Dev #127
@ -0,0 +1,71 @@
|
||||
package scientifik.kmath.commons.prob
|
||||
|
||||
import kotlinx.coroutines.Dispatchers
|
||||
import kotlinx.coroutines.async
|
||||
import kotlinx.coroutines.runBlocking
|
||||
import org.apache.commons.rng.sampling.distribution.ZigguratNormalizedGaussianSampler
|
||||
import org.apache.commons.rng.simple.RandomSource
|
||||
import scientifik.kmath.chains.BlockingRealChain
|
||||
import scientifik.kmath.prob.*
|
||||
import java.time.Duration
|
||||
import java.time.Instant
|
||||
|
||||
|
||||
private suspend fun runChain(): Duration {
|
||||
val generator = RandomGenerator.fromSource(RandomSource.MT, 123L)
|
||||
|
||||
val normal = Distribution.normal(NormalSamplerMethod.Ziggurat)
|
||||
val chain = normal.sample(generator) as BlockingRealChain
|
||||
|
||||
val startTime = Instant.now()
|
||||
var sum = 0.0
|
||||
repeat(10000001) { counter ->
|
||||
|
||||
sum += chain.nextDouble()
|
||||
|
||||
if (counter % 100000 == 0) {
|
||||
val duration = Duration.between(startTime, Instant.now())
|
||||
val meanValue = sum / counter
|
||||
println("Chain sampler completed $counter elements in $duration: $meanValue")
|
||||
}
|
||||
}
|
||||
return Duration.between(startTime, Instant.now())
|
||||
}
|
||||
|
||||
private fun runDirect(): Duration {
|
||||
val provider = RandomSource.create(RandomSource.MT, 123L)
|
||||
val sampler = ZigguratNormalizedGaussianSampler(provider)
|
||||
val startTime = Instant.now()
|
||||
|
||||
var sum = 0.0
|
||||
repeat(10000001) { counter ->
|
||||
|
||||
sum += sampler.sample()
|
||||
|
||||
if (counter % 100000 == 0) {
|
||||
val duration = Duration.between(startTime, Instant.now())
|
||||
val meanValue = sum / counter
|
||||
println("Direct sampler completed $counter elements in $duration: $meanValue")
|
||||
}
|
||||
}
|
||||
return Duration.between(startTime, Instant.now())
|
||||
}
|
||||
|
||||
/**
|
||||
* Comparing chain sampling performance with direct sampling performance
|
||||
*/
|
||||
fun main() {
|
||||
runBlocking(Dispatchers.Default) {
|
||||
val chainJob = async {
|
||||
runChain()
|
||||
}
|
||||
|
||||
val directJob = async {
|
||||
runDirect()
|
||||
}
|
||||
|
||||
println("Chain: ${chainJob.await()}")
|
||||
println("Direct: ${directJob.await()}")
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,12 @@
|
||||
package scientifik.kmath.chains
|
||||
|
||||
/**
|
||||
* Performance optimized chain for integer values
|
||||
*/
|
||||
abstract class BlockingIntChain : Chain<Int> {
|
||||
abstract fun nextInt(): Int
|
||||
|
||||
override suspend fun next(): Int = nextInt()
|
||||
|
||||
fun nextBlock(size: Int): IntArray = IntArray(size) { nextInt() }
|
||||
}
|
@ -0,0 +1,12 @@
|
||||
package scientifik.kmath.chains
|
||||
|
||||
/**
|
||||
* Performance optimized chain for real values
|
||||
*/
|
||||
abstract class BlockingRealChain : Chain<Double> {
|
||||
abstract fun nextDouble(): Double
|
||||
|
||||
override suspend fun next(): Double = nextDouble()
|
||||
|
||||
fun nextBlock(size: Int): DoubleArray = DoubleArray(size) { nextDouble() }
|
||||
}
|
@ -48,7 +48,6 @@ interface Chain<out R>: Flow<R> {
|
||||
}
|
||||
|
||||
companion object
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -2,9 +2,11 @@ package scientifik.kmath.streaming
|
||||
|
||||
import kotlinx.coroutines.FlowPreview
|
||||
import kotlinx.coroutines.flow.*
|
||||
import scientifik.kmath.chains.BlockingRealChain
|
||||
import scientifik.kmath.structures.Buffer
|
||||
import scientifik.kmath.structures.BufferFactory
|
||||
import scientifik.kmath.structures.DoubleBuffer
|
||||
import scientifik.kmath.structures.asBuffer
|
||||
|
||||
/**
|
||||
