Implement Commons RNG-like samplers in kmath-prob module for Multiplatform #164
@ -7,6 +7,11 @@ import scientifik.kmath.prob.chain
|
||||
import kotlin.math.ln
|
||||
import kotlin.math.pow
|
||||
|
||||
/**
|
||||
* Based on commons-rng implementation.
|
||||
*
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/AhrensDieterExponentialSampler.html
|
||||
*/
|
||||
class AhrensDieterExponentialSampler private constructor(val mean: Double) : Sampler<Double> {
|
||||
override fun sample(generator: RandomGenerator): Chain<Double> = generator.chain {
|
||||
// Step 1:
|
||||
|
@ -6,6 +6,11 @@ import scientifik.kmath.prob.Sampler
|
||||
import scientifik.kmath.prob.chain
|
||||
import kotlin.math.*
|
||||
|
||||
/**
|
||||
* Based on commons-rng implementation.
|
||||
*
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/BoxMullerNormalizedGaussianSampler.html
|
||||
*/
|
||||
class BoxMullerNormalizedGaussianSampler private constructor() : NormalizedGaussianSampler, Sampler<Double> {
|
||||
private var nextGaussian: Double = Double.NaN
|
||||
|
||||
|
@ -5,6 +5,11 @@ import scientifik.kmath.chains.map
|
||||
import scientifik.kmath.prob.RandomGenerator
|
||||
import scientifik.kmath.prob.Sampler
|
||||
|
||||
/**
|
||||
* Based on commons-rng implementation.
|
||||
*
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/GaussianSampler.html
|
||||
*/
|
||||
class GaussianSampler private constructor(
|
||||
private val mean: Double,
|
||||
private val standardDeviation: Double,
|
||||
|
@ -6,6 +6,11 @@ import scientifik.kmath.prob.Sampler
|
||||
import scientifik.kmath.prob.chain
|
||||
import kotlin.math.exp
|
||||
|
||||
/**
|
||||
* Based on commons-rng implementation.
|
||||
*
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/KempSmallMeanPoissonSampler.html
|
||||
*/
|
||||
class KempSmallMeanPoissonSampler private constructor(
|
||||
private val p0: Double,
|
||||
private val mean: Double
|
||||
|
@ -8,9 +8,14 @@ import scientifik.kmath.prob.Sampler
|
||||
import scientifik.kmath.prob.next
|
||||
import kotlin.math.*
|
||||
|
||||
/**
|
||||
* Based on commons-rng implementation.
|
||||
*
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/LargeMeanPoissonSampler.html
|
||||
*/
|
||||
class LargeMeanPoissonSampler private constructor(val mean: Double) : Sampler<Int> {
|
||||
private val exponential: Sampler<Double> = AhrensDieterExponentialSampler.of(1.0)
|
||||
private val gaussian: Sampler<Double> = ZigguratNormalizedGaussianSampler()
|
||||
private val gaussian: Sampler<Double> = ZigguratNormalizedGaussianSampler.of()
|
||||
private val factorialLog: InternalUtils.FactorialLog = NO_CACHE_FACTORIAL_LOG
|
||||
private val lambda: Double = floor(mean)
|
||||
private val logLambda: Double = ln(lambda)
|
||||
|
@ -7,6 +7,11 @@ import scientifik.kmath.prob.chain
|
||||
import kotlin.math.ln
|
||||
import kotlin.math.sqrt
|
||||
|
||||
/**
|
||||
* Based on commons-rng implementation.
|
||||
*
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/MarsagliaNormalizedGaussianSampler.html
|
||||
*/
|
||||
class MarsagliaNormalizedGaussianSampler private constructor(): NormalizedGaussianSampler, Sampler<Double> {
|
||||
private var nextGaussian = Double.NaN
|
||||
|
||||
|
@ -4,7 +4,11 @@ import scientifik.kmath.chains.Chain
|
||||
import scientifik.kmath.prob.RandomGenerator
|
||||
import scientifik.kmath.prob.Sampler
|
||||
|
||||
|
||||
/**
|
||||
* Based on commons-rng implementation.
|
||||
*
|
||||
* https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/PoissonSampler.html
|
||||
*/
|
||||
class PoissonSampler private constructor(
|
||||
mean: Double
|
||||
) : Sampler<Int> {
|
||||
|
@ -8,6 +8,11 @@ import scientifik.kmath.prob.chain
|
||||
import kotlin.math.ceil
|
||||
import kotlin.math.exp
|
||||
|
||||
/**
|
||||
* Based on commons-rng implementation.
|
||||
*
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/SmallMeanPoissonSampler.html
|
||||
*/
|
||||
class SmallMeanPoissonSampler private constructor(mean: Double) : Sampler<Int> {
|
||||
private val p0: Double = exp(-mean)
|
||||
|
||||
|
@ -7,6 +7,11 @@ import scientifik.kmath.prob.Sampler
|
||||
import scientifik.kmath.prob.chain
|
||||
import kotlin.math.*
|
||||
|
||||
/**
|
||||
* Based on commons-rng implementation.
|
||||
*
|
||||
* See https://commons.apache.org/proper/commons-rng/commons-rng-sampling/apidocs/org/apache/commons/rng/sampling/distribution/ZigguratNormalizedGaussianSampler.html
|
||||
*/
|
||||
class ZigguratNormalizedGaussianSampler private constructor() :
|
||||
NormalizedGaussianSampler, Sampler<Double> {
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user