear.real
import kscience.kmath.operations.RealField
import kscience.kmath.operations.invoke
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import kotlin.random.Random
@State(Scope.Benchmark)
class MultiplicationBenchmark {
companion object {
val random = Random(12224)
val dim = 1000
//creating invertible matrix
val matrix1 = Matrix.real(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
val matrix2 = Matrix.real(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
val cmMatrix1 = matrix1.toCM()
val cmMatrix2 = matrix2.toCM()
val ejmlMatrix1 = matrix1.toEjml()
val ejmlMatrix2 = matrix2.toEjml()
}
@Benchmark
fun commonsMathMultiplication() {
CMMatrixContext.invoke {
cmMatrix1 dot cmMatrix2
}
}
@Benchmark
fun ejmlMultiplication() {
EjmlMatrixContext.invoke {
ejmlMatrix1 dot ejmlMatrix2
}
}
@Benchmark
fun bufferedMultiplication() {
matrix1 dot matrix2
}
}

View File

@ -70,6 +70,7 @@ fun main() {
//minimize the chi^2 in given starting point. Derivatives are not required, they are already included. //minimize the chi^2 in given starting point. Derivatives are not required, they are already included.
val result: OptimizationResult<Double> = chi2.minimize(a to 1.5, b to 0.9, c to 1.0) val result: OptimizationResult<Double> = chi2.minimize(a to 1.5, b to 0.9, c to 1.0)
//display a page with plot and numerical results
val page = Plotly.page { val page = Plotly.page {
plot { plot {
scatter { scatter {

View File

@ -1,10 +1,12 @@
package kscience.kmath.linear package kscience.kmath.linear
import kscience.kmath.commons.linear.CMMatrixContext import kscience.kmath.commons.linear.CMMatrixContext
import kscience.kmath.commons.linear.CMMatrixContext.dot
import kscience.kmath.commons.linear.inverse import kscience.kmath.commons.linear.inverse
import kscience.kmath.commons.linear.toCM import kscience.kmath.commons.linear.toCM
import kscience.kmath.ejml.EjmlMatrixContext import kscience.kmath.ejml.EjmlMatrixContext
import kscience.kmath.ejml.inverse import kscience.kmath.ejml.inverse
import kscience.kmath.ejml.toEjml
import kscience.kmath.operations.RealField import kscience.kmath.operations.RealField
import kscience.kmath.operations.invoke import kscience.kmath.operations.invoke
import kscience.kmath.structures.Matrix import kscience.kmath.structures.Matrix
@ -40,7 +42,7 @@ fun main() {
println("[commons-math] Inversion of $n matrices $dim x $dim finished in $commonsTime millis") println("[commons-math] Inversion of $n matrices $dim x $dim finished in $commonsTime millis")
val ejmlTime = measureTimeMillis { val ejmlTime = measureTimeMillis {
(EjmlMatrixContext(RealField)) { EjmlMatrixContext {
val km = matrix.toEjml() //avoid overhead on conversion val km = matrix.toEjml() //avoid overhead on conversion
repeat(n) { inverse(km) } repeat(n) { inverse(km) }
} }

View File

@ -1,38 +0,0 @@
package kscience.kmath.linear
import kscience.kmath.commons.linear.CMMatrixContext
import kscience.kmath.commons.linear.toCM
import kscience.kmath.ejml.EjmlMatrixContext
import kscience.kmath.operations.RealField
import kscience.kmath.operations.invoke
import kscience.kmath.structures.Matrix
import kotlin.random.Random
import kotlin.system.measureTimeMillis
fun main() {
val random = Random(12224)
val dim = 1000
//creating invertible matrix
val matrix1 = Matrix.real(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
val matrix2 = Matrix.real(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
// //warmup
// matrix1 dot matrix2
CMMatrixContext {
val cmMatrix1 = matrix1.toCM()
val cmMatrix2 = matrix2.toCM()
val cmTime = measureTimeMillis { cmMatrix1 dot cmMatrix2 }
println("CM implementation time: $cmTime")
}
(EjmlMatrixContext(RealField)) {
val ejmlMatrix1 = matrix1.toEjml()
val ejmlMatrix2 = matrix2.toEjml()
val ejmlTime = measureTimeMillis { ejmlMatrix1 dot ejmlMatrix2 }
println("EJML implementation time: $ejmlTime")
}
val genericTime = measureTimeMillis { val res = matrix1 dot matrix2 }
println("Generic implementation time: $genericTime")
}