* Create a [Flow] from buffer
|
||||
@ -45,20 +47,28 @@ fun <T> Flow<T>.chunked(bufferSize: Int, bufferFactory: BufferFactory<T>): Flow<
|
||||
*/
|
||||
fun Flow<Double>.chunked(bufferSize: Int): Flow<DoubleBuffer> = flow {
|
||||
require(bufferSize > 0) { "Resulting chunk size must be more than zero" }
|
||||
val array = DoubleArray(bufferSize)
|
||||
var counter = 0
|
||||
|
||||
this@chunked.collect { element ->
|
||||
array[counter] = element
|
||||
counter++
|
||||
if (counter == bufferSize) {
|
||||
val buffer = DoubleBuffer(array)
|
||||
emit(buffer)
|
||||
counter = 0
|
||||
if (this@chunked is BlockingRealChain) {
|
||||
//performance optimization for blocking primitive chain
|
||||
while (true) {
|
||||
emit(nextBlock(bufferSize).asBuffer())
|
||||
}
|
||||
} else {
|
||||
val array = DoubleArray(bufferSize)
|
||||
var counter = 0
|
||||
|
||||
this@chunked.collect { element ->
|
||||
array[counter] = element
|
||||
counter++
|
||||
if (counter == bufferSize) {
|
||||
val buffer = DoubleBuffer(array)
|
||||
emit(buffer)
|
||||
counter = 0
|
||||
}
|
||||
}
|
||||
if (counter > 0) {
|
||||
emit(DoubleBuffer(counter) { array[it] })
|
||||
}
|
||||
}
|
||||
if (counter > 0) {
|
||||
emit(DoubleBuffer(counter) { array[it] })
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -5,7 +5,7 @@ import org.apache.commons.rng.simple.RandomSource
|
||||
|
||||
class RandomSourceGenerator(val source: RandomSource, seed: Long?) : RandomGenerator {
|
||||
internal val random: UniformRandomProvider = seed?.let {
|
||||
RandomSource.create(source, seed, null)
|
||||
RandomSource.create(source, seed)
|
||||
} ?: RandomSource.create(source)
|
||||
|
||||
override fun nextBoolean(): Boolean = random.nextBoolean()
|
||||
@ -59,3 +59,9 @@ fun RandomGenerator.asUniformRandomProvider(): UniformRandomProvider = if (this
|
||||
} else {
|
||||
RandomGeneratorProvider(this)
|
||||
}
|
||||
|
||||
fun RandomGenerator.Companion.fromSource(source: RandomSource, seed: Long? = null): RandomSourceGenerator =
|
||||
RandomSourceGenerator(source, seed)
|
||||
|
||||
fun RandomGenerator.Companion.mersenneTwister(seed: Long? = null): RandomSourceGenerator =
|
||||
fromSource(RandomSource.MT, seed)
|
||||
|
@ -2,6 +2,8 @@ package scientifik.kmath.prob
|
||||
|
||||
import org.apache.commons.rng.UniformRandomProvider
|
||||
import org.apache.commons.rng.sampling.distribution.*
|
||||
import scientifik.kmath.chains.BlockingIntChain
|
||||
import scientifik.kmath.chains.BlockingRealChain
|
||||
import scientifik.kmath.chains.Chain
|
||||
import java.util.*
|
||||
import kotlin.math.PI
|
||||
@ -11,32 +13,32 @@ import kotlin.math.sqrt
|
||||
|
||||
abstract class ContinuousSamplerDistribution : Distribution<Double> {
|
||||
|
||||
private inner class ContinuousSamplerChain(val generator: RandomGenerator) : Chain<Double> {
|
||||
private val sampler = buildSampler(generator)
|
||||
private inner class ContinuousSamplerChain(val generator: RandomGenerator) : BlockingRealChain() {
|
||||
private val sampler = buildCMSampler(generator)
|
||||
|
||||
override suspend fun next(): Double = sampler.sample()
|
||||
override fun nextDouble(): Double = sampler.sample()
|
||||
|
||||
override fun fork(): Chain<Double> = ContinuousSamplerChain(generator.fork())
|
||||
}
|
||||
|
||||
protected abstract fun buildSampler(generator: RandomGenerator): ContinuousSampler
|
||||
protected abstract fun buildCMSampler(generator: RandomGenerator): ContinuousSampler
|
||||
|
||||
override fun sample(generator: RandomGenerator): Chain<Double> = ContinuousSamplerChain(generator)
|
||||
override fun sample(generator: RandomGenerator): BlockingRealChain = ContinuousSamplerChain(generator)
