Provide dynamic operations currying for Algebra<T> instead of eager calls and add JS code generation support #162

Merged
CommanderTvis merged 44 commits from feature/dynamic-ops-currying into dev 2021-01-05 16:36:51 +03:00
18 changed files with 385 additions and 747 deletions
Showing only changes of commit a5c00051c2 - Show all commits

View File

@ -4,13 +4,19 @@ import kscience.kmath.asm.compile
import kscience.kmath.expressions.Expression
import kscience.kmath.expressions.expressionInField
import kscience.kmath.expressions.invoke
import kscience.kmath.expressions.symbol
import kscience.kmath.operations.Field
import kscience.kmath.operations.RealField
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import kotlin.random.Random
import kotlin.system.measureTimeMillis
@State(Scope.Benchmark)
internal class ExpressionsInterpretersBenchmark {
private val algebra: Field<Double> = RealField
@Benchmark
fun functionalExpression() {
val expr = algebra.expressionInField {
symbol("x") * const(2.0) + const(2.0) / symbol("x") - const(16.0)
@ -19,6 +25,7 @@ internal class ExpressionsInterpretersBenchmark {
invokeAndSum(expr)
}
@Benchmark
fun mstExpression() {
val expr = algebra.mstInField {
symbol("x") * number(2.0) + number(2.0) / symbol("x") - number(16.0)
@ -27,6 +34,7 @@ internal class ExpressionsInterpretersBenchmark {
invokeAndSum(expr)
}
@Benchmark
fun asmExpression() {
val expr = algebra.mstInField {
symbol("x") * number(2.0) + number(2.0) / symbol("x") - number(16.0)
@ -35,6 +43,13 @@ internal class ExpressionsInterpretersBenchmark {
invokeAndSum(expr)
}
@Benchmark
fun rawExpression() {
val x by symbol
val expr = Expression<Double> { args -> args.getValue(x) * 2.0 + 2.0 / args.getValue(x) - 16.0 }
invokeAndSum(expr)
}
private fun invokeAndSum(expr: Expression<Double>) {
val random = Random(0)
var sum = 0.0
@ -46,35 +61,3 @@ internal class ExpressionsInterpretersBenchmark {
println(sum)
}
}
/**
* This benchmark compares basically evaluation of simple function with MstExpression interpreter, ASM backend and
* core FunctionalExpressions API.
*
* The expected rating is:
*
* 1. ASM.
* 2. MST.
* 3. FE.
*/
fun main() {
val benchmark = ExpressionsInterpretersBenchmark()
val fe = measureTimeMillis {
benchmark.functionalExpression()
}
println("fe=$fe")
val mst = measureTimeMillis {
benchmark.mstExpression()
}
println("mst=$mst")
val asm = measureTimeMillis {
benchmark.asmExpression()
}
println("asm=$asm")
}

View File

@ -16,17 +16,13 @@ internal class ArrayBenchmark {
@Benchmark
fun benchmarkBufferRead() {
var res = 0
for (i in 1..size) res += arrayBuffer.get(
size - i
)
for (i in 1..size) res += arrayBuffer[size - i]
}
@Benchmark
fun nativeBufferRead() {
var res = 0
for (i in 1..size) res += nativeBuffer.get(
size - i
)
for (i in 1..size) res += nativeBuffer[size - i]
}
companion object {

View File

@ -55,24 +55,24 @@ public sealed class MST {
public fun <T> Algebra<T>.evaluate(node: MST): T = when (node) {
is MST.Numeric -> (this as? NumericAlgebra<T>)?.number(node.value)
?: error("Numeric nodes are not supported by $this")
is MST.Symbolic -> symbol(node.value)
is MST.Unary -> unaryOperation(node.operation, evaluate(node.value))
is MST.Unary -> unaryOperation(node.operation)(evaluate(node.value))
is MST.Binary -> when {
this !is NumericAlgebra -> binaryOperation(node.operation, evaluate(node.left), evaluate(node.right))
this !is NumericAlgebra -> binaryOperation(node.operation)(evaluate(node.left), evaluate(node.right))
node.left is MST.Numeric && node.right is MST.Numeric -> {
val number = RealField.binaryOperation(
node.operation,
node.left.value.toDouble(),
node.right.value.toDouble()
)
val number = RealField
.binaryOperation(node.operation)
.invoke(node.left.value.toDouble(), node.right.value.toDouble())
number(number)
}
node.left is MST.Numeric -> leftSideNumberOperation(node.operation, node.left.value, evaluate(node.right))
node.right is MST.Numeric -> rightSideNumberOperation(node.operation, evaluate(node.left), node.right.value)
else -> binaryOperation(node.operation, evaluate(node.left), evaluate(node.right))
node.left is MST.Numeric -> leftSideNumberOperation(node.operation)(node.left.value, evaluate(node.right))
node.right is MST.Numeric -> rightSideNumberOperation(node.operation)(evaluate(node.left), node.right.value)
else -> binaryOperation(node.operation)(evaluate(node.left), evaluate(node.right))
}
}