View File

@ -9,7 +9,7 @@ import kscience.kmath.structures.*
*/ */
public class BufferMatrixContext<T : Any, R : Ring<T>>( public class BufferMatrixContext<T : Any, R : Ring<T>>(
public override val elementContext: R, public override val elementContext: R,
private val bufferFactory: BufferFactory<T> private val bufferFactory: BufferFactory<T>,
) : GenericMatrixContext<T, R> { ) : GenericMatrixContext<T, R> {
public override fun produce(rows: Int, columns: Int, initializer: (i: Int, j: Int) -> T): BufferMatrix<T> { public override fun produce(rows: Int, columns: Int, initializer: (i: Int, j: Int) -> T): BufferMatrix<T> {
val buffer = bufferFactory(rows * columns) { offset -> initializer(offset / columns, offset % columns) } val buffer = bufferFactory(rows * columns) { offset -> initializer(offset / columns, offset % columns) }
@ -29,8 +29,8 @@ public object RealMatrixContext : GenericMatrixContext<Double, RealField> {
public override inline fun produce( public override inline fun produce(
rows: Int, rows: Int,
columns: Int, columns: Int,
initializer: (i: Int, j: Int) -> Double initializer: (i: Int, j: Int) -> Double,
): Matrix<Double> { ): BufferMatrix<Double> {
val buffer = RealBuffer(rows * columns) { offset -> initializer(offset / columns, offset % columns) } val buffer = RealBuffer(rows * columns) { offset -> initializer(offset / columns, offset % columns) }
return BufferMatrix(rows, columns, buffer) return BufferMatrix(rows, columns, buffer)
} }
@ -43,15 +43,15 @@ public class BufferMatrix<T : Any>(
public override val rowNum: Int, public override val rowNum: Int,
public override val colNum: Int, public override val colNum: Int,
public val buffer: Buffer<out T>, public val buffer: Buffer<out T>,
public override val features: Set<MatrixFeature> = emptySet() public override val features: Set<MatrixFeature> = emptySet(),
) : FeaturedMatrix<T> { ) : FeaturedMatrix<T> {
override val shape: IntArray
get() = intArrayOf(rowNum, colNum)
init { init {
require(buffer.size == rowNum * colNum) { "Dimension mismatch for matrix structure" } require(buffer.size == rowNum * colNum) { "Dimension mismatch for matrix structure" }
} }
override val shape: IntArray get() = intArrayOf(rowNum, colNum)
public override fun suggestFeature(vararg features: MatrixFeature): BufferMatrix<T> = public override fun suggestFeature(vararg features: MatrixFeature): BufferMatrix<T> =
BufferMatrix(rowNum, colNum, buffer, this.features + features) BufferMatrix(rowNum, colNum, buffer, this.features + features)
@ -86,28 +86,3 @@ public class BufferMatrix<T : Any>(
else "Matrix(rowsNum = $rowNum, colNum = $colNum, features=$features)" else "Matrix(rowsNum = $rowNum, colNum = $colNum, features=$features)"
} }
} }
/**
* Optimized dot product for real matrices
*/
public infix fun BufferMatrix<Double>.dot(other: BufferMatrix<Double>): BufferMatrix<Double> {
require(colNum == other.rowNum) { "Matrix dot operation dimension mismatch: ($rowNum, $colNum) x (${other.rowNum}, ${other.colNum})" }
val array = DoubleArray(this.rowNum * other.colNum)
//convert to array to insure there is not memory indirection
fun Buffer<out Double>.unsafeArray() = if (this is RealBuffer)
array
else
DoubleArray(size) { get(it) }
val a = this.buffer.unsafeArray()
val b = other.buffer.unsafeArray()
for (i in (0 until rowNum))
for (j in (0 until other.colNum))
for (k in (0 until colNum))
array[i * other.colNum + j] += a[i * colNum + k] * b[k * other.colNum + j]
val buffer = RealBuffer(array)
return BufferMatrix(rowNum, other.colNum, buffer)
}