|
||||
}
|
||||
|
||||
abstract class DiscreteSamplerDistribution : Distribution<Int> {
|
||||
|
||||
private inner class ContinuousSamplerChain(val generator: RandomGenerator) : Chain<Int> {
|
||||
private inner class ContinuousSamplerChain(val generator: RandomGenerator) : BlockingIntChain() {
|
||||
private val sampler = buildSampler(generator)
|
||||
|
||||
override suspend fun next(): Int = sampler.sample()
|
||||
override fun nextInt(): Int = sampler.sample()
|
||||
|
||||
override fun fork(): Chain<Int> = ContinuousSamplerChain(generator.fork())
|
||||
}
|
||||
|
||||
protected abstract fun buildSampler(generator: RandomGenerator): DiscreteSampler
|
||||
|
||||
override fun sample(generator: RandomGenerator): Chain<Int> = ContinuousSamplerChain(generator)
|
||||
override fun sample(generator: RandomGenerator): BlockingIntChain = ContinuousSamplerChain(generator)
|
||||
}
|
||||
|
||||
enum class NormalSamplerMethod {
|
||||
@ -55,7 +57,7 @@ private fun normalSampler(method: NormalSamplerMethod, provider: UniformRandomPr
|
||||
fun Distribution.Companion.normal(
|
||||
method: NormalSamplerMethod = NormalSamplerMethod.Ziggurat
|
||||
): Distribution<Double> = object : ContinuousSamplerDistribution() {
|
||||
override fun buildSampler(generator: RandomGenerator): ContinuousSampler {
|
||||
override fun buildCMSampler(generator: RandomGenerator): ContinuousSampler {
|
||||
val provider: UniformRandomProvider = generator.asUniformRandomProvider()
|
||||
return normalSampler(method, provider)
|
||||
}
|
||||
@ -69,11 +71,11 @@ fun Distribution.Companion.normal(
|
||||
mean: Double,
|
||||
sigma: Double,
|
||||
method: NormalSamplerMethod = NormalSamplerMethod.Ziggurat
|
||||
): Distribution<Double> = object : ContinuousSamplerDistribution() {
|
||||
): ContinuousSamplerDistribution = object : ContinuousSamplerDistribution() {
|
||||
private val sigma2 = sigma.pow(2)
|
||||
private val norm = sigma * sqrt(PI * 2)
|
||||
|
||||
override fun buildSampler(generator: RandomGenerator): ContinuousSampler {
|
||||
override fun buildCMSampler(generator: RandomGenerator): ContinuousSampler {
|
||||
val provider: UniformRandomProvider = generator.asUniformRandomProvider()
|
||||
val normalizedSampler = normalSampler(method, provider)
|
||||
return GaussianSampler(normalizedSampler, mean, sigma)
|
||||
@ -86,7 +88,7 @@ fun Distribution.Companion.normal(
|
||||
|
||||
fun Distribution.Companion.poisson(
|
||||
lambda: Double
|
||||
): Distribution<Int> = object : DiscreteSamplerDistribution() {
|
||||
): DiscreteSamplerDistribution = object : DiscreteSamplerDistribution() {
|
||||
|
||||
override fun buildSampler(generator: RandomGenerator): DiscreteSampler {
|
||||
return PoissonSampler.of(generator.asUniformRandomProvider(), lambda)
|
||||
|
@ -8,12 +8,21 @@ import org.junit.jupiter.api.Test
|
||||
|
||||
class CommonsDistributionsTest {
|
||||
@Test
|
||||
fun testNormalDistribution(){
|
||||
val distribution = Distribution.normal(7.0,2.0)
|
||||
fun testNormalDistributionSuspend() {
|
||||
val distribution = Distribution.normal(7.0, 2.0)
|
||||
val generator = RandomGenerator.default(1)
|
||||
val sample = runBlocking {
|
||||
distribution.sample(generator).take(1000).toList()
|
||||
}
|
||||
Assertions.assertEquals(7.0, sample.average(), 0.1)
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testNormalDistributionBlocking() {
|
||||
val distribution = Distribution.normal(7.0, 2.0)
|
||||
val generator = RandomGenerator.default(1)
|
||||
val sample = distribution.sample(generator).nextBlock(1000)
|
||||
Assertions.assertEquals(7.0, sample.average(), 0.1)
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue
Block a user