View File

@ -6,32 +6,35 @@ import kscience.kmath.operations.*
* [Algebra] over [MST] nodes.
*/
public object MstAlgebra : NumericAlgebra<MST> {
override fun number(value: Number): MST.Numeric = MST.Numeric(value)
public override fun number(value: Number): MST.Numeric = MST.Numeric(value)
public override fun symbol(value: String): MST.Symbolic = MST.Symbolic(value)
override fun symbol(value: String): MST.Symbolic = MST.Symbolic(value)
public override fun unaryOperation(operation: String): (arg: MST) -> MST.Unary =
{ arg -> MST.Unary(operation, arg) }
override fun unaryOperation(operation: String, arg: MST): MST.Unary =
MST.Unary(operation, arg)
override fun binaryOperation(operation: String, left: MST, right: MST): MST.Binary =
MST.Binary(operation, left, right)
public override fun binaryOperation(operation: String): (left: MST, right: MST) -> MST.Binary =
{ left, right -> MST.Binary(operation, left, right) }
}
/**
* [Space] over [MST] nodes.
*/
public object MstSpace : Space<MST>, NumericAlgebra<MST> {
override val zero: MST.Numeric by lazy { number(0.0) }
public override val zero: MST.Numeric by lazy { number(0.0) }
override fun number(value: Number): MST.Numeric = MstAlgebra.number(value)
override fun symbol(value: String): MST.Symbolic = MstAlgebra.symbol(value)
override fun add(a: MST, b: MST): MST.Binary = binaryOperation(SpaceOperations.PLUS_OPERATION, a, b)
override fun multiply(a: MST, k: Number): MST.Binary = binaryOperation(RingOperations.TIMES_OPERATION, a, number(k))
public override fun number(value: Number): MST.Numeric = MstAlgebra.number(value)
public override fun symbol(value: String): MST.Symbolic = MstAlgebra.symbol(value)
public override fun add(a: MST, b: MST): MST.Binary = binaryOperation(SpaceOperations.PLUS_OPERATION)(a, b)
public override fun MST.unaryMinus(): MST = unaryOperation(SpaceOperations.MINUS_OPERATION)(this)
override fun binaryOperation(operation: String, left: MST, right: MST): MST.Binary =
MstAlgebra.binaryOperation(operation, left, right)
public override fun multiply(a: MST, k: Number): MST.Binary =
binaryOperation(RingOperations.TIMES_OPERATION)(a, number(k))
override fun unaryOperation(operation: String, arg: MST): MST.Unary = MstAlgebra.unaryOperation(operation, arg)
public override fun binaryOperation(operation: String): (left: MST, right: MST) -> MST.Binary =
MstAlgebra.binaryOperation(operation)
public override fun unaryOperation(operation: String): (arg: MST) -> MST.Unary =
MstAlgebra.unaryOperation(operation)
}
/**
@ -43,16 +46,18 @@ public object MstRing : Ring<MST>, NumericAlgebra<MST> {
override val one: MST.Numeric by lazy { number(1.0) }
override fun number(value: Number): MST.Numeric = MstSpace.number(value)
override fun symbol(value: String): MST.Symbolic = MstSpace.symbol(value)
override fun add(a: MST, b: MST): MST.Binary = MstSpace.add(a, b)
override fun multiply(a: MST, k: Number): MST.Binary = MstSpace.multiply(a, k)
override fun multiply(a: MST, b: MST): MST.Binary = binaryOperation(RingOperations.TIMES_OPERATION, a, b)
public override fun number(value: Number): MST.Numeric = MstSpace.number(value)
public override fun symbol(value: String): MST.Symbolic = MstSpace.symbol(value)
public override fun add(a: MST, b: MST): MST.Binary = MstSpace.add(a, b)
public override fun multiply(a: MST, k: Number): MST.Binary = MstSpace.multiply(a, k)
public override fun multiply(a: MST, b: MST): MST.Binary = binaryOperation(RingOperations.TIMES_OPERATION)(a, b)
public override fun MST.unaryMinus(): MST = MstSpace.unaryOperation(SpaceOperations.MINUS_OPERATION)(this)
override fun binaryOperation(operation: String, left: MST, right: MST): MST.Binary =
MstSpace.binaryOperation(operation, left, right)
public override fun binaryOperation(operation: String): (left: MST, right: MST) -> MST.Binary =
MstSpace.binaryOperation(operation)
override fun unaryOperation(operation: String, arg: MST): MST.Unary = MstSpace.unaryOperation(operation, arg)
public override fun unaryOperation(operation: String): (arg: MST) -> MST.Unary =
MstAlgebra.unaryOperation(operation)
}
/**
@ -70,51 +75,52 @@ public object MstField : Field<MST> {
public override fun add(a: MST, b: MST): MST.Binary = MstRing.add(a, b)
public override fun multiply(a: MST, k: Number): MST.Binary = MstRing.multiply(a, k)
public override fun multiply(a: MST, b: MST): MST.Binary = MstRing.multiply(a, b)
public override fun divide(a: MST, b: MST): MST.Binary = binaryOperation(FieldOperations.DIV_OPERATION, a, b)
public override fun divide(a: MST, b: MST): MST.Binary = binaryOperation(FieldOperations.DIV_OPERATION)(a, b)
public override fun MST.unaryMinus(): MST = MstSpace.unaryOperation(SpaceOperations.MINUS_OPERATION)(this)
public override fun binaryOperation(operation: String, left: MST, right: MST): MST.Binary =
MstRing.binaryOperation(operation, left, right)
public override fun binaryOperation(operation: String): (left: MST, right: MST) -> MST.Binary =
MstRing.binaryOperation(operation)
override fun unaryOperation(operation: String, arg: MST): MST.Unary = MstRing.unaryOperation(operation, arg)
public override fun unaryOperation(operation: String): (arg: MST) -> MST.Unary = MstRing.unaryOperation(operation)
}
/**
* [ExtendedField] over [MST] nodes.
*/
public object MstExtendedField : ExtendedField<MST> {
override val zero: MST.Numeric
public override val zero: MST.Numeric
get() = MstField.zero
override val one: MST.Numeric
public override val one: MST.Numeric
get() = MstField.one
override fun symbol(value: String): MST.Symbolic = MstField.symbol(value)
override fun number(value: Number): MST.Numeric = MstField.number(value)
override fun sin(arg: MST): MST.Unary = unaryOperation(TrigonometricOperations.SIN_OPERATION, arg)
override fun cos(arg: MST): MST.Unary = unaryOperation(TrigonometricOperations.COS_OPERATION, arg)
override fun tan(arg: MST): MST.Unary = unaryOperation(TrigonometricOperations.TAN_OPERATION, arg)
override fun asin(arg: MST): MST.Unary = unaryOperation(TrigonometricOperations.ASIN_OPERATION, arg)
override fun acos(arg: MST): MST.Unary = unaryOperation(TrigonometricOperations.ACOS_OPERATION, arg)
override fun atan(arg: MST): MST.Unary = unaryOperation(TrigonometricOperations.ATAN_OPERATION, arg)
override fun sinh(arg: MST): MST.Unary = unaryOperation(HyperbolicOperations.SINH_OPERATION, arg)
override fun cosh(arg: MST): MST.Unary = unaryOperation(HyperbolicOperations.COSH_OPERATION, arg)
override fun tanh(arg: MST): MST.Unary = unaryOperation(HyperbolicOperations.TANH_OPERATION, arg)
override fun asinh(arg: MST): MST.Unary = unaryOperation(HyperbolicOperations.ASINH_OPERATION, arg)
override fun acosh(arg: MST): MST.Unary = unaryOperation(HyperbolicOperations.ACOSH_OPERATION, arg)
override fun atanh(arg: MST): MST.Unary = unaryOperation(HyperbolicOperations.ATANH_OPERATION, arg)
override fun add(a: MST, b: MST): MST.Binary = MstField.add(a, b)
override fun multiply(a: MST, k: Number): MST.Binary = MstField.multiply(a, k)
override fun multiply(a: MST, b: MST): MST.Binary = MstField.multiply(a, b)
override fun divide(a: MST, b: MST): MST.Binary = MstField.divide(a, b)
public override fun symbol(value: String): MST = MstField.symbol(value)
public override fun sin(arg: MST): MST.Unary = unaryOperation(TrigonometricOperations.SIN_OPERATION)(arg)
public override fun cos(arg: MST): MST.Unary = unaryOperation(TrigonometricOperations.COS_OPERATION)(arg)
public override fun tan(arg: MST): MST.Unary = unaryOperation(TrigonometricOperations.TAN_OPERATION)(arg)
public override fun asin(arg: MST): MST.Unary = unaryOperation(TrigonometricOperations.ASIN_OPERATION)(arg)
public override fun acos(arg: MST): MST.Unary = unaryOperation(TrigonometricOperations.ACOS_OPERATION)(arg)
public override fun atan(arg: MST): MST.Unary = unaryOperation(TrigonometricOperations.ATAN_OPERATION)(arg)
public override fun sinh(arg: MST): MST.Unary = unaryOperation(HyperbolicOperations.SINH_OPERATION)(arg)
public override fun cosh(arg: MST): MST.Unary = unaryOperation(HyperbolicOperations.COSH_OPERATION)(arg)
public override fun tanh(arg: MST): MST.Unary = unaryOperation(HyperbolicOperations.TANH_OPERATION)(arg)
public override fun asinh(arg: MST): MST.Unary = unaryOperation(HyperbolicOperations.ASINH_OPERATION)(arg)
public override fun acosh(arg: MST): MST.Unary = unaryOperation(HyperbolicOperations.ACOSH_OPERATION)(arg)
public override fun atanh(arg: MST): MST.Unary = unaryOperation(HyperbolicOperations.ATANH_OPERATION)(arg)
public override fun add(a: MST, b: MST): MST.Binary = MstField.add(a, b)
public override fun multiply(a: MST, k: Number): MST.Binary = MstField.multiply(a, k)
public override fun multiply(a: MST, b: MST): MST.Binary = MstField.multiply(a, b)
public override fun divide(a: MST, b: MST): MST.Binary = MstField.divide(a, b)
public override fun MST.unaryMinus(): MST = MstSpace.unaryOperation(SpaceOperations.MINUS_OPERATION)(this)
override fun power(arg: MST, pow: Number): MST.Binary =
binaryOperation(PowerOperations.POW_OPERATION, arg, number(pow))
public override fun power(arg: MST, pow: Number): MST.Binary =
binaryOperation(PowerOperations.POW_OPERATION)(arg, number(pow))
override fun exp(arg: MST): MST.Unary = unaryOperation(ExponentialOperations.EXP_OPERATION, arg)
override fun ln(arg: MST): MST.Unary = unaryOperation(ExponentialOperations.LN_OPERATION, arg)
public override fun exp(arg: MST): MST.Unary = unaryOperation(ExponentialOperations.EXP_OPERATION)(arg)
public override fun ln(arg: MST): MST.Unary = unaryOperation(ExponentialOperations.LN_OPERATION)(arg)
override fun binaryOperation(operation: String, left: MST, right: MST): MST.Binary =
MstField.binaryOperation(operation, left, right)
public override fun binaryOperation(operation: String): (left: MST, right: MST) -> MST.Binary =
MstField.binaryOperation(operation)
override fun unaryOperation(operation: String, arg: MST): MST.Unary = MstField.unaryOperation(operation, arg)
public override fun unaryOperation(operation: String): (arg: MST) -> MST.Unary = MstField.unaryOperation(operation)
}

View File

@ -15,11 +15,14 @@ import kotlin.contracts.contract
*/
public class MstExpression<T, out A : Algebra<T>>(public val algebra: A, public val mst: MST) : Expression<T> {
private inner class InnerAlgebra(val arguments: Map<Symbol, T>) : NumericAlgebra<T> {
override fun symbol(value: String): T = arguments[StringSymbol(value)] ?: algebra.symbol(value)
override fun unaryOperation(operation: String, arg: T): T = algebra.unaryOperation(operation, arg)
override fun symbol(value: String): T = try {
algebra.symbol(value)
} catch (ignored: IllegalStateException) {
null
} ?: arguments.getValue(StringSymbol(value))
override fun binaryOperation(operation: String, left: T, right: T): T =
algebra.binaryOperation(operation, left, right)
override fun unaryOperation(operation: String): (arg: T) -> T = algebra.unaryOperation(operation)
override fun binaryOperation(operation: String): (left: T, right: T) -> T = algebra.binaryOperation(operation)
@Suppress("UNCHECKED_CAST")
override fun number(value: Number): T = if (algebra is NumericAlgebra<*>)