View File

@ -27,9 +27,8 @@ public interface FeaturedMatrix<T : Any> : Matrix<T> {
public inline fun Structure2D.Companion.real( public inline fun Structure2D.Companion.real(
rows: Int, rows: Int,
columns: Int, columns: Int,
initializer: (Int, Int) -> Double initializer: (Int, Int) -> Double,
): Matrix<Double> = ): BufferMatrix<Double> = MatrixContext.real.produce(rows, columns, initializer)
MatrixContext.real.produce(rows, columns, initializer)
/** /**
* Build a square matrix from given elements. * Build a square matrix from given elements.
@ -82,5 +81,3 @@ public fun <T : Any> Matrix<T>.transpose(): Matrix<T> {
setOf(TransposedFeature(this)) setOf(TransposedFeature(this))
) { i, j -> get(j, i) } ) { i, j -> get(j, i) }
} }
public infix fun Matrix<Double>.dot(other: Matrix<Double>): Matrix<Double> = with(MatrixContext.real) { dot(other) }

View File

@ -1,5 +1,6 @@
package kscience.kmath.linear package kscience.kmath.linear
import kscience.kmath.operations.invoke
import kscience.kmath.structures.Matrix import kscience.kmath.structures.Matrix
import kscience.kmath.structures.NDStructure import kscience.kmath.structures.NDStructure
import kscience.kmath.structures.as2D import kscience.kmath.structures.as2D
@ -38,7 +39,7 @@ class MatrixTest {
infix fun Matrix<Double>.pow(power: Int): Matrix<Double> { infix fun Matrix<Double>.pow(power: Int): Matrix<Double> {
var res = this var res = this
repeat(power - 1) { repeat(power - 1) {
res = res dot this res = RealMatrixContext.invoke { res dot this@pow }
} }
return res return res
} }

View File

@ -7,17 +7,18 @@ import kscience.kmath.operations.Space
import kscience.kmath.operations.invoke import kscience.kmath.operations.invoke
import kscience.kmath.structures.Matrix import kscience.kmath.structures.Matrix
/**
* Converts this matrix to EJML one.
*/
public fun Matrix<Double>.toEjml(): EjmlMatrix =
if (this is EjmlMatrix) this else EjmlMatrixContext.produce(rowNum, colNum) { i, j -> get(i, j) }
/** /**
* Represents context of basic operations operating with [EjmlMatrix]. * Represents context of basic operations operating with [EjmlMatrix].
* *
* @author Iaroslav Postovalov * @author Iaroslav Postovalov
*/ */
public class EjmlMatrixContext(private val space: Space<Double>) : MatrixContext<Double> { public object EjmlMatrixContext : MatrixContext<Double> {
/**
* Converts this matrix to EJML one.
*/
public fun Matrix<Double>.toEjml(): EjmlMatrix =
if (this is EjmlMatrix) this else produce(rowNum, colNum) { i, j -> get(i, j) }
/** /**
* Converts this vector to EJML one. * Converts this vector to EJML one.
@ -47,11 +48,10 @@ public class EjmlMatrixContext(private val space: Space<Double>) : MatrixContext
EjmlMatrix(toEjml().origin - b.toEjml().origin) EjmlMatrix(toEjml().origin - b.toEjml().origin)
public override fun multiply(a: Matrix<Double>, k: Number): EjmlMatrix = public override fun multiply(a: Matrix<Double>, k: Number): EjmlMatrix =
produce(a.rowNum, a.colNum) { i, j -> space { a[i, j] * k } } produce(a.rowNum, a.colNum) { i, j -> a[i, j] * k.toDouble() }
public override operator fun Matrix<Double>.times(value: Double): EjmlMatrix = EjmlMatrix(toEjml().origin.scale(value)) public override operator fun Matrix<Double>.times(value: Double): EjmlMatrix =
EjmlMatrix(toEjml().origin.scale(value))
public companion object
} }
/** /**

