Implement Commons RNG-like samplers in kmath-prob module for Multiplatform #164
@ -0,0 +1,11 @@
|
||||
package kscience.kmath.prob.internal
|
||||
|
||||
import kotlin.math.abs
|
||||
|
||||
internal object InternalErf {
|
||||
fun erfc(x: Double): Double {
|
||||
if (abs(x) > 40) return if (x > 0) 0.0 else 2.0
|
||||
val ret = InternalGamma.regularizedGammaQ(0.5, x * x, 10000)
|
||||
return if (x < 0) 2 - ret else ret
|
||||
}
|
||||
}
|
@ -0,0 +1,245 @@
|
||||
package kscience.kmath.prob.internal
|
||||
|
||||
import kotlin.math.*
|
||||
|
||||
private abstract class ContinuedFraction protected constructor() {
|
||||
protected abstract fun getA(n: Int, x: Double): Double
|
||||
protected abstract fun getB(n: Int, x: Double): Double
|
||||
|
||||
fun evaluate(x: Double, maxIterations: Int): Double {
|
||||
val small = 1e-50
|
||||
var hPrev = getA(0, x)
|
||||
if (hPrev == 0.0 || abs(0.0 - hPrev) <= small) hPrev = small
|
||||
var n = 1
|
||||
var dPrev = 0.0
|
||||
var cPrev = hPrev
|
||||
var hN = hPrev
|
||||
|
||||
while (n < maxIterations) {
|
||||
val a = getA(n, x)
|
||||
val b = getB(n, x)
|
||||
var dN = a + b * dPrev
|
||||
if (dN == 0.0 || abs(0.0 - dN) <= small) dN = small
|
||||
var cN = a + b / cPrev
|
||||
if (cN == 0.0 || abs(0.0 - cN) <= small) cN = small
|
||||
dN = 1 / dN
|
||||
val deltaN = cN * dN
|
||||
hN = hPrev * deltaN
|
||||
check(!hN.isInfinite()) { "hN is infinite" }
|
||||
check(!hN.isNaN()) { "hN is NaN" }
|
||||
if (abs(deltaN - 1.0) < 10e-9) break
|
||||
dPrev = dN
|
||||
cPrev = cN
|
||||
hPrev = hN
|
||||
n++
|
||||
}
|
||||
|
||||
check(n < maxIterations) { "n is more than maxIterations" }
|
||||
return hN
|
||||
}
|
||||
}
|
||||
|
||||
internal object InternalGamma {
|
||||
const val LANCZOS_G = 607.0 / 128.0
|
||||
|
||||
private val LANCZOS = doubleArrayOf(
|
||||
0.99999999999999709182,
|
||||
57.156235665862923517,
|
||||
-59.597960355475491248,
|
||||
14.136097974741747174,
|
||||
-0.49191381609762019978,
|
||||
.33994649984811888699e-4,
|
||||
.46523628927048575665e-4,
|
||||
-.98374475304879564677e-4,
|
||||
.15808870322491248884e-3,
|
||||
-.21026444172410488319e-3,
|
||||
.21743961811521264320e-3,
|
||||
-.16431810653676389022e-3,
|
||||
.84418223983852743293e-4,
|
||||
-.26190838401581408670e-4,
|
||||
.36899182659531622704e-5
|
||||
)
|
||||
|
||||
private val HALF_LOG_2_PI = 0.5 * ln(2.0 * PI)
|
||||
private const val INV_GAMMA1P_M1_A0 = .611609510448141581788E-08
|
||||
private const val INV_GAMMA1P_M1_A1 = .624730830116465516210E-08
|
||||
private const val INV_GAMMA1P_M1_B1 = .203610414066806987300E+00
|
||||
private const val INV_GAMMA1P_M1_B2 = .266205348428949217746E-01
|
||||
private const val INV_GAMMA1P_M1_B3 = .493944979382446875238E-03
|
||||
private const val INV_GAMMA1P_M1_B4 = -.851419432440314906588E-05
|
||||