View File

@ -1,13 +1,13 @@
package kscience.kmath.asm
import kscience.kmath.asm.internal.AsmBuilder
import kscience.kmath.asm.internal.MstType
import kscience.kmath.asm.internal.buildAlgebraOperationCall
import kscience.kmath.asm.internal.buildName
import kscience.kmath.ast.MST
import kscience.kmath.ast.MstExpression
import kscience.kmath.expressions.Expression
import kscience.kmath.operations.Algebra
import kscience.kmath.operations.NumericAlgebra
import kscience.kmath.operations.RealField
/**
* Compiles given MST to an Expression using AST compiler.
@ -23,37 +23,46 @@ internal fun <T : Any> MST.compileWith(type: Class<T>, algebra: Algebra<T>): Exp
is MST.Symbolic -> {
val symbol = try {
algebra.symbol(node.value)
} catch (ignored: Throwable) {
} catch (ignored: IllegalStateException) {
null
}
if (symbol != null)
loadTConstant(symbol)
loadObjectConstant(symbol as Any)
else
loadVariable(node.value)
}
is MST.Numeric -> loadNumeric(node.value)
is MST.Numeric -> loadNumberConstant(node.value)
is MST.Unary -> buildCall(algebra.unaryOperation(node.operation)) { visit(node.value) }
is MST.Unary -> buildAlgebraOperationCall(
context = algebra,
name = node.operation,
fallbackMethodName = "unaryOperation",
parameterTypes = arrayOf(MstType.fromMst(node.value))
) { visit(node.value) }
is MST.Binary -> when {
algebra is NumericAlgebra<T> && node.left is MST.Numeric && node.right is MST.Numeric -> loadObjectConstant(
algebra.number(
RealField
.binaryOperation(node.operation)
.invoke(node.left.value.toDouble(), node.right.value.toDouble())
)
)
is MST.Binary -> buildAlgebraOperationCall(
context = algebra,
name = node.operation,
fallbackMethodName = "binaryOperation",
parameterTypes = arrayOf(MstType.fromMst(node.left), MstType.fromMst(node.right))
) {
algebra is NumericAlgebra<T> && node.left is MST.Numeric -> buildCall(algebra.leftSideNumberOperation(node.operation)) {
visit(node.left)
visit(node.right)
}
algebra is NumericAlgebra<T> && node.right is MST.Numeric -> buildCall(algebra.rightSideNumberOperation(node.operation)) {
visit(node.left)
visit(node.right)
}
else -> buildCall(algebra.binaryOperation(node.operation)) {
visit(node.left)
visit(node.right)
}
}
}
return AsmBuilder(type, algebra, buildName(this)) { visit(this@compileWith) }.getInstance()
return AsmBuilder<T>(type, buildName(this)) { visit(this@compileWith) }.instance
}
/**