View File

@ -6,10 +6,7 @@ import kscience.kmath.linear.VirtualMatrix
import kscience.kmath.misc.UnstableKMathAPI import kscience.kmath.misc.UnstableKMathAPI
import kscience.kmath.operations.invoke import kscience.kmath.operations.invoke
import kscience.kmath.operations.sum import kscience.kmath.operations.sum
import kscience.kmath.structures.Buffer import kscience.kmath.structures.*
import kscience.kmath.structures.Matrix
import kscience.kmath.structures.RealBuffer
import kscience.kmath.structures.asIterable
import kotlin.math.pow import kotlin.math.pow
/* /*
@ -86,18 +83,6 @@ public operator fun Double.minus(matrix: RealMatrix): RealMatrix =
// row, col -> matrix[row, col] / this // row, col -> matrix[row, col] / this
//} //}
/*
* Per-element (!) square and power operations
*/
public fun RealMatrix.square(): RealMatrix = MatrixContext.real.produce(rowNum, colNum) { row, col ->
this[row, col].pow(2)
}
public fun RealMatrix.pow(n: Int): RealMatrix = MatrixContext.real.produce(rowNum, colNum) { i, j ->
this[i, j].pow(n)
}
/* /*
* Operations on two matrices (per-element!) * Operations on two matrices (per-element!)
*/ */
@ -157,3 +142,30 @@ public fun RealMatrix.sum(): Double = elements().map { (_, value) -> value }.sum
public fun RealMatrix.min(): Double? = elements().map { (_, value) -> value }.minOrNull() public fun RealMatrix.min(): Double? = elements().map { (_, value) -> value }.minOrNull()
public fun RealMatrix.max(): Double? = elements().map { (_, value) -> value }.maxOrNull() public fun RealMatrix.max(): Double? = elements().map { (_, value) -> value }.maxOrNull()
public fun RealMatrix.average(): Double = elements().map { (_, value) -> value }.average() public fun RealMatrix.average(): Double = elements().map { (_, value) -> value }.average()
public inline fun RealMatrix.map(transform: (Double) -> Double): RealMatrix =
MatrixContext.real.produce(rowNum, colNum) { i, j ->
transform(get(i, j))
}
//extended operations
public fun RealMatrix.pow(p: Double): RealMatrix = map { it.pow(p) }
public fun RealMatrix.pow(p: Int): RealMatrix = map { it.pow(p) }
public fun exp(arg: RealMatrix): RealMatrix = arg.map { kotlin.math.exp(it) }
public fun sqrt(arg: RealMatrix): RealMatrix = arg.map { kotlin.math.sqrt(it) }
public fun RealMatrix.square(): RealMatrix = map { it.pow(2) }
public fun sin(arg: RealMatrix): RealMatrix = arg.map { kotlin.math.sin(it) }
public fun cos(arg: RealMatrix): RealMatrix = arg.map { kotlin.math.cos(it) }
public fun tan(arg: RealMatrix): RealMatrix = arg.map { kotlin.math.tan(it) }
public fun ln(arg: RealMatrix): RealMatrix = arg.map { kotlin.math.ln(it) }
public fun log10(arg: RealMatrix): RealMatrix = arg.map { kotlin.math.log10(it) }

