Feature/diff api #154
@ -1,95 +0,0 @@
|
|||||||
package kscience.kmath.commons.optimization
|
|
||||||
|
|
||||||
import kscience.kmath.commons.expressions.DerivativeStructureExpression
|
|
||||||
import kscience.kmath.commons.expressions.DerivativeStructureField
|
|
||||||
import kscience.kmath.expressions.DifferentiableExpression
|
|
||||||
import kscience.kmath.expressions.Expression
|
|
||||||
import kscience.kmath.expressions.StringSymbol
|
|
||||||
import kscience.kmath.expressions.Symbol
|
|
||||||
import kscience.kmath.structures.Buffer
|
|
||||||
import kscience.kmath.structures.indices
|
|
||||||
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure
|
|
||||||
import org.apache.commons.math3.optim.nonlinear.scalar.GoalType
|
|
||||||
import kotlin.math.pow
|
|
||||||
|
|
||||||
|
|
||||||
public object CMFit {
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Generate a chi squared expression from given x-y-sigma model represented by an expression. Does not provide derivatives
|
|
||||||
* TODO move to prob/stat
|
|
||||||
*/
|
|
||||||
public fun chiSquared(
|
|
||||||
x: Buffer<Double>,
|
|
||||||
y: Buffer<Double>,
|
|
||||||
yErr: Buffer<Double>,
|
|
||||||
model: Expression<Double>,
|
|
||||||
xSymbol: Symbol = StringSymbol("x"),
|
|
||||||
): Expression<Double> {
|
|
||||||
require(x.size == y.size) { "X and y buffers should be of the same size" }
|
|
||||||
require(y.size == yErr.size) { "Y and yErr buffer should of the same size" }
|
|
||||||
return Expression { arguments ->
|
|
||||||
x.indices.sumByDouble {
|
|
||||||
val xValue = x[it]
|
|
||||||
val yValue = y[it]
|
|
||||||
val yErrValue = yErr[it]
|
|
||||||
val modifiedArgs = arguments + (xSymbol to xValue)
|
|
||||||
val modelValue = model(modifiedArgs)
|
|
||||||
((yValue - modelValue) / yErrValue).pow(2)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Generate a chi squared expression from given x-y-sigma data and inline model. Provides automatic differentiation
|
|
||||||
*/
|
|
||||||
public fun chiSquared(
|
|
||||||
x: Buffer<Double>,
|
|
||||||
y: Buffer<Double>,
|
|
||||||
yErr: Buffer<Double>,
|
|
||||||
model: DerivativeStructureField.(x: DerivativeStructure) -> DerivativeStructure,
|
|
||||||
): DerivativeStructureExpression {
|
|
||||||
require(x.size == y.size) { "X and y buffers should be of the same size" }
|
|
||||||
require(y.size == yErr.size) { "Y and yErr buffer should of the same size" }
|
|
||||||
return DerivativeStructureExpression {
|
|
||||||
var sum = zero
|
|
||||||
x.indices.forEach {
|
|
||||||
val xValue = x[it]
|
|
||||||
val yValue = y[it]
|
|
||||||
val yErrValue = yErr[it]
|
|
||||||
val modelValue = model(const(xValue))
|
|
||||||
sum += ((yValue - modelValue) / yErrValue).pow(2)
|
|
||||||
}
|
|
||||||
sum
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Optimize expression without derivatives
|
|
||||||
*/
|
|
||||||
public fun Expression<Double>.optimize(
|
|
||||||
vararg symbols: Symbol,
|
|
||||||
configuration: CMOptimizationProblem.() -> Unit,
|
|
||||||
): OptimizationResult<Double> = optimizeWith(CMOptimizationProblem, symbols = symbols, configuration)
|
|
||||||
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Optimize differentiable expression
|
|
||||||
*/
|
|
||||||
public fun DifferentiableExpression<Double>.optimize(
|
|
||||||
vararg symbols: Symbol,
|
|
||||||
configuration: CMOptimizationProblem.() -> Unit,
|
|
||||||
): OptimizationResult<Double> = optimizeWith(CMOptimizationProblem, symbols = symbols, configuration)
|
|
||||||
|
|
||||||
public fun DifferentiableExpression<Double>.minimize(
|
|
||||||
vararg startPoint: Pair<Symbol, Double>,
|
|
||||||
configuration: CMOptimizationProblem.() -> Unit = {},
|
|
||||||
): OptimizationResult<Double> {
|
|
||||||