View File

@ -3,29 +3,29 @@ package kscience.kmath.asm.internal
import kscience.kmath.asm.internal.AsmBuilder.ClassLoader
import kscience.kmath.ast.MST
import kscience.kmath.expressions.Expression
import kscience.kmath.operations.Algebra
import kscience.kmath.operations.NumericAlgebra
import org.objectweb.asm.*
import org.objectweb.asm.Opcodes.*
import org.objectweb.asm.Type.*
import org.objectweb.asm.commons.InstructionAdapter
import java.util.*
import java.util.stream.Collectors
import java.lang.invoke.MethodHandles
import java.lang.invoke.MethodType
import java.util.stream.Collectors.toMap
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
/**
* ASM Builder is a structure that abstracts building a class designated to unwrap [MST] to plain Java expression.
* This class uses [ClassLoader] for loading the generated class, then it is able to instantiate the new class.
*
* @property T the type of AsmExpression to unwrap.
* @property algebra the algebra the applied AsmExpressions use.
* @property className the unique class name of new loaded class.
* @property invokeLabel0Visitor the function to apply to this object when generating invoke method, label 0.
* @property callbackAtInvokeL0 the function to apply to this object when generating invoke method, label 0.
* @author Iaroslav Postovalov
*/
internal class AsmBuilder<T> internal constructor(
private val classOfT: Class<*>,
private val algebra: Algebra<T>,
internal class AsmBuilder<T>(
classOfT: Class<*>,
private val className: String,
private val invokeLabel0Visitor: AsmBuilder<T>.() -> Unit,
private val callbackAtInvokeL0: AsmBuilder<T>.() -> Unit,
) {
/**
* Internal classloader of [AsmBuilder] with alias to define class from byte array.
@ -39,20 +39,15 @@ internal class AsmBuilder<T> internal constructor(
*/
private val classLoader: ClassLoader = ClassLoader(javaClass.classLoader)
/**
* ASM Type for [algebra].
*/
private val tAlgebraType: Type = algebra.javaClass.asm
/**
* ASM type for [T].
*/
internal val tType: Type = classOfT.asm
private val tType: Type = classOfT.asm
/**
* ASM type for new class.
*/
private val classType: Type = Type.getObjectType(className.replace(oldChar = '.', newChar = '/'))!!
private val classType: Type = getObjectType(className.replace(oldChar = '.', newChar = '/'))
/**
* List of constants to provide to the subclass.
@ -64,55 +59,14 @@ internal class AsmBuilder<T> internal constructor(
*/
private lateinit var invokeMethodVisitor: InstructionAdapter
/**
* States whether this [AsmBuilder] needs to generate constants field.
*/
private var hasConstants: Boolean = true
/**
* States whether [T] a primitive type, so [AsmBuilder] may generate direct primitive calls.
*/
internal var primitiveMode: Boolean = false
/**
* Primitive type to apply for specific primitive calls. Use [OBJECT_TYPE], if not in [primitiveMode].
*/
internal var primitiveMask: Type = OBJECT_TYPE
/**
* Boxed primitive type to apply for specific primitive calls. Use [OBJECT_TYPE], if not in [primitiveMode].
*/
internal var primitiveMaskBoxed: Type = OBJECT_TYPE
/**
* Stack of useful objects types on stack to verify types.
*/
private val typeStack: ArrayDeque<Type> = ArrayDeque()
/**
* Stack of useful objects types on stack expected by algebra calls.
*/
internal val expectationStack: ArrayDeque<Type> = ArrayDeque<Type>(1).also { it.push(tType) }
/**
* The cache for instance built by this builder.
*/
private var generatedInstance: Expression<T>? = null
/**
* Subclasses, loads and instantiates [Expression] for given parameters.
*
* The built instance is cached.
*/
@Suppress("UNCHECKED_CAST")
internal fun getInstance(): Expression<T> {
generatedInstance?.let { return it }
if (SIGNATURE_LETTERS.containsKey(classOfT)) {
primitiveMode = true
primitiveMask = SIGNATURE_LETTERS.getValue(classOfT)
primitiveMaskBoxed = tType
}
val instance: Expression<T> by lazy {
val hasConstants: Boolean
val classWriter = ClassWriter(ClassWriter.COMPUTE_FRAMES) {
visit(
@ -121,20 +75,20 @@ internal class AsmBuilder<T> internal constructor(
classType.internalName,
"${OBJECT_TYPE.descriptor}L${EXPRESSION_TYPE.internalName}<${tType.descriptor}>;",
OBJECT_TYPE.internalName,
arrayOf(EXPRESSION_TYPE.internalName)
arrayOf(EXPRESSION_TYPE.internalName),
)
visitMethod(
ACC_PUBLIC or ACC_FINAL,
"invoke",
Type.getMethodDescriptor(tType, MAP_TYPE),
getMethodDescriptor(tType, MAP_TYPE),
"(L${MAP_TYPE.internalName}<${STRING_TYPE.descriptor}+${tType.descriptor}>;)${tType.descriptor}",
null
null,
).instructionAdapter {
invokeMethodVisitor = this
visitCode()
val l0 = label()
invokeLabel0Visitor()
callbackAtInvokeL0()
areturn(tType)
val l1 = label()
@ -144,7 +98,7 @@ internal class AsmBuilder<T> internal constructor(
null,
l0,
l1,
invokeThisVar
0,
)
visitLocalVariable(
@ -153,7 +107,7 @@ internal class AsmBuilder<T> internal constructor(
"L${MAP_TYPE.internalName}<${STRING_TYPE.descriptor}+${tType.descriptor}>;",
l0,
l1,
invokeArgumentsVar
1,
)
visitMaxs(0, 2)
@ -163,17 +117,15 @@ internal class AsmBuilder<T> internal constructor(
visitMethod(
ACC_PUBLIC or ACC_FINAL or ACC_BRIDGE or ACC_SYNTHETIC,
"invoke",
Type.getMethodDescriptor(OBJECT_TYPE, MAP_TYPE),
getMethodDescriptor(OBJECT_TYPE, MAP_TYPE),
null,
null,
null
).instructionAdapter {
val thisVar = 0
val argumentsVar = 1
visitCode()
val l0 = label()
load(thisVar, OBJECT_TYPE)
load(argumentsVar, MAP_TYPE)
invokevirtual(classType.internalName, "invoke", Type.getMethodDescriptor(tType, MAP_TYPE), false)
load(0, OBJECT_TYPE)
load(1, MAP_TYPE)
invokevirtual(classType.internalName, "invoke", getMethodDescriptor(tType, MAP_TYPE), false)
areturn(tType)
val l1 = label()
@ -183,7 +135,7 @@ internal class AsmBuilder<T> internal constructor(
null,
l0,
l1,
thisVar
0,
)
visitMaxs(0, 2)
@ -192,15 +144,6 @@ internal class AsmBuilder<T> internal constructor(
hasConstants = constants.isNotEmpty()
visitField(
access = ACC_PRIVATE or ACC_FINAL,
name = "algebra",
descriptor = tAlgebraType.descriptor,
signature = null,
value = null,
block = FieldVisitor::visitEnd
)
if (hasConstants)
visitField(
access = ACC_PRIVATE or ACC_FINAL,
@ -208,55 +151,36 @@ internal class AsmBuilder<T> internal constructor(
descriptor = OBJECT_ARRAY_TYPE.descriptor,
signature = null,
value = null,
block = FieldVisitor::visitEnd
block = FieldVisitor::visitEnd,
)
visitMethod(
ACC_PUBLIC,
"<init>",
Type.getMethodDescriptor(
Type.VOID_TYPE,
tAlgebraType,
*OBJECT_ARRAY_TYPE.wrapToArrayIf { hasConstants }),
getMethodDescriptor(VOID_TYPE, *OBJECT_ARRAY_TYPE.wrapToArrayIf { hasConstants }),
null,
null
).instructionAdapter {
val thisVar = 0
val algebraVar = 1
val constantsVar = 2
val l0 = label()
load(thisVar, classType)
invokespecial(OBJECT_TYPE.internalName, "<init>", Type.getMethodDescriptor(Type.VOID_TYPE), false)
load(0, classType)
invokespecial(OBJECT_TYPE.internalName, "<init>", getMethodDescriptor(VOID_TYPE), false)
label()
load(thisVar, classType)
load(algebraVar, tAlgebraType)
putfield(classType.internalName, "algebra", tAlgebraType.descriptor)
load(0, classType)
if (hasConstants) {
label()
load(thisVar, classType)
load(constantsVar, OBJECT_ARRAY_TYPE)
load(0, classType)
load(1, OBJECT_ARRAY_TYPE)
putfield(classType.internalName, "constants", OBJECT_ARRAY_TYPE.descriptor)
}
label()
visitInsn(RETURN)
val l4 = label()
visitLocalVariable("this", classType.descriptor, null, l0, l4, thisVar)
visitLocalVariable(
"algebra",
tAlgebraType.descriptor,
null,
l0,
l4,
algebraVar
)
visitLocalVariable("this", classType.descriptor, null, l0, l4, 0)
if (hasConstants)
visitLocalVariable("constants", OBJECT_ARRAY_TYPE.descriptor, null, l0, l4, constantsVar)
visitLocalVariable("constants", OBJECT_ARRAY_TYPE.descriptor, null, l0, l4, 1)
visitMaxs(0, 3)
visitEnd()
@ -265,33 +189,56 @@ internal class AsmBuilder<T> internal constructor(
visitEnd()
}
val new = classLoader
.defineClass(className, classWriter.toByteArray())
.constructors
.first()
.newInstance(algebra, *(constants.toTypedArray().wrapToArrayIf { hasConstants })) as Expression<T>
val cls = classLoader.defineClass(className, classWriter.toByteArray())
val l = MethodHandles.publicLookup()
generatedInstance = new
return new
if (hasConstants)
l.findConstructor(cls, MethodType.methodType(Void.TYPE, Array<Any>::class.java))
.invoke(constants.toTypedArray()) as Expression<T>
else
l.findConstructor(cls, MethodType.methodType(Void.TYPE)).invoke() as Expression<T>
}
/**
* Loads a [T] constant from [constants].
* Loads [java.lang.Object] constant from constants.
*/
internal fun loadTConstant(value: T) {
if (classOfT in INLINABLE_NUMBERS) {
val expectedType = expectationStack.pop()
val mustBeBoxed = expectedType.sort == Type.OBJECT
loadNumberConstant(value as Number, mustBeBoxed)
fun loadObjectConstant(value: Any, type: Type = tType): Unit = invokeMethodVisitor.run {
val idx = if (value in constants) constants.indexOf(value) else constants.also { it += value }.lastIndex
loadThis()
getfield(classType.internalName, "constants", OBJECT_ARRAY_TYPE.descriptor)
iconst(idx)
visitInsn(AALOAD)
if (type != OBJECT_TYPE) checkcast(type)
}
if (mustBeBoxed)
invokeMethodVisitor.checkcast(tType)
/**
* Loads `this` variable.
*/
private fun loadThis(): Unit = invokeMethodVisitor.load(0, classType)
if (mustBeBoxed) typeStack.push(tType) else typeStack.push(primitiveMask)
/**
* Either loads a numeric constant [value] from the class's constants field or boxes a primitive
* constant from the constant pool.
*/
fun loadNumberConstant(value: Number) {
val boxed = value.javaClass.asm
val primitive = BOXED_TO_PRIMITIVES[boxed]
if (primitive != null) {
when (primitive) {
BYTE_TYPE -> invokeMethodVisitor.iconst(value.toInt())
DOUBLE_TYPE -> invokeMethodVisitor.dconst(value.toDouble())
FLOAT_TYPE -> invokeMethodVisitor.fconst(value.toFloat())
LONG_TYPE -> invokeMethodVisitor.lconst(value.toLong())
INT_TYPE -> invokeMethodVisitor.iconst(value.toInt())
SHORT_TYPE -> invokeMethodVisitor.iconst(value.toInt())
}
box(primitive)
return
}
loadObjectConstant(value as Any, tType)
loadObjectConstant(value, boxed)
}
/**
@ -303,258 +250,100 @@ internal class AsmBuilder<T> internal constructor(
invokeMethodVisitor.invokestatic(
r.internalName,
"valueOf",
Type.getMethodDescriptor(r, primitive),
false
getMethodDescriptor(r, primitive),
false,
)
}
/**
* Unboxes the current boxed value and pushes it.
* Loads a variable [name] from arguments [Map] parameter of [Expression.invoke].
*/
private fun unboxTo(primitive: Type) = invokeMethodVisitor.invokevirtual(
NUMBER_TYPE.internalName,
NUMBER_CONVERTER_METHODS.getValue(primitive),
Type.getMethodDescriptor(primitive),
false
)
/**
* Loads [java.lang.Object] constant from constants.
*/
private fun loadObjectConstant(value: Any, type: Type): Unit = invokeMethodVisitor.run {
val idx = if (value in constants) constants.indexOf(value) else constants.apply { add(value) }.lastIndex
loadThis()
getfield(classType.internalName, "constants", OBJECT_ARRAY_TYPE.descriptor)
iconst(idx)
visitInsn(AALOAD)
checkcast(type)
}
internal fun loadNumeric(value: Number) {
if (expectationStack.peek() == NUMBER_TYPE) {
loadNumberConstant(value, true)
expectationStack.pop()
typeStack.push(NUMBER_TYPE)
} else (algebra as? NumericAlgebra<T>)?.number(value)?.let { loadTConstant(it) }
?: error("Cannot resolve numeric $value since target algebra is not numeric, and the current operation doesn't accept numbers.")
}
/**
* Loads this variable.
*/
private fun loadThis(): Unit = invokeMethodVisitor.load(invokeThisVar, classType)
/**
* Either loads a numeric constant [value] from the class's constants field or boxes a primitive
* constant from the constant pool (some numbers with special opcodes like [Opcodes.ICONST_0] aren't even loaded
* from it).
*/
private fun loadNumberConstant(value: Number, mustBeBoxed: Boolean) {
val boxed = value.javaClass.asm
val primitive = BOXED_TO_PRIMITIVES[boxed]
if (primitive != null) {
when (primitive) {
Type.BYTE_TYPE -> invokeMethodVisitor.iconst(value.toInt())
Type.DOUBLE_TYPE -> invokeMethodVisitor.dconst(value.toDouble())
Type.FLOAT_TYPE -> invokeMethodVisitor.fconst(value.toFloat())
Type.LONG_TYPE -> invokeMethodVisitor.lconst(value.toLong())
Type.INT_TYPE -> invokeMethodVisitor.iconst(value.toInt())
Type.SHORT_TYPE -> invokeMethodVisitor.iconst(value.toInt())
}
if (mustBeBoxed)
box(primitive)
return
}
loadObjectConstant(value, boxed)
if (!mustBeBoxed)
unboxTo(primitiveMask)
}
/**
* Loads a variable [name] from arguments [Map] parameter of [Expression.invoke]. The [defaultValue] may be
* provided.
*/
internal fun loadVariable(name: String): Unit = invokeMethodVisitor.run {
load(invokeArgumentsVar, MAP_TYPE)
fun loadVariable(name: String): Unit = invokeMethodVisitor.run {
load(1, MAP_TYPE)
aconst(name)
invokestatic(
MAP_INTRINSICS_TYPE.internalName,
"getOrFail",
Type.getMethodDescriptor(OBJECT_TYPE, MAP_TYPE, STRING_TYPE),
false
getMethodDescriptor(OBJECT_TYPE, MAP_TYPE, STRING_TYPE),
false,
)
checkcast(tType)
val expectedType = expectationStack.pop()
if (expectedType.sort == Type.OBJECT)
typeStack.push(tType)
else {
unboxTo(primitiveMask)
typeStack.push(primitiveMask)
}
}
/**
* Loads algebra from according field of the class and casts it to class of [algebra] provided.
*/
internal fun loadAlgebra() {
loadThis()
invokeMethodVisitor.getfield(classType.internalName, "algebra", tAlgebraType.descriptor)
}
inline fun buildCall(function: Function<T>, parameters: AsmBuilder<T>.() -> Unit) {
contract { callsInPlace(parameters, InvocationKind.EXACTLY_ONCE) }
val `interface` = function.javaClass.interfaces.first { it.interfaces.contains(Function::class.java) }
/**
* Writes a method instruction of opcode with its [owner], [method] and its [descriptor]. The default opcode is
* [Opcodes.INVOKEINTERFACE], since most Algebra functions are declared in interfaces. [loadAlgebra] should be
* called before the arguments and this operation.
*
* The result is casted to [T] automatically.
*/
internal fun invokeAlgebraOperation(
owner: String,
method: String,
descriptor: String,
expectedArity: Int,
opcode: Int = INVOKEINTERFACE,
) {
run loop@{
repeat(expectedArity) {
if (typeStack.isEmpty()) return@loop
typeStack.pop()
}
}
val arity = `interface`.methods.find { it.name == "invoke" }?.parameterCount
?: error("Provided function object doesn't contain invoke method")
invokeMethodVisitor.visitMethodInsn(
opcode,
owner,
method,
descriptor,
opcode == INVOKEINTERFACE
val type = getType(`interface`)
loadObjectConstant(function, type)
parameters(this)
invokeMethodVisitor.invokeinterface(
type.internalName,
"invoke",
getMethodDescriptor(OBJECT_TYPE, *Array(arity) { OBJECT_TYPE }),
)
invokeMethodVisitor.checkcast(tType)
val isLastExpr = expectationStack.size == 1
val expectedType = expectationStack.pop()
if (expectedType.sort == Type.OBJECT || isLastExpr)
typeStack.push(tType)
else {
unboxTo(primitiveMask)
typeStack.push(primitiveMask)
}
}
/**
* Writes a LDC Instruction with string constant provided.
*/
internal fun loadStringConstant(string: String): Unit = invokeMethodVisitor.aconst(string)
internal companion object {
/**
* Index of `this` variable in invoke method of the built subclass.
*/
private const val invokeThisVar: Int = 0
/**
* Index of `arguments` variable in invoke method of the built subclass.
*/
private const val invokeArgumentsVar: Int = 1
/**
* Maps JVM primitive numbers boxed types to their primitive ASM types.
*/
private val SIGNATURE_LETTERS: Map<Class<out Any>, Type> by lazy {
hashMapOf(
java.lang.Byte::class.java to Type.BYTE_TYPE,
java.lang.Short::class.java to Type.SHORT_TYPE,
java.lang.Integer::class.java to Type.INT_TYPE,
java.lang.Long::class.java to Type.LONG_TYPE,
java.lang.Float::class.java to Type.FLOAT_TYPE,
java.lang.Double::class.java to Type.DOUBLE_TYPE
)
}
companion object {
/**
* Maps JVM primitive numbers boxed ASM types to their primitive ASM types.
*/
private val BOXED_TO_PRIMITIVES: Map<Type, Type> by lazy { SIGNATURE_LETTERS.mapKeys { (k, _) -> k.asm } }
private val BOXED_TO_PRIMITIVES: Map<Type, Type> by lazy {
hashMapOf(
Byte::class.java.asm to BYTE_TYPE,
Short::class.java.asm to SHORT_TYPE,
Integer::class.java.asm to INT_TYPE,
Long::class.java.asm to LONG_TYPE,
Float::class.java.asm to FLOAT_TYPE,
Double::class.java.asm to DOUBLE_TYPE,
)
}
/**
* Maps JVM primitive numbers boxed ASM types to their primitive ASM types.
*/
private val PRIMITIVES_TO_BOXED: Map<Type, Type> by lazy {
BOXED_TO_PRIMITIVES.entries.stream().collect(
Collectors.toMap(
Map.Entry<Type, Type>::value,
Map.Entry<Type, Type>::key
)
toMap(Map.Entry<Type, Type>::value, Map.Entry<Type, Type>::key),
)
}
/**
* Maps primitive ASM types to [Number] functions unboxing them.
*/
private val NUMBER_CONVERTER_METHODS: Map<Type, String> by lazy {
hashMapOf(
Type.BYTE_TYPE to "byteValue",
Type.SHORT_TYPE to "shortValue",
Type.INT_TYPE to "intValue",
Type.LONG_TYPE to "longValue",
Type.FLOAT_TYPE to "floatValue",
Type.DOUBLE_TYPE to "doubleValue"
)
}
/**
* Provides boxed number types values of which can be stored in JVM bytecode constant pool.
*/
private val INLINABLE_NUMBERS: Set<Class<out Any>> by lazy { SIGNATURE_LETTERS.keys }
/**
* ASM type for [Expression].
*/
internal val EXPRESSION_TYPE: Type by lazy { Type.getObjectType("kscience/kmath/expressions/Expression") }
/**
* ASM type for [java.lang.Number].
*/
internal val NUMBER_TYPE: Type by lazy { Type.getObjectType("java/lang/Number") }
val EXPRESSION_TYPE: Type by lazy { getObjectType("kscience/kmath/expressions/Expression") }
/**
* ASM type for [java.util.Map].
*/
internal val MAP_TYPE: Type by lazy { Type.getObjectType("java/util/Map") }
val MAP_TYPE: Type by lazy { getObjectType("java/util/Map") }
/**
* ASM type for [java.lang.Object].
*/
internal val OBJECT_TYPE: Type by lazy { Type.getObjectType("java/lang/Object") }
val OBJECT_TYPE: Type by lazy { getObjectType("java/lang/Object") }
/**
* ASM type for array of [java.lang.Object].
*/
@Suppress("PLATFORM_CLASS_MAPPED_TO_KOTLIN", "RemoveRedundantQualifierName")
internal val OBJECT_ARRAY_TYPE: Type by lazy { Type.getType("[Ljava/lang/Object;") }
/**
* ASM type for [Algebra].
*/
internal val ALGEBRA_TYPE: Type by lazy { Type.getObjectType("kscience/kmath/operations/Algebra") }
val OBJECT_ARRAY_TYPE: Type by lazy { getType("[Ljava/lang/Object;") }
/**
* ASM type for [java.lang.String].
*/
internal val STRING_TYPE: Type by lazy { Type.getObjectType("java/lang/String") }
val STRING_TYPE: Type by lazy { getObjectType("java/lang/String") }
/**
* ASM type for MapIntrinsics.
*/
internal val MAP_INTRINSICS_TYPE: Type by lazy { Type.getObjectType("kscience/kmath/asm/internal/MapIntrinsics") }
val MAP_INTRINSICS_TYPE: Type by lazy { getObjectType("kscience/kmath/asm/internal/MapIntrinsics") }
}
}