View File

@ -3,7 +3,6 @@ package kscience.kmath.real
import kscience.kmath.linear.Point import kscience.kmath.linear.Point
import kscience.kmath.operations.Norm import kscience.kmath.operations.Norm
import kscience.kmath.structures.Buffer import kscience.kmath.structures.Buffer
import kscience.kmath.structures.RealBuffer
import kscience.kmath.structures.asBuffer import kscience.kmath.structures.asBuffer
import kscience.kmath.structures.asIterable import kscience.kmath.structures.asIterable
import kotlin.math.pow import kotlin.math.pow
@ -11,17 +10,11 @@ import kotlin.math.sqrt
public typealias RealVector = Point<Double> public typealias RealVector = Point<Double>
public inline fun RealVector(size: Int, init: (Int) -> Double): RealVector = RealBuffer(size, init)
public fun RealVector(vararg doubles: Double): RealVector = RealBuffer(doubles)
public fun DoubleArray.asVector(): RealVector = asBuffer()
public fun List<Double>.asVector(): RealVector = asBuffer()
public object VectorL2Norm : Norm<Point<out Number>, Double> { public object VectorL2Norm : Norm<Point<out Number>, Double> {
override fun norm(arg: Point<out Number>): Double = sqrt(arg.asIterable().sumByDouble(Number::toDouble)) override fun norm(arg: Point<out Number>): Double = sqrt(arg.asIterable().sumByDouble(Number::toDouble))
} }
public operator fun Buffer.Companion.invoke(vararg doubles: Double): RealVector = doubles.asBuffer()
/** /**
* Fill the vector of given [size] with given [value] * Fill the vector of given [size] with given [value]
@ -36,12 +29,6 @@ public inline fun RealVector.map(transform: (Double) -> Double): RealVector =
public inline fun RealVector.mapIndexed(transform: (index: Int, value: Double) -> Double): RealVector = public inline fun RealVector.mapIndexed(transform: (index: Int, value: Double) -> Double): RealVector =
Buffer.real(size) { transform(it, get(it)) } Buffer.real(size) { transform(it, get(it)) }
public fun RealVector.pow(p: Double): RealVector = map { it.pow(p) }
public fun RealVector.pow(p: Int): RealVector = map { it.pow(p) }
public fun exp(vector: RealVector): RealVector = vector.map { kotlin.math.exp(it) }
public operator fun RealVector.plus(other: RealVector): RealVector = public operator fun RealVector.plus(other: RealVector): RealVector =
mapIndexed { index, value -> value + other[index] } mapIndexed { index, value -> value + other[index] }
@ -71,3 +58,25 @@ public operator fun RealVector.div(other: RealVector): RealVector =
public operator fun RealVector.div(number: Number): RealVector = map { it / number.toDouble() } public operator fun RealVector.div(number: Number): RealVector = map { it / number.toDouble() }
public operator fun Number.div(vector: RealVector): RealVector = vector.map { toDouble() / it } public operator fun Number.div(vector: RealVector): RealVector = vector.map { toDouble() / it }
//extended operations
public fun RealVector.pow(p: Double): RealVector = map { it.pow(p) }
public fun RealVector.pow(p: Int): RealVector = map { it.pow(p) }
public fun exp(vector: RealVector): RealVector = vector.map { kotlin.math.exp(it) }
public fun sqrt(vector: RealVector): RealVector = vector.map { kotlin.math.sqrt(it) }
public fun RealVector.square(): RealVector = map { it.pow(2) }
public fun sin(vector: RealVector): RealVector = vector.map { kotlin.math.sin(it) }
public fun cos(vector: RealVector): RealVector = vector.map { kotlin.math.cos(it) }
public fun tan(vector: RealVector): RealVector = vector.map { kotlin.math.tan(it) }
public fun ln(vector: RealVector): RealVector = vector.map { kotlin.math.ln(it) }
public fun log10(vector: RealVector): RealVector = vector.map { kotlin.math.log10(it) }

View File

@ -0,0 +1,31 @@
package kscience.kmath.real
import kscience.kmath.linear.BufferMatrix
import kscience.kmath.structures.Buffer
import kscience.kmath.structures.RealBuffer
/**
* Optimized dot product for real matrices
*/
public infix fun BufferMatrix<Double>.dot(other: BufferMatrix<Double>): BufferMatrix<Double> {
require(colNum == other.rowNum) { "Matrix dot operation dimension mismatch: ($rowNum, $colNum) x (${other.rowNum}, ${other.colNum})" }
val resultArray = DoubleArray(this.rowNum * other.colNum)
//convert to array to insure there is no memory indirection
fun Buffer<out Double>.unsafeArray() = if (this is RealBuffer)
this.array
else
DoubleArray(size) { get(it) }
val a = this.buffer.unsafeArray()
val b = other.buffer.unsafeArray()
for (i in (0 until rowNum))
for (j in (0 until other.colNum))
for (k in (0 until colNum))
resultArray[i * other.colNum + j] += a[i * colNum + k] * b[k * other.colNum + j]
val buffer = RealBuffer(resultArray)
return BufferMatrix(rowNum, other.colNum, buffer)
}