private const val INV_GAMMA1P_M1_B5 = -.643045481779353022248E-05
|
||||
private const val INV_GAMMA1P_M1_B6 = .992641840672773722196E-06
|
||||
private const val INV_GAMMA1P_M1_B7 = -.607761895722825260739E-07
|
||||
private const val INV_GAMMA1P_M1_B8 = .195755836614639731882E-09
|
||||
private const val INV_GAMMA1P_M1_P0 = .6116095104481415817861E-08
|
||||
private const val INV_GAMMA1P_M1_P1 = .6871674113067198736152E-08
|
||||
private const val INV_GAMMA1P_M1_P2 = .6820161668496170657918E-09
|
||||
private const val INV_GAMMA1P_M1_P3 = .4686843322948848031080E-10
|
||||
private const val INV_GAMMA1P_M1_P4 = .1572833027710446286995E-11
|
||||
private const val INV_GAMMA1P_M1_P5 = -.1249441572276366213222E-12
|
||||
private const val INV_GAMMA1P_M1_P6 = .4343529937408594255178E-14
|
||||
private const val INV_GAMMA1P_M1_Q1 = .3056961078365221025009E+00
|
||||
private const val INV_GAMMA1P_M1_Q2 = .5464213086042296536016E-01
|
||||
private const val INV_GAMMA1P_M1_Q3 = .4956830093825887312020E-02
|
||||
private const val INV_GAMMA1P_M1_Q4 = .2692369466186361192876E-03
|
||||
private const val INV_GAMMA1P_M1_C = -.422784335098467139393487909917598E+00
|
||||
private const val INV_GAMMA1P_M1_C0 = .577215664901532860606512090082402E+00
|
||||
private const val INV_GAMMA1P_M1_C1 = -.655878071520253881077019515145390E+00
|
||||
private const val INV_GAMMA1P_M1_C2 = -.420026350340952355290039348754298E-01
|
||||
private const val INV_GAMMA1P_M1_C3 = .166538611382291489501700795102105E+00
|
||||
private const val INV_GAMMA1P_M1_C4 = -.421977345555443367482083012891874E-01
|
||||
private const val INV_GAMMA1P_M1_C5 = -.962197152787697356211492167234820E-02
|
||||
private const val INV_GAMMA1P_M1_C6 = .721894324666309954239501034044657E-02
|
||||
private const val INV_GAMMA1P_M1_C7 = -.116516759185906511211397108401839E-02
|
||||
private const val INV_GAMMA1P_M1_C8 = -.215241674114950972815729963053648E-03
|
||||
private const val INV_GAMMA1P_M1_C9 = .128050282388116186153198626328164E-03
|
||||
private const val INV_GAMMA1P_M1_C10 = -.201348547807882386556893914210218E-04
|
||||
private const val INV_GAMMA1P_M1_C11 = -.125049348214267065734535947383309E-05
|
||||
private const val INV_GAMMA1P_M1_C12 = .113302723198169588237412962033074E-05
|
||||
private const val INV_GAMMA1P_M1_C13 = -.205633841697760710345015413002057E-06
|
||||
|
||||
fun logGamma(x: Double): Double {
|
||||
val ret: Double
|
||||
|
||||
when {
|
||||
x.isNaN() || x <= 0.0 -> ret = Double.NaN
|
||||
x < 0.5 -> return logGamma1p(x) - ln(x)
|
||||
x <= 2.5 -> return logGamma1p(x - 0.5 - 0.5)
|
||||
|
||||
x <= 8.0 -> {
|
||||
val n = floor(x - 1.5).toInt()
|
||||
var prod = 1.0
|
||||
(1..n).forEach { i -> prod *= x - i }
|
||||
return logGamma1p(x - (n + 1)) + ln(prod)
|
||||
}
|
||||
|
||||
else -> {
|
||||