View File

@ -1,20 +0,0 @@
package kscience.kmath.asm.internal
import kscience.kmath.ast.MST
/**
* Represents types known in [MST], numbers and general values.
*/
internal enum class MstType {
GENERAL,
NUMBER;
companion object {
fun fromMst(mst: MST): MstType {
if (mst is MST.Numeric)
return NUMBER
return GENERAL
}
}
}

View File

@ -2,29 +2,11 @@ package kscience.kmath.asm.internal
import kscience.kmath.ast.MST
import kscience.kmath.expressions.Expression
import kscience.kmath.operations.Algebra
import kscience.kmath.operations.FieldOperations
import kscience.kmath.operations.RingOperations
import kscience.kmath.operations.SpaceOperations
import org.objectweb.asm.*
import org.objectweb.asm.Opcodes.INVOKEVIRTUAL
import org.objectweb.asm.commons.InstructionAdapter
import java.lang.reflect.Method
import java.util.*
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
private val methodNameAdapters: Map<Pair<String, Int>, String> by lazy {
hashMapOf(
SpaceOperations.PLUS_OPERATION to 2 to "add",
RingOperations.TIMES_OPERATION to 2 to "multiply",
FieldOperations.DIV_OPERATION to 2 to "divide",
SpaceOperations.PLUS_OPERATION to 1 to "unaryPlus",
SpaceOperations.MINUS_OPERATION to 1 to "unaryMinus",
SpaceOperations.MINUS_OPERATION to 2 to "minus"
)
}
/**
* Returns ASM [Type] for given [Class].
*
@ -109,107 +91,3 @@ internal inline fun ClassWriter.visitField(
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return visitField(access, name, descriptor, signature, value).apply(block)
}
private fun <T> AsmBuilder<T>.findSpecific(context: Algebra<T>, name: String, parameterTypes: Array<MstType>): Method? =
context.javaClass.methods.find { method ->
val nameValid = method.name == name
val arityValid = method.parameters.size == parameterTypes.size
val notBridgeInPrimitive = !(primitiveMode && method.isBridge)
val paramsValid = method.parameterTypes.zip(parameterTypes).all { (type, mstType) ->
!(mstType != MstType.NUMBER && type == java.lang.Number::class.java)
}
nameValid && arityValid && notBridgeInPrimitive && paramsValid
}
/**
* Checks if the target [context] for code generation contains a method with needed [name] and arity, also builds
* type expectation stack for needed arity.
*
* @author Iaroslav Postovalov
*/
private fun <T> AsmBuilder<T>.buildExpectationStack(
context: Algebra<T>,
name: String,
parameterTypes: Array<MstType>
): Boolean {
val arity = parameterTypes.size
val specific = findSpecific(context, methodNameAdapters[name to arity] ?: name, parameterTypes)
if (specific != null)
mapTypes(specific, parameterTypes).reversed().forEach { expectationStack.push(it) }
else
expectationStack.addAll(Collections.nCopies(arity, tType))
return specific != null
}
private fun <T> AsmBuilder<T>.mapTypes(method: Method, parameterTypes: Array<MstType>): List<Type> = method
.parameterTypes
.zip(parameterTypes)
.map { (type, mstType) ->
when {
type == java.lang.Number::class.java && mstType == MstType.NUMBER -> AsmBuilder.NUMBER_TYPE
else -> if (primitiveMode) primitiveMask else primitiveMaskBoxed
}
}
/**
* Checks if the target [context] for code generation contains a method with needed [name] and arity and inserts
* [AsmBuilder.invokeAlgebraOperation] of this method.
*
* @author Iaroslav Postovalov
*/
private fun <T> AsmBuilder<T>.tryInvokeSpecific(
context: Algebra<T>,
name: String,
parameterTypes: Array<MstType>
): Boolean {
val arity = parameterTypes.size
val theName = methodNameAdapters[name to arity] ?: name
val spec = findSpecific(context, theName, parameterTypes) ?: return false
val owner = context.javaClass.asm
invokeAlgebraOperation(
owner = owner.internalName,
method = theName,
descriptor = Type.getMethodDescriptor(primitiveMaskBoxed, *mapTypes(spec, parameterTypes).toTypedArray()),
expectedArity = arity,
opcode = INVOKEVIRTUAL
)
return true
}
/**
* Builds specialized [context] call with option to fallback to generic algebra operation accepting [String].
*
* @author Iaroslav Postovalov
*/
internal inline fun <T> AsmBuilder<T>.buildAlgebraOperationCall(
context: Algebra<T>,
name: String,
fallbackMethodName: String,
parameterTypes: Array<MstType>,
parameters: AsmBuilder<T>.() -> Unit
) {
contract { callsInPlace(parameters, InvocationKind.EXACTLY_ONCE) }
val arity = parameterTypes.size
loadAlgebra()
if (!buildExpectationStack(context, name, parameterTypes)) loadStringConstant(name)
parameters()
if (!tryInvokeSpecific(context, name, parameterTypes)) invokeAlgebraOperation(
owner = AsmBuilder.ALGEBRA_TYPE.internalName,
method = fallbackMethodName,
descriptor = Type.getMethodDescriptor(
AsmBuilder.OBJECT_TYPE,
AsmBuilder.STRING_TYPE,
*Array(arity) { AsmBuilder.OBJECT_TYPE }
),
expectedArity = arity
)
}