View File

@ -1,34 +1,33 @@
package kaceince.kmath.real package kaceince.kmath.real
import kscience.kmath.linear.MatrixContext import kscience.kmath.linear.*
import kscience.kmath.linear.asMatrix
import kscience.kmath.linear.transpose
import kscience.kmath.operations.invoke import kscience.kmath.operations.invoke
import kscience.kmath.real.RealVector import kscience.kmath.real.RealVector
import kscience.kmath.real.plus import kscience.kmath.real.plus
import kscience.kmath.structures.Buffer
import kotlin.test.Test import kotlin.test.Test
import kotlin.test.assertEquals import kotlin.test.assertEquals
internal class RealVectorTest { internal class RealVectorTest {
@Test @Test
fun testSum() { fun testSum() {
val vector1 = RealVector(5) { it.toDouble() } val vector1 = Buffer.real(5) { it.toDouble() }
val vector2 = RealVector(5) { 5 - it.toDouble() } val vector2 = Buffer.real(5) { 5 - it.toDouble() }
val sum = vector1 + vector2 val sum = vector1 + vector2
assertEquals(5.0, sum[2]) assertEquals(5.0, sum[2])
} }
@Test @Test
fun testVectorToMatrix() { fun testVectorToMatrix() {
val vector = RealVector(5) { it.toDouble() } val vector = Buffer.real(5) { it.toDouble() }
val matrix = vector.asMatrix() val matrix = vector.asMatrix()
assertEquals(4.0, matrix[4, 0]) assertEquals(4.0, matrix[4, 0])
} }
@Test @Test
fun testDot() { fun testDot() {
val vector1 = RealVector(5) { it.toDouble() } val vector1 = Buffer.real(5) { it.toDouble() }
val vector2 = RealVector(5) { 5 - it.toDouble() } val vector2 = Buffer.real(5) { 5 - it.toDouble() }
val matrix1 = vector1.asMatrix() val matrix1 = vector1.asMatrix()
val matrix2 = vector2.asMatrix().transpose() val matrix2 = vector2.asMatrix().transpose()
val product = MatrixContext.real { matrix1 dot matrix2 } val product = MatrixContext.real { matrix1 dot matrix2 }

View File

@ -3,7 +3,6 @@ package kscience.kmath.histogram
import kscience.kmath.linear.Point import kscience.kmath.linear.Point
import kscience.kmath.operations.SpaceOperations import kscience.kmath.operations.SpaceOperations
import kscience.kmath.operations.invoke import kscience.kmath.operations.invoke
import kscience.kmath.real.asVector
import kscience.kmath.structures.* import kscience.kmath.structures.*
import kotlin.math.floor import kotlin.math.floor
@ -123,8 +122,8 @@ public class RealHistogram(
*``` *```
*/ */
public fun fromRanges(vararg ranges: ClosedFloatingPointRange<Double>): RealHistogram = RealHistogram( public fun fromRanges(vararg ranges: ClosedFloatingPointRange<Double>): RealHistogram = RealHistogram(
ranges.map(ClosedFloatingPointRange<Double>::start).asVector(), ranges.map(ClosedFloatingPointRange<Double>::start).asBuffer(),
ranges.map(ClosedFloatingPointRange<Double>::endInclusive).asVector() ranges.map(ClosedFloatingPointRange<Double>::endInclusive).asBuffer()
) )
/** /**

View File

@ -4,6 +4,8 @@ import kscience.kmath.histogram.RealHistogram
import kscience.kmath.histogram.fill import kscience.kmath.histogram.fill
import kscience.kmath.histogram.put import kscience.kmath.histogram.put
import kscience.kmath.real.RealVector import kscience.kmath.real.RealVector
import kscience.kmath.real.invoke
import kscience.kmath.structures.Buffer
import kotlin.random.Random import kotlin.random.Random
import kotlin.test.* import kotlin.test.*

View File

@ -1,8 +1,8 @@
package kscience.kmath.histogram package kscience.kmath.histogram
import kscience.kmath.real.RealVector import kscience.kmath.real.RealVector
import kscience.kmath.real.asVector
import kscience.kmath.structures.Buffer import kscience.kmath.structures.Buffer
import kscience.kmath.structures.asBuffer
import java.util.* import java.util.*
import kotlin.math.floor import kotlin.math.floor
@ -16,7 +16,7 @@ public class UnivariateBin(
//TODO add weighting //TODO add weighting
public override val value: Number get() = counter.sum() public override val value: Number get() = counter.sum()
public override val center: RealVector get() = doubleArrayOf(position).asVector() public override val center: RealVector get() = doubleArrayOf(position).asBuffer()
public override val dimension: Int get() = 1 public override val dimension: Int get() = 1
public operator fun contains(value: Double): Boolean = value in (position - size / 2)..(position + size / 2) public operator fun contains(value: Double): Boolean = value in (position - size / 2)..(position + size / 2)