val tmp = x + LANCZOS_G + .5
|
||||
ret = (x + .5) * ln(tmp) - tmp + HALF_LOG_2_PI + ln(lanczos(x) / x)
|
||||
}
|
||||
}
|
||||
|
||||
return ret
|
||||
}
|
||||
|
||||
private fun regularizedGammaP(
|
||||
a: Double,
|
||||
x: Double,
|
||||
maxIterations: Int = Int.MAX_VALUE
|
||||
): Double = when {
|
||||
a.isNaN() || x.isNaN() || a <= 0.0 || x < 0.0 -> Double.NaN
|
||||
x == 0.0 -> 0.0
|
||||
x >= a + 1 -> 1.0 - regularizedGammaQ(a, x, maxIterations)
|
||||
|
||||
else -> {
|
||||
// calculate series
|
||||
var n = 0.0 // current element index
|
||||
var an = 1.0 / a // n-th element in the series
|
||||
var sum = an // partial sum
|
||||
|
||||
while (abs(an / sum) > 10e-15 && n < maxIterations && sum < Double.POSITIVE_INFINITY) {
|
||||
// compute next element in the series
|
||||
n += 1.0
|
||||
an *= x / (a + n)
|
||||
|
||||
// update partial sum
|
||||
sum += an
|
||||
}
|
||||
|
||||
when {
|
||||
n >= maxIterations -> throw error("Maximal iterations is exceeded $maxIterations")
|
||||
sum.isInfinite() -> 1.0
|
||||
else -> exp(-x + a * ln(x) - logGamma(a)) * sum
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fun regularizedGammaQ(
|
||||
a: Double,
|
||||
x: Double,
|
||||
maxIterations: Int = Int.MAX_VALUE
|
||||
): Double = when {
|
||||
a.isNaN() || x.isNaN() || a <= 0.0 || x < 0.0 -> Double.NaN
|
||||
x == 0.0 -> 1.0
|
||||
x < a + 1.0 -> 1.0 - regularizedGammaP(a, x, maxIterations)
|
||||
|
||||
else -> 1.0 / object : ContinuedFraction() {
|
||||
override fun getA(n: Int, x: Double): Double = 2.0 * n + 1.0 - a + x
|
||||
override fun getB(n: Int, x: Double): Double = n * (a - n)
|
||||
}.evaluate(x, maxIterations) * exp(-x + a * ln(x) - logGamma(a))
|
||||
}
|
||||
|
||||
private fun lanczos(x: Double): Double =
|
||||
(LANCZOS.size - 1 downTo 1).sumByDouble { LANCZOS[it] / (x + it) } + LANCZOS[0]
|
||||
|
||||
private fun invGamma1pm1(x: Double): Double {
|
||||
require(x >= -0.5)
|
||||
require(x <= 1.5)
|
||||
val ret: Double
|
||||
val t = if (x <= 0.5) x else x - 0.5 - 0.5
|
||||
|
||||
if (t < 0.0) {
|
||||
val a = INV_GAMMA1P_M1_A0 + t * INV_GAMMA1P_M1_A1
|
||||
var b = INV_GAMMA1P_M1_B8
|
||||
b = INV_GAMMA1P_M1_B7 + t * b
|
||||
b = INV_GAMMA1P_M1_B6 + t * b
|
||||
b = INV_GAMMA1P_M1_B5 + t * b
|
||||
b = INV_GAMMA1P_M1_B4 + t * b
|
||||
b = INV_GAMMA1P_M1_B3 + t * b
|
||||
b = INV_GAMMA1P_M1_B2 + t * b
|
||||
b = INV_GAMMA1P_M1_B1 + t * b
|
||||
b = 1.0 + t * b
|
||||
var c = INV_GAMMA1P_M1_C13 + t * (a / b)
|
||||
c = INV_GAMMA1P_M1_C12 + t * c
|
||||
c = INV_GAMMA1P_M1_C11 + t * c
|
||||
c = INV_GAMMA1P_M1_C10 + t * c
|
||||
c = INV_GAMMA1P_M1_C9 + t * c
|
||||
c = INV_GAMMA1P_M1_C8 + t * c
|
||||
c = INV_GAMMA1P_M1_C7 + t * c
|
||||
c = INV_GAMMA1P_M1_C6 + t * c
|
||||
c = INV_GAMMA1P_M1_C5 + t * c
|
||||
c = INV_GAMMA1P_M1_C4 + t * c
|
||||