View File

@ -10,15 +10,11 @@ import kotlin.test.Test
import kotlin.test.assertEquals
internal class TestAsmAlgebras {
@Test
fun space() {
val res1 = ByteRing.mstInSpace {
binaryOperation(
"+",
unaryOperation(
"+",
binaryOperation("+")(
unaryOperation("+")(
number(3.toByte()) - (number(2.toByte()) + (multiply(
add(number(1), number(1)),
2
@ -30,11 +26,8 @@ internal class TestAsmAlgebras {
}("x" to 2.toByte())
val res2 = ByteRing.mstInSpace {
binaryOperation(
"+",
unaryOperation(
"+",
binaryOperation("+")(
unaryOperation("+")(
number(3.toByte()) - (number(2.toByte()) + (multiply(
add(number(1), number(1)),
2
@ -51,11 +44,8 @@ internal class TestAsmAlgebras {
@Test
fun ring() {
val res1 = ByteRing.mstInRing {
binaryOperation(
"+",
unaryOperation(
"+",
binaryOperation("+")(
unaryOperation("+")(
(symbol("x") - (2.toByte() + (multiply(
add(number(1), number(1)),
2
@ -67,17 +57,13 @@ internal class TestAsmAlgebras {
}("x" to 3.toByte())
val res2 = ByteRing.mstInRing {
binaryOperation(
"+",
unaryOperation(
"+",
binaryOperation("+")(
unaryOperation("+")(
(symbol("x") - (2.toByte() + (multiply(
add(number(1), number(1)),
2
) + 1.toByte()))) * 3.0 - 1.toByte()
),
number(1)
) * number(2)
}.compile()("x" to 3.toByte())
@ -88,8 +74,7 @@ internal class TestAsmAlgebras {
@Test
fun field() {
val res1 = RealField.mstInField {
+(3 - 2 + 2 * number(1) + 1.0) + binaryOperation(
"+",
+(3 - 2 + 2 * number(1) + 1.0) + binaryOperation("+")(
(3.0 - (symbol("x") + (multiply(add(number(1.0), number(1.0)), 2) + 1.0))) * 3 - 1.0
+ number(1),
number(1) / 2 + number(2.0) * one
@ -97,8 +82,7 @@ internal class TestAsmAlgebras {
}("x" to 2.0)
val res2 = RealField.mstInField {
+(3 - 2 + 2 * number(1) + 1.0) + binaryOperation(
"+",
+(3 - 2 + 2 * number(1) + 1.0) + binaryOperation("+")(
(3.0 - (symbol("x") + (multiply(add(number(1.0), number(1.0)), 2) + 1.0))) * 3 - 1.0
+ number(1),
number(1) / 2 + number(2.0) * one

View File

@ -1,10 +1,11 @@
package kscience.kmath.asm
import kscience.kmath.asm.compile
import kscience.kmath.ast.mstInExtendedField
import kscience.kmath.ast.mstInField
import kscience.kmath.ast.mstInSpace
import kscience.kmath.expressions.invoke
import kscience.kmath.operations.RealField
import kotlin.random.Random
import kotlin.test.Test
import kotlin.test.assertEquals
@ -28,4 +29,13 @@ internal class TestAsmExpressions {
val res = RealField.mstInField { symbol("x") * 2 }("x" to 2.0)
assertEquals(4.0, res)
}
@Test
fun testMultipleCalls() {
val e = RealField.mstInExtendedField { sin(symbol("x")).pow(4) - 6 * symbol("x") / tanh(symbol("x")) }.compile()
val r = Random(0)
var s = 0.0
repeat(1000000) { s += e("x" to r.nextDouble()) }
println(s)
}
}

View File

@ -1,6 +1,5 @@
package kscience.kmath.asm
import kscience.kmath.asm.compile
import kscience.kmath.ast.mstInField
import kscience.kmath.expressions.invoke
import kscience.kmath.operations.RealField
@ -10,44 +9,44 @@ import kotlin.test.assertEquals
internal class TestAsmSpecialization {
@Test
fun testUnaryPlus() {
val expr = RealField.mstInField { unaryOperation("+", symbol("x")) }.compile()
val expr = RealField.mstInField { unaryOperation("+")(symbol("x")) }.compile()
assertEquals(2.0, expr("x" to 2.0))
}
@Test
fun testUnaryMinus() {
val expr = RealField.mstInField { unaryOperation("-", symbol("x")) }.compile()
val expr = RealField.mstInField { unaryOperation("-")(symbol("x")) }.compile()
assertEquals(-2.0, expr("x" to 2.0))
}
@Test
fun testAdd() {
val expr = RealField.mstInField { binaryOperation("+", symbol("x"), symbol("x")) }.compile()
val expr = RealField.mstInField { binaryOperation("+")(symbol("x"), symbol("x")) }.compile()
assertEquals(4.0, expr("x" to 2.0))
}
@Test
fun testSine() {
val expr = RealField.mstInField { unaryOperation("sin", symbol("x")) }.compile()
val expr = RealField.mstInField { unaryOperation("sin")(symbol("x")) }.compile()
assertEquals(0.0, expr("x" to 0.0))
}
@Test
fun testMinus() {
val expr = RealField.mstInField { binaryOperation("-", symbol("x"), symbol("x")) }.compile()
val expr = RealField.mstInField { binaryOperation("-")(symbol("x"), symbol("x")) }.compile()
assertEquals(0.0, expr("x" to 2.0))
}
@Test
fun testDivide() {
val expr = RealField.mstInField { binaryOperation("/", symbol("x"), symbol("x")) }.compile()
val expr = RealField.mstInField { binaryOperation("/")(symbol("x"), symbol("x")) }.compile()
assertEquals(1.0, expr("x" to 2.0))
}
@Test
fun testPower() {
val expr = RealField
.mstInField { binaryOperation("power", symbol("x"), number(2)) }
.mstInField { binaryOperation("pow")(symbol("x"), number(2)) }
.compile()
assertEquals(4.0, expr("x" to 2.0))

View File

@ -17,6 +17,6 @@ internal class TestAsmVariables {
@Test
fun testVariableWithoutDefaultFails() {
val expr = ByteRing.mstInRing { symbol("x") }
assertFailsWith<IllegalStateException> { expr() }
assertFailsWith<NoSuchElementException> { expr() }
}
}

View File

@ -1,8 +1,5 @@
package kscience.kmath.ast
import kscience.kmath.ast.evaluate
import kscience.kmath.ast.mstInField
import kscience.kmath.ast.parseMath
import kscience.kmath.expressions.invoke
import kscience.kmath.operations.Algebra
import kscience.kmath.operations.Complex
@ -45,10 +42,13 @@ internal class ParserTest {
val magicalAlgebra = object : Algebra<String> {
override fun symbol(value: String): String = value
override fun unaryOperation(operation: String, arg: String): String = throw NotImplementedError()
override fun unaryOperation(operation: String): (arg: String) -> String {
throw NotImplementedError()
}
override fun binaryOperation(operation: String, left: String, right: String): String = when (operation) {
"magic" -> "$left$right"
override fun binaryOperation(operation: String): (left: String, right: String) -> String =
when (operation) {
"magic" -> { left, right -> "$left$right" }
else -> throw NotImplementedError()
}
}