require(startPoint.isNotEmpty()) { "Must provide a list of symbols for optimization" }
|
|
||||||
val problem = CMOptimizationProblem(startPoint.map { it.first }).apply(configuration)
|
|
||||||
problem.diffExpression(this)
|
|
||||||
problem.initialGuess(startPoint.toMap())
|
|
||||||
problem.goal(GoalType.MINIMIZE)
|
|
||||||
return problem.optimize()
|
|
||||||
}
|
|
@ -0,0 +1,68 @@
|
|||||||
|
package kscience.kmath.commons.optimization
|
||||||
|
|
||||||
|
import kscience.kmath.commons.expressions.DerivativeStructureField
|
||||||
|
import kscience.kmath.expressions.DifferentiableExpression
|
||||||
|
import kscience.kmath.expressions.Expression
|
||||||
|
import kscience.kmath.expressions.Symbol
|
||||||
|
import kscience.kmath.prob.Fitting
|
||||||
|
import kscience.kmath.structures.Buffer
|
||||||
|
import kscience.kmath.structures.asBuffer
|
||||||
|
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure
|
||||||
|
import org.apache.commons.math3.optim.nonlinear.scalar.GoalType
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Generate a chi squared expression from given x-y-sigma data and inline model. Provides automatic differentiation
|
||||||
|
*/
|
||||||
|
public fun Fitting.chiSquared(
|
||||||
|
x: Buffer<Double>,
|
||||||
|
y: Buffer<Double>,
|
||||||
|
yErr: Buffer<Double>,
|
||||||
|
model: DerivativeStructureField.(x: DerivativeStructure) -> DerivativeStructure,
|
||||||
|
): DifferentiableExpression<Double> = chiSquared(DerivativeStructureField, x, y, yErr, model)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Generate a chi squared expression from given x-y-sigma data and inline model. Provides automatic differentiation
|
||||||
|
*/
|
||||||
|
public fun Fitting.chiSquared(
|
||||||
|
x: Iterable<Double>,
|
||||||
|
y: Iterable<Double>,
|
||||||
|
yErr: Iterable<Double>,
|
||||||
|
model: DerivativeStructureField.(x: DerivativeStructure) -> DerivativeStructure,
|
||||||
|
): DifferentiableExpression<Double> = chiSquared(
|
||||||
|
DerivativeStructureField,
|
||||||
|
x.toList().asBuffer(),
|
||||||
|
y.toList().asBuffer(),
|
||||||
|
yErr.toList().asBuffer(),
|
||||||
|
model
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Optimize expression without derivatives
|
||||||
|
*/
|
||||||
|
public fun Expression<Double>.optimize(
|
||||||
|
vararg symbols: Symbol,
|
||||||
|
configuration: CMOptimizationProblem.() -> Unit,
|
||||||
|
): OptimizationResult<Double> = optimizeWith(CMOptimizationProblem, symbols = symbols, configuration)
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Optimize differentiable expression
|
||||||
|
*/
|
||||||
|
public fun DifferentiableExpression<Double>.optimize(
|
||||||
|
vararg symbols: Symbol,
|
||||||
|
configuration: CMOptimizationProblem.() -> Unit,
|
||||||
|
): OptimizationResult<Double> = optimizeWith(CMOptimizationProblem, symbols = symbols, configuration)
|
||||||
|
|
||||||
|
public fun DifferentiableExpression<Double>.minimize(
|
||||||
|
vararg startPoint: Pair<Symbol, Double>,
|
||||||
|
configuration: CMOptimizationProblem.() -> Unit = {},
|
||||||
|
): OptimizationResult<Double> {
|
||||||
|
require(startPoint.isNotEmpty()) { "Must provide a list of symbols for optimization" }
|
||||||
|
val problem = CMOptimizationProblem(startPoint.map { it.first }).apply(configuration)
|
||||||
|
problem.diffExpression(this)
|
||||||
|
problem.initialGuess(startPoint.toMap())
|
||||||
|
problem.goal(GoalType.MINIMIZE)
|
||||||
|
return problem.optimize()
|
||||||
|
}
|
@ -3,6 +3,7 @@ package kscience.kmath.commons.optimization
|
|||||||
import kscience.kmath.commons.expressions.DerivativeStructureExpression
|
import kscience.kmath.commons.expressions.DerivativeStructureExpression
|
||||||
import kscience.kmath.expressions.symbol
|
import kscience.kmath.expressions.symbol
|
||||||
import kscience.kmath.prob.Distribution
