Implement hyperbolic functions for various Algebras #118

Merged
CommanderTvis merged 14 commits from hyp-trig-functions into dev 2020-08-11 18:18:06 +03:00
2 changed files with 8 additions and 9 deletions
Showing only changes of commit 995a0f916b - Show all commits

View File

@ -90,8 +90,8 @@ object ComplexField : ExtendedField<Complex> {
return i * (e1 - e2) / (e1 + e2)
}
override fun asin(arg: Complex): Complex = -i * ln(sqrt(1 - (arg pow 2)) + i * arg)
override fun acos(arg: Complex): Complex = PI_DIV_2 + i * ln(sqrt(1 - (arg pow 2)) + i * arg)
override fun asin(arg: Complex): Complex = -i * ln(sqrt(1 - (arg * arg)) + i * arg)
override fun acos(arg: Complex): Complex = PI_DIV_2 + i * ln(sqrt(1 - (arg * arg)) + i * arg)
override fun atan(arg: Complex): Complex {
val iArg = i * arg
@ -101,7 +101,7 @@ object ComplexField : ExtendedField<Complex> {
override fun sinh(arg: Complex): Complex = (exp(arg) - exp(-arg)) / 2
override fun cosh(arg: Complex): Complex = (exp(arg) + exp(-arg)) / 2
override fun tanh(arg: Complex): Complex = (exp(arg) - exp(-arg)) / (exp(-arg) + exp(arg))
override fun asinh(arg: Complex): Complex = ln(sqrt((arg pow 2) + 1) + arg)
override fun asinh(arg: Complex): Complex = ln(sqrt(arg * arg + 1) + arg)
override fun acosh(arg: Complex): Complex = ln(arg + sqrt((arg - 1) * (arg + 1)))
override fun atanh(arg: Complex): Complex = (ln(arg + 1) - ln(1 - arg)) / 2

View File

@ -1,8 +1,9 @@
package scientifik.kmath.operations
import kotlin.math.PI
import kotlin.math.*
import kotlin.test.Test
import kotlin.test.assertEquals
import kotlin.test.assertTrue
internal class ComplexFieldTest {
@Test
@ -44,16 +45,14 @@ internal class ComplexFieldTest {
@Test
fun testInverseSine() {
assertEquals(Complex(0, -0.0), ComplexField { asin(zero) })
assertEquals(ComplexField { i * asinh(one) }.let { it.im.toInt() to it.re.toInt() },
ComplexField { asin(i) }.let { it.im.toInt() to it.re.toInt() })
assertTrue(abs(ComplexField { i * asinh(one) }.r - ComplexField { asin(i) }.r) < 0.000000000000001)
}
@Test
fun testInverseHyperbolicSine() {
assertEquals(
ComplexField { i * PI.toComplex() / 2 }.let { it.im.toInt() to it.re.toInt() },
ComplexField { asinh(i) }.let { it.im.toInt() to it.re.toInt() })
ComplexField { i * PI.toComplex() / 2 },
ComplexField { asinh(i) })
}
@Test