c = INV_GAMMA1P_M1_C3 + t * c
|
||||
c = INV_GAMMA1P_M1_C2 + t * c
|
||||
c = INV_GAMMA1P_M1_C1 + t * c
|
||||
c = INV_GAMMA1P_M1_C + t * c
|
||||
ret = (if (x > 0.5) t * c / x else x * (c + 0.5 + 0.5))
|
||||
} else {
|
||||
var p = INV_GAMMA1P_M1_P6
|
||||
p = INV_GAMMA1P_M1_P5 + t * p
|
||||
p = INV_GAMMA1P_M1_P4 + t * p
|
||||
p = INV_GAMMA1P_M1_P3 + t * p
|
||||
p = INV_GAMMA1P_M1_P2 + t * p
|
||||
p = INV_GAMMA1P_M1_P1 + t * p
|
||||
p = INV_GAMMA1P_M1_P0 + t * p
|
||||
var q = INV_GAMMA1P_M1_Q4
|
||||
q = INV_GAMMA1P_M1_Q3 + t * q
|
||||
q = INV_GAMMA1P_M1_Q2 + t * q
|
||||
q = INV_GAMMA1P_M1_Q1 + t * q
|
||||
q = 1.0 + t * q
|
||||
var c = INV_GAMMA1P_M1_C13 + p / q * t
|
||||
c = INV_GAMMA1P_M1_C12 + t * c
|
||||
c = INV_GAMMA1P_M1_C11 + t * c
|
||||
c = INV_GAMMA1P_M1_C10 + t * c
|
||||
c = INV_GAMMA1P_M1_C9 + t * c
|
||||
c = INV_GAMMA1P_M1_C8 + t * c
|
||||
c = INV_GAMMA1P_M1_C7 + t * c
|
||||
c = INV_GAMMA1P_M1_C6 + t * c
|
||||
c = INV_GAMMA1P_M1_C5 + t * c
|
||||
c = INV_GAMMA1P_M1_C4 + t * c
|
||||
c = INV_GAMMA1P_M1_C3 + t * c
|
||||
c = INV_GAMMA1P_M1_C2 + t * c
|
||||
c = INV_GAMMA1P_M1_C1 + t * c
|
||||
c = INV_GAMMA1P_M1_C0 + t * c
|
||||
ret = (if (x > 0.5) t / x * (c - 0.5 - 0.5) else x * c)
|
||||
}
|
||||
|
||||
return ret
|
||||
}
|
||||
|
||||
private fun logGamma1p(x: Double): Double {
|
||||
require(x >= -0.5)
|
||||
require(x <= 1.5)
|
||||
return -ln1p(invGamma1pm1(x))
|
||||
}
|
||||
}
|
@ -0,0 +1,78 @@
|
||||
package kscience.kmath.prob.internal
|
||||
|
||||
import kotlin.math.ln
|
||||
import kotlin.math.min
|
||||
|
||||
internal object InternalUtils {
|
||||
private val FACTORIALS = longArrayOf(
|
||||
1L, 1L, 2L,
|
||||
6L, 24L, 120L,
|
||||
720L, 5040L, 40320L,
|
||||
362880L, 3628800L, 39916800L,
|
||||
479001600L, 6227020800L, 87178291200L,
|
||||
1307674368000L, 20922789888000L, 355687428096000L,
|
||||
6402373705728000L, 121645100408832000L, 2432902008176640000L
|
||||
)
|
||||
|
||||
private const val BEGIN_LOG_FACTORIALS = 2
|
||||
|
||||
fun factorial(n: Int): Long = FACTORIALS[n]
|
||||
|
||||
fun validateProbabilities(probabilities: DoubleArray?): Double {
|
||||
require(!(probabilities == null || probabilities.isEmpty())) { "Probabilities must not be empty." }
|
||||
var sumProb = 0.0
|
||||
|
||||
probabilities.forEach { prob ->
|
||||
validateProbability(prob)
|
||||
sumProb += prob
|
||||
}
|
||||
|
||||
require(!(sumProb.isInfinite() || sumProb <= 0)) { "Invalid sum of probabilities: $sumProb" }
|
||||
return sumProb
|
||||
}
|
||||
|
||||
private fun validateProbability(probability: Double): Unit =
|
||||
require(!(probability < 0 || probability.isInfinite() || probability.isNaN())) { "Invalid probability: $probability" }
|
||||
|
||||
class FactorialLog private constructor(
|
||||
numValues: Int,
|
||||
cache: DoubleArray?