View File

@ -7,9 +7,8 @@ import kscience.kmath.operations.*
*
* @param algebra The algebra to provide for Expressions built.
*/
public abstract class FunctionalExpressionAlgebra<T, A : Algebra<T>>(
public val algebra: A,
) : ExpressionAlgebra<T, Expression<T>> {
public abstract class FunctionalExpressionAlgebra<T, A : Algebra<T>>(public val algebra: A) :
ExpressionAlgebra<T, Expression<T>> {
/**
* Builds an Expression of constant expression which does not depend on arguments.
*/
@ -25,19 +24,18 @@ public abstract class FunctionalExpressionAlgebra<T, A : Algebra<T>>(
/**
* Builds an Expression of dynamic call of binary operation [operation] on [left] and [right].
*/
public override fun binaryOperation(
operation: String,
left: Expression<T>,
right: Expression<T>,
): Expression<T> = Expression { arguments ->
algebra.binaryOperation(operation, left.invoke(arguments), right.invoke(arguments))
public override fun binaryOperation(operation: String): (left: Expression<T>, right: Expression<T>) -> Expression<T> =
{ left, right ->
Expression { arguments ->
algebra.binaryOperation(operation)(left.invoke(arguments), right.invoke(arguments))
}
}
/**
* Builds an Expression of dynamic call of unary operation with name [operation] on [arg].
*/
public override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> = Expression { arguments ->
algebra.unaryOperation(operation, arg.invoke(arguments))
public override fun unaryOperation(operation: String): (arg: Expression<T>) -> Expression<T> = { arg ->
Expression { arguments -> algebra.unaryOperation(operation)(arg.invoke(arguments)) }
}
}
@ -52,7 +50,7 @@ public open class FunctionalExpressionSpace<T, A : Space<T>>(algebra: A) :
* Builds an Expression of addition of two another expressions.
*/
public override fun add(a: Expression<T>, b: Expression<T>): Expression<T> =
binaryOperation(SpaceOperations.PLUS_OPERATION, a, b)
binaryOperation(SpaceOperations.PLUS_OPERATION)(a, b)
/**
* Builds an Expression of multiplication of expression by number.
@ -66,11 +64,11 @@ public open class FunctionalExpressionSpace<T, A : Space<T>>(algebra: A) :
public operator fun T.plus(arg: Expression<T>): Expression<T> = arg + this
public operator fun T.minus(arg: Expression<T>): Expression<T> = arg - this
public override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> =
super<FunctionalExpressionAlgebra>.unaryOperation(operation, arg)
public override fun unaryOperation(operation: String): (arg: Expression<T>) -> Expression<T> =
super<FunctionalExpressionAlgebra>.unaryOperation(operation)
public override fun binaryOperation(operation: String, left: Expression<T>, right: Expression<T>): Expression<T> =
super<FunctionalExpressionAlgebra>.binaryOperation(operation, left, right)
public override fun binaryOperation(operation: String): (left: Expression<T>, right: Expression<T>) -> Expression<T> =
super<FunctionalExpressionAlgebra>.binaryOperation(operation)
}
public open class FunctionalExpressionRing<T, A>(algebra: A) : FunctionalExpressionSpace<T, A>(algebra),
@ -82,16 +80,16 @@ public open class FunctionalExpressionRing<T, A>(algebra: A) : FunctionalExpress
* Builds an Expression of multiplication of two expressions.
*/
public override fun multiply(a: Expression<T>, b: Expression<T>): Expression<T> =
binaryOperation(RingOperations.TIMES_OPERATION, a, b)
binaryOperation(RingOperations.TIMES_OPERATION)(a, b)
public operator fun Expression<T>.times(arg: T): Expression<T> = this * const(arg)
public operator fun T.times(arg: Expression<T>): Expression<T> = arg * this
public override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> =
super<FunctionalExpressionSpace>.unaryOperation(operation, arg)
public override fun unaryOperation(operation: String): (arg: Expression<T>) -> Expression<T> =
super<FunctionalExpressionSpace>.unaryOperation(operation)
public override fun binaryOperation(operation: String, left: Expression<T>, right: Expression<T>): Expression<T> =
super<FunctionalExpressionSpace>.binaryOperation(operation, left, right)
public override fun binaryOperation(operation: String): (left: Expression<T>, right: Expression<T>) -> Expression<T> =
super<FunctionalExpressionSpace>.binaryOperation(operation)
}
public open class FunctionalExpressionField<T, A>(algebra: A) :
@ -101,49 +99,49 @@ public open class FunctionalExpressionField<T, A>(algebra: A) :
* Builds an Expression of division an expression by another one.
*/
public override fun divide(a: Expression<T>, b: Expression<T>): Expression<T> =
binaryOperation(FieldOperations.DIV_OPERATION, a, b)
binaryOperation(FieldOperations.DIV_OPERATION)(a, b)
public operator fun Expression<T>.div(arg: T): Expression<T> = this / const(arg)
public operator fun T.div(arg: Expression<T>): Expression<T> = arg / this
public override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> =
super<FunctionalExpressionRing>.unaryOperation(operation, arg)
public override fun unaryOperation(operation: String): (arg: Expression<T>) -> Expression<T> =
super<FunctionalExpressionRing>.unaryOperation(operation)
public override fun binaryOperation(operation: String, left: Expression<T>, right: Expression<T>): Expression<T> =
super<FunctionalExpressionRing>.binaryOperation(operation, left, right)
public override fun binaryOperation(operation: String): (left: Expression<T>, right: Expression<T>) -> Expression<T> =
super<FunctionalExpressionRing>.binaryOperation(operation)
}
public open class FunctionalExpressionExtendedField<T, A>(algebra: A) :
FunctionalExpressionField<T, A>(algebra),
ExtendedField<Expression<T>> where A : ExtendedField<T>, A : NumericAlgebra<T> {
public override fun sin(arg: Expression<T>): Expression<T> =
unaryOperation(TrigonometricOperations.SIN_OPERATION, arg)
unaryOperation(TrigonometricOperations.SIN_OPERATION)(arg)
public override fun cos(arg: Expression<T>): Expression<T> =
unaryOperation(TrigonometricOperations.COS_OPERATION, arg)
unaryOperation(TrigonometricOperations.COS_OPERATION)(arg)
public override fun asin(arg: Expression<T>): Expression<T> =
unaryOperation(TrigonometricOperations.ASIN_OPERATION, arg)
unaryOperation(TrigonometricOperations.ASIN_OPERATION)(arg)
public override fun acos(arg: Expression<T>): Expression<T> =
unaryOperation(TrigonometricOperations.ACOS_OPERATION, arg)
unaryOperation(TrigonometricOperations.ACOS_OPERATION)(arg)
public override fun atan(arg: Expression<T>): Expression<T> =
unaryOperation(TrigonometricOperations.ATAN_OPERATION, arg)
unaryOperation(TrigonometricOperations.ATAN_OPERATION)(arg)
public override fun power(arg: Expression<T>, pow: Number): Expression<T> =
binaryOperation(PowerOperations.POW_OPERATION, arg, number(pow))
binaryOperation(PowerOperations.POW_OPERATION)(arg, number(pow))
public override fun exp(arg: Expression<T>): Expression<T> =
unaryOperation(ExponentialOperations.EXP_OPERATION, arg)
unaryOperation(ExponentialOperations.EXP_OPERATION)(arg)
public override fun ln(arg: Expression<T>): Expression<T> = unaryOperation(ExponentialOperations.LN_OPERATION, arg)
public override fun ln(arg: Expression<T>): Expression<T> = unaryOperation(ExponentialOperations.LN_OPERATION)(arg)
public override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> =
super<FunctionalExpressionField>.unaryOperation(operation, arg)
public override fun unaryOperation(operation: String): (arg: Expression<T>) -> Expression<T> =
super<FunctionalExpressionField>.unaryOperation(operation)
public override fun binaryOperation(operation: String, left: Expression<T>, right: Expression<T>): Expression<T> =
super<FunctionalExpressionField>.binaryOperation(operation, left, right)
public override fun binaryOperation(operation: String): (left: Expression<T>, right: Expression<T>) -> Expression<T> =
super<FunctionalExpressionField>.binaryOperation(operation)
}
public inline fun <T, A : Space<T>> A.expressionInSpace(block: FunctionalExpressionSpace<T, A>.() -> Expression<T>): Expression<T> =

View File

@ -19,9 +19,10 @@ public interface MatrixContext<T : Any, out M : Matrix<T>> : SpaceOperations<Mat
public fun produce(rows: Int, columns: Int, initializer: (i: Int, j: Int) -> T): M
@Suppress("UNCHECKED_CAST")
public override fun binaryOperation(operation: String, left: Matrix<T>, right: Matrix<T>): M = when (operation) {
"dot" -> left dot right
else -> super.binaryOperation(operation, left, right) as M
public override fun binaryOperation(operation: String): (left: Matrix<T>, right: Matrix<T>) -> M =
when (operation) {
"dot" -> { left, right -> left dot right }
else -> super.binaryOperation(operation) as (Matrix<T>, Matrix<T>) -> M
}
/**