|
import kscience.kmath.prob.Distribution
|
||||||
|
import kscience.kmath.prob.Fitting
|
||||||
import kscience.kmath.prob.RandomGenerator
|
import kscience.kmath.prob.RandomGenerator
|
||||||
import kscience.kmath.prob.normal
|
import kscience.kmath.prob.normal
|
||||||
import kscience.kmath.structures.asBuffer
|
import kscience.kmath.structures.asBuffer
|
||||||
@ -39,7 +40,7 @@ internal class OptimizeTest {
|
|||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
fun testFit() {
|
fun testCmFit() {
|
||||||
val a by symbol
|
val a by symbol
|
||||||
val b by symbol
|
val b by symbol
|
||||||
val c by symbol
|
val c by symbol
|
||||||
@ -52,15 +53,14 @@ internal class OptimizeTest {
|
|||||||
it.pow(2) + it + 1 + chain.nextDouble()
|
it.pow(2) + it + 1 + chain.nextDouble()
|
||||||
}
|
}
|
||||||
val yErr = x.map { sigma }
|
val yErr = x.map { sigma }
|
||||||
with(CMFit) {
|
val chi2 = Fitting.chiSquared(x.asBuffer(), y.asBuffer(), yErr.asBuffer()) { x ->
|
||||||
val chi2 = chiSquared(x.asBuffer(), y.asBuffer(), yErr.asBuffer()) { x ->
|
val cWithDefault = bindOrNull(c) ?: one
|
||||||
val cWithDefault = bindOrNull(c)?: one
|
bind(a) * x.pow(2) + bind(b) * x + cWithDefault
|
||||||
bind(a) * x.pow(2) + bind(b) * x + cWithDefault
|
|
||||||
}
|
|
||||||
|
|
||||||
val result = chi2.minimize(a to 1.5, b to 0.9, c to 1.0)
|
|
||||||
println(result)
|
|
||||||
println("Chi2/dof = ${result.value / (x.size - 3)}")
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
val result = chi2.minimize(a to 1.5, b to 0.9, c to 1.0)
|
||||||
|
println(result)
|
||||||
|
println("Chi2/dof = ${result.value / (x.size - 3)}")
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
@ -1,13 +1,12 @@
|
|||||||
package kscience.kmath.prob
|
package kscience.kmath.prob
|
||||||
|
|
||||||
import kscience.kmath.expressions.AutoDiffProcessor
|
import kscience.kmath.expressions.*
|
||||||
import kscience.kmath.expressions.DifferentiableExpression
|
|
||||||
import kscience.kmath.expressions.ExpressionAlgebra
|
|
||||||
import kscience.kmath.operations.ExtendedField
|
import kscience.kmath.operations.ExtendedField
|
||||||
import kscience.kmath.structures.Buffer
|
import kscience.kmath.structures.Buffer
|
||||||
import kscience.kmath.structures.indices
|
import kscience.kmath.structures.indices
|
||||||
|
import kotlin.math.pow
|
||||||
|
|
||||||
public object Fit {
|
public object Fitting {
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Generate a chi squared expression from given x-y-sigma data and inline model. Provides automatic differentiation
|
* Generate a chi squared expression from given x-y-sigma data and inline model. Provides automatic differentiation
|
||||||
@ -33,4 +32,28 @@ public object Fit {
|
|||||||
sum
|
sum
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Generate a chi squared expression from given x-y-sigma model represented by an expression. Does not provide derivatives
|
||||||
|
*/
|
||||||
|
public fun chiSquared(
|
||||||
|
x: Buffer<Double>,
|
||||||
|
y: Buffer<Double>,
|
||||||
|
yErr: Buffer<Double>,
|
||||||
|
model: Expression<Double>,
|
||||||
|
xSymbol: Symbol = StringSymbol("x"),
|
||||||
|
): Expression<Double> {
|
||||||
|
require(x.size == y.size) { "X and y buffers should be of the same size" }
|
||||||
|
require(y.size == yErr.size) { "Y and yErr buffer should of the same size" }
|
||||||
|
return Expression { arguments ->
|
||||||
|
x.indices.sumByDouble {
|
||||||
|
val xValue = x[it]
|
||||||
|
val yValue = y[it]
|
||||||
|
val yErrValue = yErr[it]
|
||||||
|
val modifiedArgs = arguments + (xSymbol to xValue)
|
||||||
|
val modelValue = model(modifiedArgs)
|
||||||
|
((yValue - modelValue) / yErrValue).pow(2)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
Loading…
Reference in New Issue
Block a user