|
||||
) {
|
||||
private val logFactorials: DoubleArray = DoubleArray(numValues)
|
||||
|
||||
init {
|
||||
val endCopy: Int
|
||||
|
||||
if (cache != null && cache.size > BEGIN_LOG_FACTORIALS) {
|
||||
// Copy available values.
|
||||
endCopy = min(cache.size, numValues)
|
||||
cache.copyInto(
|
||||
logFactorials,
|
||||
BEGIN_LOG_FACTORIALS,
|
||||
BEGIN_LOG_FACTORIALS, endCopy
|
||||
)
|
||||
}
|
||||
// All values to be computed
|
||||
else endCopy = BEGIN_LOG_FACTORIALS
|
||||
|
||||
// Compute remaining values.
|
||||
(endCopy until numValues).forEach { i ->
|
||||
if (i < FACTORIALS.size)
|
||||
logFactorials[i] = ln(FACTORIALS[i].toDouble())
|
||||
else
|
||||
logFactorials[i] = logFactorials[i - 1] + ln(i.toDouble())
|
||||
}
|
||||
}
|
||||
|
||||
fun value(n: Int): Double {
|
||||
if (n < logFactorials.size)
|
||||
return logFactorials[n]
|
||||
|
||||
return if (n < FACTORIALS.size) ln(FACTORIALS[n].toDouble()) else InternalGamma.logGamma(n + 1.0)
|
||||
}
|
||||
|
||||
companion object {
|
||||
fun create(): FactorialLog = FactorialLog(0, null)
|
||||
}
|
||||
}
|
||||
}
|
@ -1,31 +0,0 @@
|
||||
package scientifik.kmath.prob
|
||||
|
||||
import kscience.kmath.prob.RandomGenerator
|
||||
import org.apache.commons.rng.simple.RandomSource
|
||||
|
||||
public class RandomSourceGenerator(private val source: RandomSource, seed: Long?) :
|
||||
RandomGenerator {
|
||||
private val random = seed?.let {
|
||||
RandomSource.create(source, seed)
|
||||
} ?: RandomSource.create(source)
|
||||
|
||||
public override fun nextBoolean(): Boolean = random.nextBoolean()
|
||||
public override fun nextDouble(): Double = random.nextDouble()
|
||||
public override fun nextInt(): Int = random.nextInt()
|
||||
public override fun nextInt(until: Int): Int = random.nextInt(until)
|
||||
public override fun nextLong(): Long = random.nextLong()
|
||||
public override fun nextLong(until: Long): Long = random.nextLong(until)
|
||||
|
||||
public override fun fillBytes(array: ByteArray, fromIndex: Int, toIndex: Int) {
|
||||
require(toIndex > fromIndex)
|
||||
random.nextBytes(array, fromIndex, toIndex - fromIndex)
|
||||
}
|
||||
|
||||
override fun fork(): RandomGenerator = RandomSourceGenerator(source, nextLong())
|
||||
}
|
||||
|
||||
public fun RandomGenerator.Companion.fromSource(source: RandomSource, seed: Long? = null): RandomSourceGenerator =
|
||||
RandomSourceGenerator(source, seed)
|
||||
|
||||
public fun RandomGenerator.Companion.mersenneTwister(seed: Long? = null): RandomSourceGenerator =
|
||||
fromSource(RandomSource.MT, seed)
|
Loading…
Reference in New Issue
Block a user