View File

@ -13,19 +13,21 @@ public annotation class KMathContext
*/
public interface Algebra<T> {
/**
* Wrap raw string or variable
* Wraps raw string or variable.
*/
public fun symbol(value: String): T = error("Wrapping of '$value' is not supported in $this")
/**
* Dynamic call of unary operation with name [operation] on [arg]
* Dynamically dispatches an unary operation with name [operation].
*/
public fun unaryOperation(operation: String, arg: T): T
public fun unaryOperation(operation: String): (arg: T) -> T =
error("Unary operation $operation not defined in $this")
/**
* Dynamic call of binary operation [operation] on [left] and [right]
* Dynamically dispatches a binary operation with name [operation].
*/
public fun binaryOperation(operation: String, left: T, right: T): T
public fun binaryOperation(operation: String): (left: T, right: T) -> T =
error("Binary operation $operation not defined in $this")
}
/**
@ -40,16 +42,28 @@ public interface NumericAlgebra<T> : Algebra<T> {
public fun number(value: Number): T
/**
* Dynamic call of binary operation [operation] on [left] and [right] where left element is [Number].
* Dynamically dispatches a binary operation with name [operation] where the left argument is [Number].
*/
public fun leftSideNumberOperation(operation: String, left: Number, right: T): T =
binaryOperation(operation, number(left), right)
public fun leftSideNumberOperation(operation: String): (left: Number, right: T) -> T =
{ l, r -> binaryOperation(operation)(number(l), r) }
// /**
// * Dynamically calls a binary operation with name [operation] where the left argument is [Number].
// */
// public fun leftSideNumberOperation(operation: String, left: Number, right: T): T =
// leftSideNumberOperation(operation)(left, right)
/**
* Dynamic call of binary operation [operation] on [left] and [right] where right element is [Number].
* Dynamically dispatches a binary operation with name [operation] where the right argument is [Number].
*/
public fun rightSideNumberOperation(operation: String, left: T, right: Number): T =
leftSideNumberOperation(operation, right, left)
public fun rightSideNumberOperation(operation: String): (left: T, right: Number) -> T =
{ l, r -> binaryOperation(operation)(l, number(r)) }
// /**
// * Dynamically calls a binary operation with name [operation] where the right argument is [Number].
// */
// public fun rightSideNumberOperation(operation: String, left: T, right: Number): T =
// rightSideNumberOperation(operation)(left, right)
}
/**
@ -146,16 +160,16 @@ public interface SpaceOperations<T> : Algebra<T> {
*/
public operator fun Number.times(b: T): T = b * this
override fun unaryOperation(operation: String, arg: T): T = when (operation) {
PLUS_OPERATION -> arg
MINUS_OPERATION -> -arg
else -> error("Unary operation $operation not defined in $this")
override fun unaryOperation(operation: String): (arg: T) -> T = when (operation) {
PLUS_OPERATION -> { arg -> arg }
MINUS_OPERATION -> { arg -> -arg }
else -> super.unaryOperation(operation)
}
override fun binaryOperation(operation: String, left: T, right: T): T = when (operation) {
PLUS_OPERATION -> add(left, right)
MINUS_OPERATION -> left - right
else -> error("Binary operation $operation not defined in $this")
override fun binaryOperation(operation: String): (left: T, right: T) -> T = when (operation) {
PLUS_OPERATION -> ::add
MINUS_OPERATION -> { left, right -> left - right }
else -> super.binaryOperation(operation)
}
public companion object {
@ -207,9 +221,9 @@ public interface RingOperations<T> : SpaceOperations<T> {
*/
public operator fun T.times(b: T): T = multiply(this, b)
override fun binaryOperation(operation: String, left: T, right: T): T = when (operation) {
TIMES_OPERATION -> multiply(left, right)
else -> super.binaryOperation(operation, left, right)
override fun binaryOperation(operation: String): (left: T, right: T) -> T = when (operation) {
TIMES_OPERATION -> ::multiply
else -> super.binaryOperation(operation)
}
public companion object {
@ -234,20 +248,6 @@ public interface Ring<T> : Space<T>, RingOperations<T>, NumericAlgebra<T> {
override fun number(value: Number): T = one * value.toDouble()
override fun leftSideNumberOperation(operation: String, left: Number, right: T): T = when (operation) {
SpaceOperations.PLUS_OPERATION -> left + right
SpaceOperations.MINUS_OPERATION -> left - right
RingOperations.TIMES_OPERATION -> left * right
else -> super.leftSideNumberOperation(operation, left, right)
}
override fun rightSideNumberOperation(operation: String, left: T, right: Number): T = when (operation) {
SpaceOperations.PLUS_OPERATION -> left + right
SpaceOperations.MINUS_OPERATION -> left - right
RingOperations.TIMES_OPERATION -> left * right
else -> super.rightSideNumberOperation(operation, left, right)
}
/**
* Addition of element and scalar.
*
@ -308,9 +308,9 @@ public interface FieldOperations<T> : RingOperations<T> {
*/
public operator fun T.div(b: T): T = divide(this, b)
override fun binaryOperation(operation: String, left: T, right: T): T = when (operation) {
DIV_OPERATION -> divide(left, right)
else -> super.binaryOperation(operation, left, right)
override fun binaryOperation(operation: String): (left: T, right: T) -> T = when (operation) {
DIV_OPERATION -> ::divide
else -> super.binaryOperation(operation)
}
public companion object {

View File

@ -15,23 +15,23 @@ public interface ExtendedFieldOperations<T> :
public override fun tan(arg: T): T = sin(arg) / cos(arg)
public override fun tanh(arg: T): T = sinh(arg) / cosh(arg)
public override fun unaryOperation(operation: String, arg: T): T = when (operation) {
TrigonometricOperations.COS_OPERATION -> cos(arg)
TrigonometricOperations.SIN_OPERATION -> sin(arg)
TrigonometricOperations.TAN_OPERATION -> tan(arg)
TrigonometricOperations.ACOS_OPERATION -> acos(arg)
TrigonometricOperations.ASIN_OPERATION -> asin(arg)
TrigonometricOperations.ATAN_OPERATION -> atan(arg)
HyperbolicOperations.COSH_OPERATION -> cosh(arg)
HyperbolicOperations.SINH_OPERATION -> sinh(arg)
HyperbolicOperations.TANH_OPERATION -> tanh(arg)
HyperbolicOperations.ACOSH_OPERATION -> acosh(arg)
HyperbolicOperations.ASINH_OPERATION -> asinh(arg)
HyperbolicOperations.ATANH_OPERATION -> atanh(arg)
PowerOperations.SQRT_OPERATION -> sqrt(arg)
ExponentialOperations.EXP_OPERATION -> exp(arg)
ExponentialOperations.LN_OPERATION -> ln(arg)
else -> super.unaryOperation(operation, arg)
public override fun unaryOperation(operation: String): (arg: T) -> T = when (operation) {
TrigonometricOperations.COS_OPERATION -> ::cos
TrigonometricOperations.SIN_OPERATION -> ::sin
TrigonometricOperations.TAN_OPERATION -> ::tan
TrigonometricOperations.ACOS_OPERATION -> ::acos
TrigonometricOperations.ASIN_OPERATION -> ::asin
TrigonometricOperations.ATAN_OPERATION -> ::atan
HyperbolicOperations.COSH_OPERATION -> ::cosh
HyperbolicOperations.SINH_OPERATION -> ::sinh
HyperbolicOperations.TANH_OPERATION -> ::tanh
HyperbolicOperations.ACOSH_OPERATION -> ::acosh
HyperbolicOperations.ASINH_OPERATION -> ::asinh
HyperbolicOperations.ATANH_OPERATION -> ::atanh
PowerOperations.SQRT_OPERATION -> ::sqrt
ExponentialOperations.EXP_OPERATION -> ::exp
ExponentialOperations.LN_OPERATION -> ::ln
else -> super<FieldOperations>.unaryOperation(operation)
}
}
@ -46,9 +46,10 @@ public interface ExtendedField<T> : ExtendedFieldOperations<T>, Field<T> {
public override fun acosh(arg: T): T = ln(arg + sqrt((arg - one) * (arg + one)))
public override fun atanh(arg: T): T = (ln(arg + one) - ln(one - arg)) / 2
public override fun rightSideNumberOperation(operation: String, left: T, right: Number): T = when (operation) {
PowerOperations.POW_OPERATION -> power(left, right)
else -> super.rightSideNumberOperation(operation, left, right)
public override fun rightSideNumberOperation(operation: String): (left: T, right: Number) -> T =
when (operation) {
PowerOperations.POW_OPERATION -> ::power
else -> super.rightSideNumberOperation(operation)
}
}
@ -80,9 +81,10 @@ public object RealField : ExtendedField<Double>, Norm<Double, Double> {
public override val one: Double
get() = 1.0
public override fun binaryOperation(operation: String, left: Double, right: Double): Double = when (operation) {
PowerOperations.POW_OPERATION -> left pow right
else -> super.binaryOperation(operation, left, right)
public override fun binaryOperation(operation: String): (left: Double, right: Double) -> Double =
when (operation) {
PowerOperations.POW_OPERATION -> ::power
else -> super.binaryOperation(operation)
}
public override inline fun add(a: Double, b: Double): Double = a + b
@ -130,9 +132,9 @@ public object FloatField : ExtendedField<Float>, Norm<Float, Float> {
public override val one: Float
get() = 1.0f
public override fun binaryOperation(operation: String, left: Float, right: Float): Float = when (operation) {
PowerOperations.POW_OPERATION -> left pow right
else -> super.binaryOperation(operation, left, right)
public override fun binaryOperation(operation: String): (left: Float, right: Float) -> Float = when (operation) {
PowerOperations.POW_OPERATION -> ::power
else -> super.binaryOperation(operation)
}
public override inline fun add(a: Float, b: Float): Float = a + b